Institute of

Theoretical Computer Science


Technische Universität Braunschweig

Concurrency Theory 2016/2017






The overall theme is automatic verification of models of concurrent computation. A list of topics:

Notes and Additional Material

Here you can find an up-to-date list of notes for the course. There might be typos, the date of the last update is indicated for each document. Books:
  1. L. Priese and H. Wimmel. Petri-Netze. Springer-Verlag, 2003.
  2. W. Reisig. Petri nets: An Introduction. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, 1985.
  3. R. Milner. Communicating and mobile systems: the π‑calculus. Cambridge University Press, 1999.
  4. D. Sangiorgi, D. Walker Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press, 2001.
Additional material can be found in published research papers:
  1. J. Esparza and S. Melzer. 2000 PDF
    Verification of Safety Properties Using Integer Programming: Beyond the State Equation. Formal Methods in System Design.
  2. J. Esparza. 1998 PDF
    Decidability and complexity of Petri net problems – an introduction. Lectures on Petri Nets I: Basic Models. Springer.
  3. C. Rackoff. 1978 LINK
    The covering and boundedness problems for vector addition systems. Theoretical Computer Science. Volume 6, issue 2.
  4. C. Dufourd et al. 1998. PDF
    Reset nets between decidability and undecidability. Automata, Languages and Programming.
  5. C. ST. J. A. Nash-Williams. 1963. PDF
    On well-quasi-ordering finite trees. In Mathematical Proceedings of the Cambridge Philosophical Society. Cambridge Univ Press.
  6. A. Finkel and P. Schnoebelen. 2001 PDF
    Well-structured transition systems everywhere! Theoretical Computer Science. Volume 256, issue 1-2.
  7. P. A. Abdulla Collomb-A. Annichini A. Bouajjani and B. Jonsson. 2004 PDF
    Using forward reachability analysis for verification of lossy channel systems. Formal Methods in System Design. Volume 25, issue 1.
  8. A. Finkel and Goubault-J. Larrecq. 2009 PDF
    Forward analysis for WSTS, part I: Completions. 26th International Symposium on Theoretical Aspects of Computer Science.
  9. P. Jančar, 1995.
    Undecidability of bisimilarity for Petri nets and some related problems. Theoretical Computer Science. Volume 148, issue 2.
  10. Petr Jančar, Javier Esparza, and Faron Moller, 1999.
    Petri nets and regular processes. Journal of Computer and System Sciences. Volume 59, issue 3.
  11. R. Meyer. 2008.
    On boundedness in depth in the π‑calculus. Fifth IFIP International Conference On Theoretical Computer Science.
  12. T. Wies, D. Zufferey, and T. Henzinger. 2010.
    Forward analysis of depth-bounded processes. FoSSaCS 2010.
  13. E. D'Osualdo, C.H.-L. Ong. 2016.
    On Hierarchical Communication Topologies in the pi-calculus. Programming Languages and Systems: ESOP 2016.