
University of Oxford
Department of Computer Science

Doctor of Philosophy in Computer Science

Veri�cation of Message Passing

Concurrent Systems

Emanuele D’Osualdo

University of Oxford
Department of Computer Science

Doctor of Philosophy in Computer Science

Veri�cation of Message Passing

Concurrent Systems

Emanuele D’Osualdo
Merton College, University of Oxford

Supervisor
D

Prof. C.-H. Luke Ong
University of Oxford

Examiners
D

Prof. Simon Gay
University of Glasgow

Prof. Hongseok Yang
University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy in Computer Science

Hilary Term 2015

Copyright © 2015 by Emanuele D’Osualdo.
www.emanueledosualdo.com

Final version submitted September 2015.
The o�cially deposited version can be found at the Oxford University Research Archive:
http://ora.ox.ac.uk/objects/uuid:f669b95b-f760-4de9-a62a-374d41172879

This version was produced on 10th June 2016 and contains corrections of minor typos.

Typeset using LATEX and the Memoir class. The main text uses the Linux Libertine font,
the monospaced text uses DejaVu Sans Mono.
Most of the illustrations are produced using the Tikz package.
The illustration on the cover is an artistic view of a π-calculus system.
The illustration “Cada Homem É Uma Ilha”, on the title page of Part I,
is courtesy of Vicente Sardinha © 1988.

http://www.emanueledosualdo.com
http://ora.ox.ac.uk/objects/uuid:f669b95b-f760-4de9-a62a-374d41172879

Abstract

This dissertation is concerned with the development of fully-automatic methods of
veri�cation, for message-passing based concurrent systems.

In the �rst part of the thesis we focus on Erlang, a dynamically typed, higher-order
functional language with pattern-matching algebraic data types extended with asynchron-
ous message-passing. We de�ne a sound parametric control-�ow analysis for Erlang,
which we use to bootstrap the construction of an abstract model that we call Actor Com-

municating System (ACS). ACS are given semantics by means of Vector Addition Systems

(VAS), which have rich decidable properties. We exploit VAS model checking algorithms
to prove properties of Erlang programs such as unreachability of error states, mutual
exclusion, or bounds on mailboxes. To assess the approach empirically, we constructed
Soter, a prototype implementation of the veri�cation method, thereby obtaining the �rst
fully-automatic, in�nite-state model checker for a core concurrent fragment of Erlang.

The second part of the thesis addresses one of the major sources of imprecision in the
ACS abstraction: process identities. To study the problem of algorithmically verifying
models where process identities are accurately represented we turn to the π-calculus,
a process algebra based around the notion of name and mobility. The full π-calculus
is Turing-powerful so we focus on the depth-bounded fragment introduced by Roland
Meyer, which enjoys decidability of some veri�cation problems. The main obstacle in
using depth-bounded terms as a target abstract model, is that depth-boundedness of
arbitrary π-terms is undecidable. We therefore consider the problem of identifying a
fragment of depth-bounded π-calculus for which membership is decidable. We de�ne the
�rst such fragment by means of a novel type system for the π-calculus. Typable terms
are ensured to be depth-bounded. Both type-checking and type inference are shown
to be decidable. The constructions are based on the novel notion of T-compatibility,
which imposes a hierarchy between names. The type system’s main goal is proving that
this hierarchy is preserved under reduction, even in the presence of unbounded name
creation and mobility.

Acknowledgements

First, I would like to thank my supervisor Prof. Luke Ong: I am grateful to him for holding
me to a high research standard and for teaching me how research is done, with great
patience. I would like to thank Prof. Hongseok Yang, who was in the commission for my
transfer and con�rmation of status, for the detailed, honest and constructive feedback. I
am particularly grateful to my examiners Prof. Hongseok Yang and Prof. Simon Gay for
the careful work of review and for making my viva a very enjoyable experience. I am also
grateful to Prof. Roland Meyer who provided encouraging and insightful feedback on the
second part of this thesis. Thanks also to Dr. Damien Zu�erey for the useful discussions
on depth-boundedness.

I acknowledge the �nancial support from the Scatcherd European Scholarship and
Merton College that funded my DPhil studies.

A big thank you is due to the awesome Julie Sheppard, the Graduate Studies Admin-
istrator, who never missed an email and restlessly provided prompt and reliable advice.
Without her I would still be waiting for the Queen’s signature on a form for misreading
the regulations.

Every member of the LOng group contributed in one way or another to the completion
of this thesis. Thank you all, in order of appearance: Robin Neatherway, Steven Ramsay,
Martin “ϕ” Lester, Michael Vanden Boom, Jonathan Kochems, Chang Yan, Marcelo
Sousa, Egor Ianovski, and Conrad Cotton-Barratt. It has been an honor to share our
natural-light-deprived o�ce with you, both on a professional and a personal level.

A special thanks goes to Dr. Ani Calinescu who proved with her kindness that you
can be yourself even in a pool of sharks.

To Prof. Marino Miculan, Prof. Marco Comini and Prof. Angelo Montanari: it is
thanks to your support, advice and, not least, your example that I choose this path. It
is perhaps not a coincidence that my thesis should be on π-calculus, static analysis and
model checking! Similarly, I feel deeply indebted to many of my teachers, the in�uence of
whom is present in this dissertation: Diana Bitto, Giuseppina Tri�letti, Franca Alborini,
Roberto Grison, Renato Miani, Sebastiano Sonego. The impact they had on me both
personally and professionally is inestimable.

Many friends have helped me stay sane through these di�cult years. I am deeply
grateful for their support and a�ection. Thank you Enrico Sandretti, Gabriele & Francesca

iii

Puppis, Caterina Guardini, Nunzio Turtulici, Francesca Ferasin, Michele De Marchi;
Vikaran Khanna, Kristina Gedgaudaitė, Johannes Moeller, Charlie Taylor, Christian
Matek, Alessandro Zocco, Adèle Jatteau. Your example has been a constant source of
inspiration.

Thanks to Vicente Sardinha for letting me use his wonderfully quirky illustration
“Cada Homem É Uma Ilha”.

Y

Un ringraziamento speciale va alla mia famiglia. Francesca e Tommaso: quando il gioco

si fa duro ci siete sempre per me. Alice e Elena: la lontananza si paga in due; grazie per

tenere duro. Mamma Luciana e papà Claudio: tutto quello di buono che sono riuscito a fare

parte dal vostro amore, la vostra cura, la vostra �ducia, il vostro generoso e incondizionato

sostegno.

Un sentito grazie va anche a Silvia Driussi ed Enzo Sandretti per il loro continuo supporto

e incoraggiamento.

Ma soprattutto voglio ringraziare la mia compagna Anna Sandretti. Il suo sostegno e la

sua �ducia sono stati fondamentali per la realizzazione di questa tesi. Hai creduto in me nei

momenti bui, hai gioito con me nei momenti felici. Ti sei presa cura di me come solo una

vera amica può fare.

iv

Contents

Contents v

List of Figures ix

List of De�nitions xi

1 Introduction 1

1.1 An Erlang Primer . 2
1.2 Soter’s veri�cation approach . 5
1.3 Process Identities and the π-calculus . 8
1.4 Hierarchical Systems . 12
1.5 Outline . 15

2 Preliminaries 17

2.1 Transition Systems . 17
2.2 Well Structured Transition Systems . 18
2.3 Vector Addition Systems . 19

I Soter: In�nite-State Veri�cation for Erlang 21

3 Overview 23

3.1 Contributions . 23
3.2 The Actor Model . 24
3.3 Erlang . 26

4 Models of Message-Passing Concurrency 31

4.1 A Prototypical Fragment of Erlang . 31
4.2 The Quest for a Decidable Abstraction . 35
4.3 Actor Communicating Systems . 37

v

Contents

5 Verifying λActor programs 41

5.1 An Operational Semantics for λActor 42
5.2 Parametric Abstract Interpretation . 48
5.3 Generating the Actor Communicating System 55
5.4 An E�cient Algorithm for ACS Generation 60
5.5 Limitations . 62

6 Soter: a Veri�cation Tool for Erlang 65

6.1 The Soter Tool . 65
6.2 Empirical Evaluation . 67
6.3 A Simple Case Study . 68

7 Related Work 73

7.1 Semantics of Erlang . 73
7.2 The Many Faces of Soundness . 73
7.3 Static Analysis . 75
7.4 Abstract Model Checking . 77
7.5 Type Systems for Erlang . 78
7.6 Session Types . 79
7.7 Bug-�nding and Testing . 80

II Typably Hierarchical Systems 81

8 Beyond Petri Nets 83

8.1 Motivation . 83
8.2 Contributions and Outline . 87

9 The π-calculus and Depth Boundedness 89

9.1 The π-calculus . 89
9.2 Forest Representation of Terms . 93
9.3 Communication Topology . 95
9.4 The ‘tied to’ relation . 96
9.5 Depth-bounded Systems . 97

10 Typably Hierarchical Topologies 103

10.1 Proving Depth-Boundedness Using T-compatibility 103
10.2 A canonical representative . 106
10.3 A Type System for Hierarchical Topologies 109
10.4 Soundness . 114
10.5 Type Inference . 121
10.6 Polyadic and Global Channels . 125

vi

Contents

10.7 Some examples . 126

11 Relation with Other Models 133

11.1 Nested Data Class Memory Automata . 133
11.2 Encoding Typably Hierarchical Terms into NDCMA 135
11.3 Encoding NDCMA into Typably Hierarchical Terms 143
11.4 CCS! . 145
11.5 Other Related Work . 147

12 Extensions and Future Directions 151

12.1 More Expressive Types . 151
12.2 Semantic Notion of Hierarchical System 152
12.3 Complexity . 155

13 Conclusions 157

13.1 Summary . 157
13.2 Future Work . 158

Bibliography 161

Appendices 171

A Proof of Soundness of the CFA 173

A.1 Abstract Domains, Orders, Abstraction Functions and Abstract Auxiliary
Functions . 173

A.2 Proof of Theorem 5.1 . 176

B Proof of Soundness of the Generated ACS 183

Index 187

vii

List of Figures

1.1 An abstract model of a server . 6
1.2 A graphical representation of a reachable term in the client/server pattern . 10
1.3 The ring example is not bounded in depth . 11
1.4 Forest representations of the Sys term . 12

4.1 Locked Resource (running example) . 33

5.1 Dependencies in the concrete semantics domain 42
5.2 Operational Semantics Rules for λActor . 47
5.3 Abstract Semantics Rules for λActor . 51
5.4 ACS generated by the algorithm from Example 4.1 60
5.5 The ACS generation algorithm . 61
5.6 A program that Soter cannot verify because of the stack 63
5.7 A program that Soter cannot verify because of the sequencing in mailboxes . 64

6.1 Soter’s work�ow . 66
6.2 Soter’s web interface . 67
6.3 Eratosthenes’ Sieve, actor style . 69
6.4 Simpli�ed view of the ACS generated by Soter from sieve 71
6.5 ACS generated by Soter from sieve . 72

8.1 Concrete and abstract con�gurations of the distribute example 85
8.2 A π-calculus view of the distribute example 86

9.1 De�nition of the nf : P → Pnf function . 91
9.2 Example of communication topology . 96
9.3 Examples of forests in FJP K . 97
9.4 The simple paths of a term with unbounded depth keep growing longer . . . 99

10.1 Typing rules . 110
10.2 Explanation of constraints imposed by rule In 113
10.3 Zero-arity specialisation of pre�x rules . 125

ix

List of Figures

11.1 Schema of NDCMA encoding . 138

x

List of De�nitions

2.1 Reachability Problem . 17
2.2 Coverability Problem . 18
2.3 Well Structured Transition System . 18
2.4 Vector Addition System . 19

4.1 Actor Communicating System . 37
4.2 Semantics of ACS . 38

5.1 Concrete Semantics of λActor . 46
5.2 Basic domains abstraction . 48
5.3 Sound basic domains abstraction . 49
5.4 Abstract Semantics of λActor . 50
5.5 Generated ACS . 56
5.6 Abstraction function . 57

Name Uniqueness . 90
9.1 Reduction Semantics of π-calculus . 92
9.2 Forest representation . 94
9.3 Communication Topology . 95
9.4 Linked to (↔P), tied to (aP , /P), migratable 96
9.5 nestν, depth, depth-bounded term . 97
9.6 Term embedding . 100

10.1 Annotated term . 105
10.2 T-compatibility . 105
10.3 ΦT . 107
10.4 P -safe environment . 116
10.5 Typably Hierarchical term . 121

11.1 Nested Data Class Memory Automata . 134
11.2 Automaton encoding . 141

xi

List of Definitions

12.1 Annotated Semantics of π-calculus . 153
12.2 Hierarchical term . 153

xii

Chapter 1

Introduction

A living cell. In the nucleus a chain of messenger RNA is being assembled by a large
number of proteins around the template o�ered by the DNA. In the meantime, in the
cytoplasm, enzymes are bonding translation RNA molecules to amino acids. In a short
while, the messenger RNA will reach the cytoplasm where ribosomal units will navigate
through it to mark the spots where the translation RNA carrying the right amino acid
will land. Peptide bonds will form between adjacent amino acids and a protein will have
taken shape.

A colony of bacteria. They are accumulating in their host’s system. Each bacterium
has very limited knowledge of its surroundings. It knows that attacking the host when
the colony is too small would mean certain defeat. But they have a plan. They produce a
molecule and monitor its concentration in their proximity. When a certain threshold is
exceeded, they know the colony must have grown big enough for the big attack.

A room like many others. A man is buying a book on an online shop. He clicks
‘Buy now’, but little does he know that his gesture will generate an enormous amount of
signals, travelling through the network, all conspiring and cooperating to communicate
his intent and actuate it. The browser sends a packet of data with his request which gets
dispatched by many routers before reaching a server that will decide by which machine
it will be processed. Algorithms will process the signal, updating the records of supply
and the personal records of the buyer. This information is stored redundantly and is
distributed in physically separate places: it will take some time for the wave of new
information to reach all of them. Meanwhile, the payment request reaches the bank and
a protocol is initiated to ensure that all the parties agree on the terms of the transaction.
All the user sees is a banner asking him to ‘like’ the book on his pro�le. Another click
and we are back to the start.

What do these three situations have in common? In all three cases, the essence of
what is happening can be captured as a large ensemble of independent agents interacting
locally to obtain a global e�ect. Despite their ubiquity, our formal understanding of this
kind of discrete dynamic systems is still quite primitive. Understanding what are the laws

1

1. Introduction

that regulate communication between concurrent processes is one of the great challenges
of modern science.

This dissertation is concerned with computational systems organised as an evolving
collection of processes interacting through message passing. With the growing number
of sensitive tasks that we delegate to algorithms, the development of methods to certify
their trustworthiness is of paramount importance. Formal methods are here to help us:
they provide tools to formalise the notion of correctness and to prove it. In the process of
developing these tools we deepen our understanding of the underlying laws and structure
of communicating systems.

Our contribution is grounded on formal methods and speci�cally on techniques that
allow correctness proofs to be found algorithmically. Two big ideas enable this line of
work: abstraction and symbolic semantic reasoning. An abstraction removes details that
are not relevant, or conservatively simpli�es the view of the system until a property is
evident or easier to prove. Designing good abstractions requires insight on what is the
essence of the phenomenon under study. Symbolic semantic reasoning on the other hand
allows the expression and manipulation of potentially in�nite objects (behaviours) by
�nite means.

We focus on an industrial strength programming language: Erlang. Its concurrency
model is a particularly clean and succinct concurrent extension of a functional language.
The contribution of this thesis to the �eld is twofold. First, we propose an automatic
abstraction technique which is able to exploit in�nite state model checking to prove
safety properties of Erlang programs. This part culminates in the development of a
prototype tool. Second, we analyse one of the major shortcomings of the proposed ab-
straction: the representation of the identity of unboundedly many processes participating
in interactions. We propose the concept of T-compatibility as a way to organise identities
according to a hierarchy. Systems obeying the hierarchy can be model-checked more
accurately using powerful symbolic representations of the reachable terms.

1.1 An Erlang Primer

Let us overview the key features of Erlang through an example. We present a simpli�ed
program implementing a server. The server expects two kinds of requests: a ping or
a visit. A ping request is dealt with by sending a ping back. The server wants to keep
track of visits using a counter stored in a database. We want to avoid blocking the server
while replying to a request, so when access to the database is needed a worker process
is spawned to deal with the request and answer to the client directly. In this way the
server can answer to other requests while the workers interact with the database and the
clients.

2

1.1. An Erlang Primer

Erlang has built-in support for running multiple processes concurrently either locally
or in a distributed environment, where processes run on physically remote nodes. The
server process runs the serve procedure below:

serve(DB) →
receive

{ping , P} →
P ! {pong, self()};

{visit, C} →
spawn(fun()→ worker(DB, fun(X)→ X+1 end, C) end)

end,
serve(DB).

A receive construct declares how to react to incoming messages. A send instruction
takes the form P ! Msg where P is a process identi�er (pid), which acts as an address, and
Msg is the message to be sent, which can consist of an arbitrary Erlang value.

Erlang’s communication model is based on asynchronous message passing. Every
process is equipped with an unbounded bu�er of incoming messages called its mailbox.
A receive instruction inspects the mailbox looking for messages that match a pattern
and reacts if one is found, or blocks, waiting for more messages, if no matching message
is currently in the mailbox.

According to the de�nition of the serve function, the server process expects to
receive messages of two forms, {ping, P}, a tuple tagged with the atomic value ping
and carrying a pid P as a payload, or {visit, C} a tuple tagged with the atomic value
visit and carrying a pid C as a payload.1

In the case of a ping message, the server reacts by sending a pong reply to the process P.
Since communication is asynchronous, the server does not wait the process at P to receive
the message before continuing and serving the next request.

In the case of a visit message, the primitive spawn is used to create a new process
running the function worker, which we will describe later. Once the process is initialised,
the spawn primitive returns the pid of the newly created process to the caller.

A notable feature used in this de�nition is higher-order: the worker function takes a
function as second argument. This function will be used by workers to compute the new
value to store in the database from the old value.

The database is represented by a process running database(State); the variable
State will hold the current contents of the database. The process reacts to messages
requesting to write or read the value it stores. In order to prevent data-races, the database
must be locked before writing/reading, and unlocked afterwards.

1Despite the confusing syntax, curly braces do not denote sets in Erlang. A term {A,B} should be read
as a tuple constructor applied to two arguments.

3

1. Introduction

database(State) →
receive {lock, C} →

C ! {ready, self()},
lockeddb(State, C)

end.

lockeddb(State, Owner) →
receive

{read, Owner} →
Owner ! {val, self(), State},
lockeddb(State, Owner);

{write, X, Owner} →
lockeddb(X, Owner);

{unlock, Owner} →
database(State)

end.

The worker updates the database by following the locking protocol, and then sends a
reply to the client assigned to it:

worker(DB, F, C) →
DB ! {lock, self()},
receive {ready, DB} →

% Start of critical section

DB ! {read, self()},
receive {val, DB, X} →

DB ! {write, F(X), self()},
DB ! {unlock, self()},

% End of critical section

C ! {reply, X}
end

end.

The locking mechanism should ensure mutual exclusion between the workers: the critical
section is executed at most by one worker at once.

The function client de�nes a simple client that visits the server repeatedly:

client(Server) →
Server ! {visit, self()},
receive {reply, } →

client(Server)
end.

The entry point of the program is the function main, which sets up a system composed
of a single database, a single server and N clients.

4

1.2. Soter’s veri�cation approach

main(N) →
DB = spawn(fun()→ database(0) end),
S = spawn(fun()→ serve(DB) end),
spawn clients(N, S).

spawn clients(0, S) → ok;
spawn clients(N, S) →

spawn(fun()→ client(S) end),
spawn clients(N-1, S).

We are interested in safety properties: a (user-speci�ed) set of bad con�gurations can
never be reached. In our example, a �rst safety property we consider is mutual exclusion
of the workers, that is, no two workers can think they both acquired the lock on the
database. This can be formalised by stating that the number of processes running the
critical section of worker cannot exceed 1.

A second property we consider is about the mailbox of the clients: the number of
messages in the mailbox of each client is bounded by 1. In fact, after updating the
database, each worker sends a single message to the client assigned to it; no two workers
are assigned the same client, so the property should hold. We use these two properties to
illustrate how Soter works.

Note that, since we let N range over naturals, proving these properties requires
reasoning about an unbounded number of processes and interactions.

1.2 Soter’s veri�cation approach

In Part I, we study the problem of automatically verifying properties of programs like
the one just presented. Clearly, an automated approach cannot hope to be able to prove
arbitrary safety properties of arbitrary Erlang programs: it is an undecidable task. To
side-step this problem, static analysis and model checking methods adopt a strategy
based on approximation: the semantics of the input program is over-approximated so
that if no bad state can be reached in the approximation it cannot be present in the
exact semantics. The challenge is then �nding the right trade-o� between decidability

of the safety of the approximation and the precision of the approximation itself. If the
approximate semantics is too precise the analysis could take too much time or become
undecidable, if it is too imprecise there will be too many false alarms.

We identify an abstract model that is expressive enough to capture properties as
mutual exclusion or bounds on mailboxes, and allows to check these properties automat-
ically at the same time. We call these models Actor Communicating Systems (ACS). They
incorporate our choices on how the various features of Erlang should be approximated.

The �rst important constraint of ACS is that they only support a �nite set of con-
trol states. On the contrary, each Erlang process can possess an in�nite state space:

5

1. Introduction

data structures are not bounded in size, general recursion requires an unbounded stack
and higher-order allows arbitrarily nested closures to be created. Additionally, the
control-�ow of each individual process is dependent on side e�ects such as spawning or
communication.

We address this problem by de�ning a parametric abstract interpretation of Erlang
programs that is able to extract a �nite approximation of the control-�ow, taking in
account internal computation and interaction between processes.

The result of this analysis is then used in a second phase to construct an ACS model of
the program. The ACS model computed by one of the possible instances of our analysis
from our running example is graphically rendered in Figure 1.1.

mainM:
νDB νS

νC

clientC:

S!visit

?reply

serveS:

?visit

νW

workerW:

critical

DB!lock

?ready

DB!read

?val

DB!write

DB!unlock

C!ans

databaseDB:
?lock W!locked

?w
ri
te

?read

W!val

?unlock

Figure 1.1 – An abstract model of a server. The marked control state represents the start of the
critical section of a worker.

The rounded boxes represent control states, the labels of transitions represent side
e�ects: νP is a spawn action, P!msg is a send and ?msg is a receive. Even before explain-
ing what is the semantics of the side e�ects, we can make three observations on the
analysis. First, the data values, and hence the messages, are abstracted to a �nite set.
While the analysis itself is parametric on the data abstraction, often simple choices give
enough precision to prove interesting properties. Second, the analysis had to take into
account the non trivial control-�ow of higher-order computation in order to soundly
over-approximate the possible transitions between control states. Third, the analysis
is whole-program, which means that the control-�ow is analysed assuming the system
which is setup by main is isolated and autonomous. In our example this implies that,

6

1.2. Soter’s veri�cation approach

since no process is sending ping requests, the server’s abstraction does not include a
transition receiving a ping message.

So far, we only explained our choices regarding the abstraction of the control-�ow.
While the analysis extracting the ACS model has a very coarse view of the concurrency
model, we equip ACS of an in�nite-state semantics that is capable of capturing salient
properties of spawning and message-passing.

Let us �rst consider process spawning. Erlang processes can spawn other processes
dynamically, as for example done by the server when reacting to a visit. Furthermore,
the unique pid generated by a spawn, can be stored, communicated and used as an
address, allowing the network of processes—the so-called communication topology of the
system—to evolve during time. We approximate this phenomenon using the concept of
pid-classes: we cluster the spawned processes grouping them into a �nite set of abstract
identi�ers (the pid-classes). A pid-class has two functions: it identi�es the possible
control-�ow of each spawned process associated to it, and it serves as an abstract address
to which messages can be sent. In the case of our server example, the analysis identi�ed
5 pid-classes, M, C, S, W and DB. Every time an ACS transition labelled with νP is executed,
for a pid-class P, a new process with the abstract control-�ow associated to P is created.
Since the addresses of processes with the same pid-class cannot be distinguished in the
ACS semantics, to represent a con�guration it is su�cient to keep a counter for each
couple pid-class/control state. A spawn action is then executed by incrementing the
counter of the initial state of the control-�ow graph associated with the pid-class to be
spawned. The way pid-classes are generated by the analysis is also a parameter; in our
example we use a simple instance that generates a distinct pid-class for each syntactic
occurrence of spawn in the program.

Our design choices on pid-classes determine an abstraction on the semantics of
message-passing: the mailboxes of processes in the same pid-class are con�ated. When
an ACS transition labelled with P!msg is executed, the message is sent to a mailbox
associated with the pid-class P, which will include the original addressee but also any
other process sharing the same pid-class.

A �nal abstraction is needed to represent (the con�ated) mailboxes. Erlang’s mailboxes
have a quite expressive bu�ering and matching mechanism. The messages are enqueued
by order of arrival and are examined by receive starting from the oldest non-processed
message. Keeping this sequencing information in ACS would make proving safety
properties undecidable even after the pid-class abstraction. We therefore apply a second
counter abstraction: the exact order of arrival is lost and the ACS semantics only keeps a
counter for each di�erent kind of message in each mailbox. Speci�cally, a send action
P!msg in the ACS has the e�ect of incrementing the counter associated to messages msg
in the mailbox of the pid-class P. Symmetrically, a receive action ?msg in an ACS can be
executed when the corresponding counter is not zero, with the e�ect of decrementing
the counter.

The analysis builds the ACS in a way that guarantees that if bad states cannot be

7

1. Introduction

reached in the ACS semantics, they cannot be reached in the original program. A state of
an ACS is an assignment of values to each of the counters of its semantics. We say that
a state of the ACS s covers another state s′ just if each counter has a greater (or equal)
value in s than in s′. The coverability problem for an ACS asks, given two states s and s′,
whether it is possible to reach from s a state covering s′. Our choice of the semantics
for ACS models makes them equivalent to Vector Addition Systems (VAS), also known as
Petri nets. From this correspondence we know that coverability is decidable for ACS.

In our running example we can formulate the mutual exclusion property as an ACS
coverability problem by asking whether from the initial state one can cover the state
assigning 2 to the counter associated with the control state marked in Figure 1.1 (and
0 to all the other counters). This is not the case in the ACS model, proving that in no
reachable con�guration two workers can be executing the critical section at the same
time.

The veri�cation method outlined above (and detailed in Chapter 5), has been imple-
mented in a tool called Soter, that we present in Chapter 6. A web interface for the tool
is available at http://mjolnir.cs.ox.ac.uk/soter/.

While the approach proves to be successful for the �rst property, it fails for the second
one: the Soter tool would report a false alarm when checking that the mailbox of each
client cannot hold more than one message at a time. The reason why Soter is not able to
verify this is due to the pid-class abstraction: the mailboxes of all the clients are con�ated
under the same pid-class C; Soter cannot distinguish between the (safe) state where two
clients have one message each and the (unsafe) one where one of the two clients holds
both messages. Part II of this dissertation describes an attempt to remedy this limitation.

1.3 Process Identities and the π-calculus

In Part II we direct our attention to the issue of precisely representing process identities
in message-passing programs. In order to abstract away irrelevant details and ortho-
gonal issues, we move away from Erlang and focus on π-calculus models of concurrent
computation.

The π-calculus is a concise yet expressive model of concurrent computation, intro-
duced in Milner, Parrow and Walker [MPW92]. The purpose of this calculus is to model
mobile systems with a very small number of fundamental primitives. Communication
is synchronous and is done via channels: a process that knows the name of a channel c
can listen on it for messages using the input action c(x) or send messages over it using
the output action c〈x〉. A system exhibits mobility if its communication topology, i.e. the
graph linking processes that share channels, changes over time.

In the π-calculus a new private channel x can be created using the restriction operator
νx.P : the process P now knows the name of x but it can, for instance, output it over a
public channel c with an action c〈x〉. At this point any other process listening on c can

8

http://mjolnir.cs.ox.ac.uk/soter/

1.3. Process Identities and the π-calculus

receive the name x and use it for further communication. This mechanism o�ers two
main advantages over ACS. First, the pid-class abstraction is not needed as a new pid
can be represented accurately using restrictions. Second, ACS do not exhibit mobility:
pid-classes can be understood as static global channels; moreover, since messages in an
ACS consist of simple constants a process cannot acquire knowledge of a pid-class it did
not know before by receiving it in a message.

However, the price one pays for this increase in expressivity is that π-calculus, unlike
ACS, is Turing-complete and, as a consequence, its veri�cation problems are undecidable.
The strategy we follow to overcome this di�culty is to constrain the shape of the systems
we consider so that 1) some class of safety properties becomes decidable, 2) we can still
represent an unbounded number of names precisely and 3) we can still express some
form of mobility.

To illustrate our key observations, let us go back to the server example. Soter could
not see that each client is assigned to a single worker. While ACS are not powerful
enough to represent this fact accurately, a π-calculus model can. Instead of presenting a
π-term for the whole program, let us concentrate on the pattern that is the key to obtain
the desired coupling between clients and worker: the client/server pattern.

In essence, the client/server pattern assumes that the server is listening for requests
on a public many-to-one channel; the client sends, along with its request, a private
channel to the server. When the server is ready to reply, it sends the answer to the client
using the private channel in the request. This ensures that the answer reaches the right
client and that client only, without the need for the server to know all the names of the
clients in advance.

Here we summarise the pattern as found in Erlang and in the π-calculus: the client
sends the request and starts to listen on its private channel (its own mailbox in Erlang)
for a reply:

Server ! {request, self()},
receive {answer, X} → . . .

νself .(server〈self 〉 ‖ self (x). · · ·)

The server runs an in�nite loop replying to requests:
serve(Y) →

receive {request, Client} →
Client ! {answer, Y},
serve(Y)

end.

!(server(client).client〈y〉)

On the π-calculus side, the expression P ‖ Q represents the parallel composition of two
processes P and Q. Dots between actions mean that the actions should be performed in
sequence. The replication operator !P can be interpreted as the parallel composition of
an in�nite number of copies of P . In other words, !(π.P) can reduce to !(π.P) ‖ P by
executing the action π.

9

1. Introduction

A minimal implementation of the pattern in the π-calculus is the following term:

νs.
(

!
(
τ.νc.(s〈c〉 ‖ c(x))

)︸ ︷︷ ︸
C

‖ !
(
s(x).νy.x〈y〉

)︸ ︷︷ ︸
S

)
where τ is an internal action. After executing the internal action of C three times we
obtain the term

νs.
(
C ‖ S ‖ νc1.(s〈c1〉 ‖ c1(x)) ‖ νc2.(s〈c2〉 ‖ c2(x)) ‖ νc3.(s〈c3〉 ‖ c3(x))

)
where we disambiguated the three occurrences of νc by α-renaming them. Now if we let
S react to s〈c3〉 we obtain

νs.
(
C ‖ S ‖ νc1.(s〈c1〉 ‖ c1(x)) ‖ νc2.(s〈c2〉 ‖ c2(x)) ‖ νc3.νy.(c3〈y〉 ‖ c3(x))

)
which represents the situation where two clients sent pending requests and the server
just sent a reply to the third client.

While arbitrary terms may represent more complex structures, this pattern has a
property that enables automatic veri�cation: it is depth-bounded. Depth boundedness
is a condition proposed in [Mey08] that, when met, makes some veri�cation problems
decidable. To understand the intuition behind the concept of depth, let us inspect the
communication topology of the client/server pattern after the steps described above,
in Figure 1.2. The �gure shows an hypergraph with processes for nodes and names as
hyperedges. A node is connected to an hyperedge representing a name when it knows
that name.

s
S

C

s〈c〉c(x)
c

s〈c〉c(x)
c

c〈y〉
y

c(x)
c

Figure 1.2 – A graphical representation of a reachable term in the client/server pattern.

A simple path is a path with no repeated edges. The notion of depth of a term is tightly
related to the length of the simple paths in the communication topology of the term. The
maximum length of the simple paths of Figure 1.2 is 3. A system is depth-bounded if
there exists a bound on the length of the simple paths of any reachable term.

It can be proven that in the client/server pattern the length of the simple paths never
exceeds 4. Our system is depth-bounded and we can prove that no client receives more
than an answer by requiring that no reachable term can contain

νc.
(

νy.c〈y〉 ‖ νz.c〈z〉 ‖ c(x)
)
‖ νs.(S ‖ C)

10

1.3. Process Identities and the π-calculus

as a sub-system.2 Checking this kind of properties is decidable for depth-bounded
systems [Mey08].

Not all systems are depth-bounded, however. Consider for example the following
Erlang program

ring() → self() ! token, master(self()).

master(Head) →
receive Msg →

New = spawn(fun()→ slave(Head) end),
New ! Msg,
master(New)

end.

slave(Next) →
receive Msg →

Next ! Msg,
slave(Next)

end.

A process running ring bootstraps a ring of two processes, a master and a slave. Slaves
simply forward any received message to the next process in the ring. When the token
reaches the master, a new slave is added to the ring and the token is forwarded to it.

The communication topology of the ring example evolves as in Figure 1.3. It is clear

master

slave

master

slave slave

master

slave

slave

slave · · ·→∗ →∗ →∗

Figure 1.3 – The ring example is not bounded in depth.

that the length of the simple paths in the reachable terms is not bounded and therefore
the system is not depth-bounded.

When trying to apply veri�cation procedures developed for depth-bounded systems
to arbitrary programs, we are blocked by a serious issue: depth boundedness is an
undecidable property [Mey09b]. The main contribution of Part II is a characterisation of
the structure of some depth-bounded systems which enables the de�nition of a meaningful
and expressive static fragment of the depth-bounded π-calculus. By ‘static fragment’
here we mean a set of terms with decidable membership.

2The precise meaning of ‘sub-system’ will be formalised in De�nition 9.6.

11

1. Introduction

c1

c2

c3

s

S C s〈c1〉 c1(x) s〈c2〉 c2(x) y

c3〈y〉

c3(x)

(a) Sys

s

Sc1

s〈c1〉 c1(x)

c2

s〈c2〉 c2(x)

c3

y

c3〈y〉

c3(x)

C

(b) Sys ′

s

Sc1

s〈c1〉 c1(x)

c2

s〈c2〉 c2(x)

C

c3

y

c3〈y〉

c3(x)

(c) Sys ′′

(s : s)

S(c1 : c)

s〈c1〉 c1(x)

(c2 : c)

s〈c2〉 c2(x)

(c3 : c)

(y : y)

c3〈y〉

c3(x)

C
s

T

c

y

(d) Sys ′ is T-compatible

Figure 1.4 – Forest representations of the Sys term.

1.4 Hierarchical Systems

The goal of Part II is to devise a method to statically determine if an arbitrary π-calculus
term is depth-bounded or not. In order to �nd such a method we introduce the novel
concept of T-compatibility and a type system which enforces invariance of T-compatibility
under reduction, which implies depth boundedness.

Let us explain the key ideas behind this construction using the client/server pattern
example. We observe that the bound on the depth of the system is carrying very little in-
formation on the structure of the reachable terms. We want to more strongly characterise
the shape of the reachable terms.

In addition to communication topologies, there is a second simple representation that
can help us visualise the structure of terms: a version of the abstract syntax tree of the
term.

Take the term represented in Figure 1.2:

Sys = νs.νc1.νc2.νc3.
(
S ‖ C ‖ s〈c1〉 ‖ c1(x) ‖ s〈c2〉 ‖ c2(x) ‖ (νy.c3〈y〉) ‖ c3(x)

)
its forest representation is depicted in Figure 1.4(a). The internal nodes are labelled with
restrictions, the leafs with the active processes, i.e. processes that are ready to perform
an action. Parallel composition is implicitly represented by (unordered) branching.

12

1.4. Hierarchical Systems

In the π-calculus there is a very important relation between terms called structural

congruence (≡): it equates terms that di�er only in irrelevant presentation details, but not
in their behaviour. For instance we have that terms can be α-renamed, and the parallel
operator is commutative and associative, i.e. P ‖ Q ≡ Q ‖ P and P ‖ (Q ‖ R) ≡ (P ‖
Q) ‖ R. The structural congruence laws for restriction tell us that the order of restrictions
is irrelevant—νx.νy.P ≡ νy.νx.P—and that the scope of a restriction can be extended to
processes not referring to the restricted name—that is (νx.P) ‖ Q ≡ νx.(P ‖ Q) when
x does not appear free in Q—without altering the meaning of the term. The former law
is called exchange, the latter one is called scope extrusion.

By using the laws of structural congruence we can derive a number of terms that are
equivalent to Sys . We give two examples:

Sys ′ = νs.
(
S ‖ C ‖ C1 ‖ C2 ‖ νc3.

(
(νy.c3〈y〉) ‖ c3(x)

))
Sys ′′ = νs.

(
S ‖ C ‖ C1 ‖ C2

)
‖ νc3.

(
(νy.c3〈y〉) ‖ c3(x)

)
where Ci = νci.

(
s〈ci〉 ‖ ci(x)

)
. Their forest representation is shown in Figures 1.4(b)

and 1.4(c) respectively.
The depth of a term P corresponds precisely to the minimum height of the trees in

the forest representation of terms structurally equivalent to P . In the case of the term
Sys , we have that the tree in Figure 1.4(a) has height 6, the tree in Figure 1.4(b) has height
4 and the one in Figure 1.4(c) has height 3. It turns out that there is no term equivalent
to Sys that has a forest representation shallower than the one of Sys ′′ and therefore the
depth of Sys (and of Sys ′ and Sys ′′) is 3. To prove Sys is bounded in depth by 3 we would
need to show that any term reachable from it has depth at most 3.

Our technique to prove this depth bound on every reachable term relies on two ideas.

Idea 1: T-compatibility The depth of a term is not a trivial concept: computing it
requires reasoning about the whole structural congruence class of the term. We observe
that di�erent structural presentations of a term, like the three presentations of Sys
in Figure 1.4, essentially di�er in the order in which one considers restrictions. The
tree in Figure 1.4(a) is the one constructed by considering the restrictions in the order
νc1 < νc2 < νc3 < νs < νy. By using the exchange and scope extrusion laws we can
obtain the tree in Figure 1.4(b) which corresponds to the order νs < νci, for 1 ≤ i ≤ 3
and νc3 < νy. Now, proving a bound on depth is made hard by two factors: one needs to
consider the set of reachable terms, and possibly reshu�e the structural presentation
of each to obtain the bound. In the Sys example reachable terms all resemble Sys itself
but will contain more copies of the subterms νc.(s〈c〉 ‖ c(x)) and νy.(c〈y〉 ‖ c(x)). It is
clear that there is no use in considering the structural representations of these reachable
terms that correspond to the orders on restrictions where all the instances of νc come
before than s: the forests constructed that way will necessarily have paths c1, · · · , cn, s
which are not helpful in proving the bound on depth.

13

1. Introduction

The lesson we learn from this observation is that only some orderings of restrictions
are sensible choices when trying to bound the depth of a term. In the example, the
only sensible choice is νs < νc. In our view, the root cause of this phenomenon is the
di�erent degree of sharing of restrictions originating from νs and from νc. Namely, all the
unbounded number of processes knowing the same instance of c will all know the same
instance of s, but the processes knowing the same s need not know the same instance of
c. If the term only generates a �nite number of distinct names this is not an issue, but
when the number of names is unbounded this has a huge e�ect on proving depth bounds.

To formalise (static) assumptions on the informal concept of relative degree of sharing
of restrictions, we introduce the notion of T-compatibility. Restrictions νx are annotated
with base types tx, T is a forest of base types where we interpret the parent relation as
the ‘degree of sharing’ order. A forest representation of a term is T-compatible if every
path n1 . . . nk from its root is tagged with types t1 . . . tk so that the order prescribed
by T is strictly respected, i.e. every ti is an ancestor of ti+1 in T and ti 6= ti+1. For
example, Figure 1.4(d) shows a T with nodes {s, c, y}, which encodes our observations
on the degree of sharing of the restrictions in Sys . The tree in Figure 1.4(d) is the forest
representation of Sys ′ when the restrictions are annotated with base types from T as
shown. All the paths respect the order on base types: the parent relation of T is respected
and no base type is repeated in any path. The forest is therefore T-compatible.
Idea 2: T-compatible migration The second idea concerns the use we want to make
of T-compatibility to prove depth boundedness. We observe that when T has �nite
height, invariance of T-compatibility under reduction entails depth boundedness: if every
reachable term is T-compatible it always has a forest representation with height less or
equal than the height of T . The main enemy of invariance of T-compatibility is mobility.
During execution, a term may acquire knowledge of a name that makes it impossible
to rearrange the forest representation so that T is respected. This is the case of terms
unbounded in depth.

We identify a pattern in the communications that does not a�ect T-compatibility.
Suppose we are presented with a T-compatible term P containing two processes S =
a〈b〉.S ′ and R = a(x).R′ ready to communicate over a channel a. After sending the
message b, S continues as the process S ′ while upon reception of b, R binds x to b and
continues as R′ which now acquired knowledge of b. Schematically, the traditional
understanding of this transaction is: �rst use extrusion to include R under the scope of b,
and then make R and S react

a

b

RS

a
b

RS

a
b

R′S ′

≡ →

14

1.5. Outline

Our view of the synchronisation instead is: upon communication, the sender continues
in-place as S ′, while R′ is split in two parts, one that uses the message (the migrating

one) and one that does not. The migrating portion of R′ is ‘installed’ under b so that it
can make use of the acquired name, while the non migrating one can simply continue
in-place. Pictorially:

a

b

RS

a

b

R′

¬mig
S ′

R′

mig

→

Crucially, the reaction context stays constant. This means that if the starting term is T-
compatible, the context of the reactum is T-compatible as well. We can then focus on
imposing constraints on the use of names of R′ so that the scopes of the migrating part
are compatible with the place in which the term is ‘transplanted’.

Invariance of T-compatibility is ensured by the type system introduced in Chapter 10
by �rst realising that the type of the variable x above needs to agree with that of the
message b that will be bound to it, and, second, requiring that the types of the names
used by the migrating part of R′ are compatible with T when put below b.

By using these ideas, our type system is able to statically accept π-calculus terms
encoding systems like the server example presented in Section 1.1 and reject the ones
unbounded in depth like the ring example of Section 1.3. The type system can be used to
check that a given T is respected by the behaviour of a term but also to infer a suitable
T when it exists. Once typability of a term is established, very rich properties, like the
bound on the client’s mailboxes of the server example, can be decided without losing
precision on the identities of names.

Of course the type system is approximate in the sense that there are depth-bounded
systems that cannot be typed. The fragment of terms that can be typed is however rather
interesting as it includes terms which generate an unbounded number of names and
exhibit mobility.

1.5 Outline

This dissertation is split into two parts. Part I details Soter’s veri�cation method for
Erlang programs. After an overview of Erlang and of the kind of systems we are studying,
in Chapter 4 we present λActor, a prototypical fragment of Erlang, and we explain and

15

1. Introduction

motivate the choices behind the de�nition of ACS, our abstract models. In Chapter 5 we
give operational semantics to λActor in a way that readily supports abstraction and
proceed in de�ning a sound parametric abstract interpretation for λActor programs. We
show some useful instantiations of the analysis and how we can use the analysis to build
a sound ACS from a program. Chapter 6 presents Soter, our prototype implementation
of the veri�cation method. Soter takes as input an Erlang module and produces an ACS
abstraction that can be automatically checked against user-supplied properties. The
chapter concludes with some empirical results on some benchmarks and a case study on
an Erlang program implementing Eratosthenes’ sieve. In Chapter 7 we review related
approaches.

Part II is dedicated to the de�nition and study of the notion of (typably) hierarchical
systems. In Chapter 9 we overview the syntax and reduction semantics of the π-calculus
and the concepts of depth and depth-boundedness. We introduce the main technical
contributions of this part in Chapter 10: the notion of T-compatibility and its relation with
depth-boundedness and a type system to prove depth-boundedness through invariance
of T-compatibility. Related work is presented in Chapter 11 where we dedicate some
attention to Nested Data Class Memory Automata which are a class of automata over
in�nite alphabet which can encode the behaviour of typably hierarchical systems when
one is concerned with coverability. In Chapter 12 we discuss some possible extensions
of the type system and a semantic notion of hierarchical systems which is independent
from the type system.

In Chapter 13 we summarise the contributions of the two parts and outline some
future directions.

16

Chapter 2

Preliminaries

In this chapter we brie�y review some material from the literature that we will use in
the rest of the dissertation.

Basic Notation

We denote the cardinality of a set A by |A| and the powerset of A as P(A). Given
two sets A and B we write A] B for their disjoint union. We write A∗ for the set of
�nite sequences of elements of the set A, and ε for the null sequence. Let a ∈ A and
l, l′ ∈ A∗, we overload ‘·’ so that it means insertion at the top a · l, at the bottom l · a or
concatenation l · l′. We write li for the i-th element of l. The set of �nite partial functions
from A to B is denoted A ⇀ B. We often write a �nite partial function with the notation
f = [a1 7→ b1, . . . , an 7→ bn] to indicate that f(ai) = bi. Given f : A ⇀ B we de�ne
f [a 7→ b] := (λx. if (x=a) then b else f(x)) and write [] for the everywhere unde�ned
function. To indicate that f is unde�ned on a we write f(a) = ⊥; the domain of f is the
set dom(f) = {a ∈ A | f(a) 6= ⊥}.

2.1 Transition Systems

A transition system is a tuple (S,→, s) where S is a set of con�gurations, (→) ⊆ (S×S)
is the transition relation and s ∈ S is the initial state. We denote by→∗ the transitive
closure of→. The reachability problem asks whether a state can be reached in a �nite
number of steps from the initial state.

De�nition 2.1 (Reachability Problem). Given a transition system (S,→, s), and a query
state t ∈ S, determine if s→∗ t.

A relationR ⊆ S1×S2 between two transition systems (S1,→1, s1) and (S2,→2, s2),
is a simulation if s R t implies that for each s′ ∈ S1 such that s →1 s′ there is a

17

2. Preliminaries

t′ ∈ S2 such that t→2 t
′ and s′ R t′. A relation R between two transition systems is a

bisimulation if both R and R−1 are simulations. that is, if s R t then:

(A) for each s′ ∈ S1 such that s→1 s
′ there is a t′ ∈ S2 such that t→2 t

′ and s′ R t′;

(B) for each t′ ∈ S2 such that t→2 t
′ there is a s′ ∈ S1 such that s→1 s

′ and s′ R t′.

Two transition systems (S1,→1, s1) and (S2,→2, s2) are said to be bisimilar if there
exists a bisimulation between S1 and S2 relating s1 and s2.

A preordered transition system is a transition system (S,→, s) equipped with a
preorder relation v on S. The coverability problem asks, given a state t, whether it is
possible to reach a state greater than t.

De�nition 2.2 (Coverability Problem). Given a preodered transition system (S,→, s,v)
and a query state t ∈ S, determine if there exists s′ ∈ S such that s→∗ s′ and t v s′.

The coverability problem can be used as an approximation of reachability: if s→∗ s′
then, by re�exivity of v, s′ is coverable.

2.2 Well Structured Transition Systems

Well Structured Transition Systems are a uniform framework that can be used to prove
decidability results of models of computation.

De�nition 2.3 (Well Structured Transition System [FS01; ACJT96]). A well quasi order-

ing (wqo) on a set X is a re�exive, transitive binary relation (v) ⊆ X ×X such that any
in�nite sequence of elements x0, x1, x2 . . . from X contains a pair xi v xj with i < j.

A Well Structured Transition System (WSTS) is a transition system (S,→, s0) equipped
with a well quasi order v on states which is a simulation,1 i.e. s → s′ and s v t then
there must exist t′ such that t→ t′ and s′ v t′.

Given a preorder (X,v), the upper-closure of a set Y ⊆ X is

↑Y := {x | x ∈ X, y ∈ Y, y v x};

Y is said to be upward-closed just if Y = ↑Y . A fundamental property of wqos is that
any upward-closed set can be expressed as the upper-closure of a �nite set of elements.

In a preordered transition system, the pred-basis of a state s, pb(s) is the set of
minimal elements of the set of predecessors of ↑ s, i.e. pb(s) := min {t | t→ s′, s v s′}.
In a WSTS, by virtue of the wqo, the pred-basis is always �nite, although not necessarily
computable.

1This requirement can be weakened in general, see [FS01]

18

2.3. Vector Addition Systems

Theorem 2.1 (WSTS Coverability [FS01]). The coverability problem is decidable for WSTS

with 1) decidable wqo and 2) e�ective pred-basis.

The algorithm to prove coverability for WSTS works by calculating the transitive
closure of the pred-basis starting from the coverability query. The pred-basis is comput-
able and ensured by the wqo to be a �nite set; the wqo also guarantees that iterating the
pred-basis eventually terminates with a �xpoint. Then coverability can be decided by
checking whether the initial state is in the upper-closure of the �xpoint. This last check
is decidable by decidability of the wqo.

2.3 Vector Addition Systems

One of the prototypical examples of WSTS is the Petri net model, also known as Vector
Addition Systems.

De�nition 2.4 (Vector Addition System). A Vector Addition System (VAS) V is a pair
(I, R) where I is a �nite set of indices (called the places of the VAS) andR ⊆ ZI is a �nite
set of rules. Thus a rule is just a vector of integers of dimension |I|, whose components
are indexed (i.e. named) by the elements of I .

The state transition system JVK induced by a VAS V = (I, R) has state-set NI and
transition relation {(v,v + r) | v ∈ NI , r ∈ R,v + r ∈ NI}. We write v ≤ v′ just if for
all i in I , v(i) ≤ v′(i).

The order ≤ on NI , for a �nite I , is a wqo and the pred-basis can be shown to be
decidable for VAS, so Vector Addition Systems are WSTS and have decidable coverability.

Theorem 2.2. The coverability problem for VAS is decidable.

VAS coverability has been known to be decidable since [KM69] and in fact the WSTS
framework arose as a generalisation and systematisation of this and other similar results.
VAS coverability has been proved to be Expspace-complete [Rac78]. VAS reachability is
also known to be decidable although its complexity is open.

19

Part I

Soter: In�nite-State Veri�cation for

Erlang

Illustration: “Cada Homem É Uma Ilha”, courtesy of Vicente Sardinha © 1988.

Chapter 3

Overview

3.1 Contributions

This part of the thesis describes an approach for the automated veri�cation of Erlang
programs using a combination of static analysis and in�nite-state model checking.

In devising a veri�cation method for Erlang programs we face numerous challenges.
The sequential core language is a dynamically typed, higher-order functional language
with pattern-matching algebraic data types. These features alone pose serious challenges
for automatic analysis tools and in fact many of the e�orts in the Erlang analysis literature
concentrate on taming the complexity of the sequential fragment. In addition, we aim at
modelling and accurately analysing the concurrency model of Erlang, which is based on
asynchronous message-passing. This adds two highly non-trivial features: unbounded
dynamic spawning of processes and unbounded communication bu�ers (called mailbox,
each associated with a process).

We focus on the core features of Erlang, which we formalise de�ning the λActor
language. We give semantics to λActor in a form that supports the application of
abstract interpretation and systematically derive a provably sound parametric control-
�ow analysis. The analysis is then used to bootstrap the construction of an abstract
model of the semantics that we call Actor Communicating System (ACS). ACS are given
semantics by means of Vector Addition Systems (VAS), also known as Petri nets, which
have rich decidable properties. We exploit a class of properties called coverability queries

to prove properties of Erlang programs such as unreachability of error states, mutual
exclusion, or bounds on mailboxes. To assess the empirical e�ectiveness of the approach,
we constructed Soter, a tool implementation of the veri�cation method, thereby obtaining
the �rst fully-automatic, in�nite-state model checker for a core concurrent fragment of
Erlang.

In the rest of this chapter, we put the problem domain in context with an overview of
the approach to concurrency of Erlang and its relevance. In Chapter 4 we present the
λActor language and analyse the consequences of each of its features on the problem of

23

3. Overview

automatic analysis. We motivate and formalise the design choices we make in response
to the challenges listed above, and de�ne our abstract model, ACS. Chapter 5 presents the
concrete and abstract semantics of λActor in a parametric way and the soundness argu-
ment. After showing how the ACS model is extracted from the analysis and establishing
the relation between the program’s and the ACS’ semantics, we discuss limitations and
possible extensions of the analysis. The implementation is described in Chapter 6 and its
practical e�ectiveness is demonstrated with empirical results on a set of benchmarks.
The chapter also includes a tutorial-style case study showing how Soter can be used in
practice to prove properties of Erlang modules. Related work is discussed in Chapter 7.

Chapters 5 and 6 present joint work with Jonathan Kochems and Luke Ong which has

been published in [DKO12; DKO13b]. The contributions of the author are the design and

de�nition of the concrete and abstract semantics, the ACS generation procedure and most of

the benchmarks and examples. The bulk of the implementation has been programmed by

Jonathan Kochems. The author implemented some modules for the simpli�cations of the

ACS, the encoding of ACS into BFC models and the frontend as well as the web interface.

3.2 The Actor Model

A model of concurrency provides metaphors, concepts, formal structures and patterns
for the representation, design and (algorithmic) analysis of the behaviour of systems
containing a variable number of components which evolve simultaneously and interact
with each other. Our world can be seen as inherently concurrent and, with such a general
goal, a model of concurrency has the potential for being applied to—and explain—a wide
variety of phenomena, computational or otherwise, which involves interaction among
parties evolving in parallel.

We are concerned with computational concurrent systems. There are many techno-
logical innovations which are pushing towards the development of general models of
concurrent computation, as opposed to sequential. Modern computer architectures are
increasingly using parallel designs to improve performance; this approach has proven
much more scalable and cost e�ective than just continuing to miniaturize single chips. At
the same time, the ever increasing pervasive use of the Internet and distributed computing
makes the research on accurate and e�ective models of concurrency urgent.

Concurrent software is hard to write. The plethora of synchronisation mechanisms
that coexist in modern languages shows that there is no clear answer to the question:
how should we structure concurrent interaction? The traditional “threads over shared
state” model has a prominent role in the theory and practice of concurrency and many
techniques for structuring and analysing concurrency have been developed for this
paradigm. Unfortunately this approach is showing its shortcomings in terms of scalability,
modularity and ease of formal reasoning [Lee06]. The advent of massive concurrency

24

3.2. The Actor Model

through client-cloud computing has galvanized interest in alternative models; this is
not a problem arising only in software systems but in hardware design too: the current
trend of boosting hardware performance using multi-core designs and network-on-chip
technology, is also pushing for a shift of paradigm.

Quite interestingly, the same shift happened in the theoretical developments leading to
the invention of process algebra [Bae05]. As sharply noted by Baeten, these innovations
were enabled by abandoning input/output semantics in favour of labelled transition
systems, and overcoming the notion of global variables by representing exchange of
information explicitly via message-passing.

In [HBS73], Hewitt and his collaborators proposed a new model with the precise
goal of making concurrent programming (in the context of Arti�cial Intelligence) more
modular and structured. Instead of adding concurrency primitives to a sequential (stateful)
language, the Actor Model models concurrency as a fundamental concept, which gives
rise to sequential computation as a special case of concurrent interaction [Hew77].

Actors are a metaphor for the unit of concurrency: this model views the world as a
collection of independent opaque entities (the actors) which interact by asynchronously
exchanging messages. Actors run in parallel and are opaque in the sense that they share
no state; they can interact only through direct asynchronous message passing.

Each actor possesses an unbounded mailbox which stores the received messages
waiting to be processed. In reaction to a message an actor can send messages, create new
actors, update its internal state. An address is associated to each mailbox and an actor
can send a message only to actors it knows the address of. An actor knows only a �nite
number of addresses at a given time and addresses can be sent as messages.

Communication is asynchronous: when an actor sends a message it can continue
executing without waiting for the receiver to process the message; when an actor wants
to receive a message it processes the �rst interesting message in the mailbox or, in the
case it could not �nd any, it blocks, waiting for an interesting message to arrive.

One big advantage of this view is that the autonomy of actors frees the programmer
from the burden of explicitly managing threads and synchronizing them; this autonomy
also enables distribution and mobility: the whole system can be distributed among
di�erent interconnected machines and actors can be dynamically allocated and moved
between di�erent nodes; since the communication is transparent to the programmer,
message-passing can be carried out by inter-process communication or over a network,
at will.

After its initial proposal, this model has been further explored in many directions. In
his PhD thesis [Agh85], Agha describes a programming language suitable for distributed
computing based exclusively on the Actor Model, giving explicit syntax, semantics and an
abstract machine. Further exploration of the semantics of this paradigm is presented in
Clinger’s PhD thesis [Cli81]. The Actor Model in�uenced many programming languages
and concurrency formalism as we will brie�y see in the next sections. For a more detailed

25

3. Overview

historical account see [Hew10, Appendix 2].

Actor-inspired programming languages

In the next section we will give an overview of Erlang, one of the most prominent
languages directly based on the Actor Model. Apart from Erlang and experimental or
domain speci�c languages, the Actor Model is often not supported natively by languages
but implemented in libraries. Examples of such libraries include ActorFoundry among
others for Java, Haskell-Actor for Haskell; similar libraries exist for C++, F# and Python.

Perhaps the most notable is Scala’s Actor Library [HO09]. Scala [Oa04] is a multi-
paradigm language built on top of the JVM and as such is fully interoperable with Java (all
existing Java libraries are available in Scala). Scala is an attempt to merge typical features
of a modern higher-order statically typed functional language with the object oriented
paradigm, providing compilation to Java Byte Code. Other two models of concurrency are
available to Scala in the form of two libraries: classical threads are provided by bindings
to Java’s Thread objects, and a CSP-inspired communication channels system by the
Communicating Scala Objects library.

3.3 Erlang

One of the most successful and faithful implementations of the Actor Model is Erlang.
Originally designed to program fault-tolerant distributed systems at Ericsson in the
late 80s, Erlang is now a widely used, open-sourced language with support for higher-
order functions, concurrency, communication, distribution, on-the-�y code upgrading,
and multiple platforms support [AVW93; Arm10]. In the words of its father, the key
observations behind Erlang’s design are:

The world is concurrent.
Things in the world don’t share data.
Things communicate with messages.
Things fail.

– Joe Armstrong [CT09]

The �rst three sentences summarize the essence of the Actor Model; the last one puts
the emphasis on the fault-tolerance features of Erlang systems.

The sequential part of Erlang is a higher order, dynamically typed, call-by-value
functional language with pattern-matching algebraic data types. Following the Actor
Model, a concurrent Erlang computation consists of a (dynamic) network of processes
that communicate by message passing. The functional paradigm o�ers isolation and
information hiding principles; processes take the role of actors, messages are immutable
values. Every process has a unique identi�er (which is data that may be sent as message),

26

3.3. Erlang

and is equipped with an unbounded mailbox. Messages are sent asynchronously: the
sender does not block awaiting receipt. Messages are retrieved from the mailbox, not
FIFO, but by a pattern-matching mechanism. A process may block while waiting for a
message that matches a certain pattern to arrive in its mailbox.

Syntax and features of Erlang

Erlang is not statically typed, although all types are checked dynamically to ensure
type-safety at runtime. Due to this dynamic view of types, all the data structures are built
using only atoms (literals), few built-in data-types as integers, and tuples (denoted by
{x1,. . .,xn}); the few other constructors, such as lists or records, are just syntactic sugar.
A list of declarations of the form f(pat1,. . .,patn) → e de�nes an eager uncurried
function f speci�ed by cases (the non necessarily linear patterns pati). For example, the
map function can be implemented in Erlang as following:

map(F, nil) → nil;
map(F, {X, Xs}) → {F(X), map(F, Xs)}.

Creation of new processes can be done using the spawn primitive which in essence
takes an expression as argument, creates a new process evaluating that expression and
returns to the caller a unique token, the process identi�er (pid), associated to the new
process. Pids are unique and cannot be inspected, forged nor guessed but can be stored
in data structures and sent as messages. The self primitive returns the pid of the process
calling it.

Communication primitives include the non-blocking send of a message M to a pid P,
denoted by (P ! M), and the receive construct of the form

receive
pat1 → e1;
. . .
patn → en

end

While sends never block, receives work as follows: the �rst message in the process’
mailbox is matched against each pattern in textual order; if no pattern is matched the
second message in the mailbox is considered and so on; if no message in the mailbox
matches any of the patterns, the process blocks waiting for more messages. When a
message matches a pattern, the message is removed from the mailbox and the process
continues with the branch corresponding to the matched pattern, binding the appropriate
pattern variables.

A common Erlang pattern is the so-called behaviours: i.e. a module implementing a
general purpose protocol, parametrised over another module implementing functions
called callbacks to which the behaviour delegates control in the appropriate phases of the

27

3. Overview

protocol. Note that Erlang’s dynamic module references can be simulated with higher-
order parameters, which is general enough to express in full the dynamic module system
of Erlang.

More advanced features of the language

Erlang is an extremely dynamic language. The interpreter does not perform any sanity
check on the code; if something goes wrong during the execution, e.g. a function is applied
to the wrong number of arguments or the type of a value does not match the one of the
operation that is about to be applied to it, the runtime will simply throw an exception.
Indeed, the philosophy of Erlang pragmatics is often summarized with the motto ‘let it
crash’ [Arm10]: assuming the application undergoes extensive testing, only heisenbugs

will possibly still be present; heisenbugs are those bugs which reveal themselves only in
very rare interleavings of actions; since, by de�nition, these errors are very unprobable,
restarting the faulty component would get rid of the problem for the current execution.
Erlang’s language support for this style of programming is made concrete by ‘try-catch’
exception handling, timeouts in receive instructions, and, more importantly, by the
monitor/link primitives. The global architecture of a typical large scale Erlang program
includes two logically separated parts: a set of processes implementing the application
logic, and a set of processes forming the supervision tree (using monitor/link) with the
speci�c role of continuously checking that each component of the system is running �ne
and react to faults with local interventions.

Erlang has a very dynamic module system which provides support for both some
object-oriented like patterns and on-the-�y code replacement. Module names are regular
values (atoms) and lookup of function de�nitions is dynamic.

Other language features include binary strings representation and matching, a mech-
anism for interfacing Erlang processes with processes running foreign language code,
parametric modules, which increase reusability and registration of global name-pid
associations, for easy access to global resources.

Implementation details

The success of Erlang as an industrial scale programming language has been made possible
by the great e�ciency of its implementation. In order to support the Actor Model and
yet being of practical use, the runtime must scale really well with respect to the number
of processes running in parallel and the overhead for message-passing communication.
Erlang’s runtime ful�lls the �rst requirement by internally managing processes, instead
of using threads at the system level, with an extremely minimal footprint. Creating new
processes and sending and receiving messages are all very lightweight operations; due
to isolation of processes and immutability of data, sends can be done both via copying or
by reference as it is more convenient, and the garbage collection can dispose the memory

28

3.3. Erlang

of short-lived processes very e�ciently. The Erlang runtime can create a new process
in less than a microsecond and run millions of processes simultaneously. The overhead
for the bookeeping of process is less than a kilobyte per process. Message passing and
context switching take only hundreds of nanoseconds. Message passing is transparent to
the programmer so the runtime naturally supports a distributed deployment. The module
system coupled with higher-order allows upgrading systems without taking them out of
service. The result is a highly scalable and lightweight runtime that supports massive
fault-tolerant distributed systems.

The compilation step takes Erlang code and translates it to a concise intermediate
language called Core Erlang [Car01]; this intermediate representation gets analyzed
and optimized, then it is translated to Erlang’s virtual machine byte-code by the BEAM
compiler or compiled to native code by the HiPE1 compiler.

Industrial relevancy

The standard Erlang distribution is under active development. Many common general
patterns are formalized and implemented as modules of the Open Telecoms Platform (OTP),
a large set of libraries designed for building telecom systems bundled together with the
standard Erlang distribution, providing a standardized way of performing the most
common tasks needed to build a reliable system. Examples of the generic communication
patterns o�ered by the OTP are the server-client, �nite state machine, event handler,
error management behaviours. The 2010 OTP system includes 49 subsystems including a
real-time relational database (Mnesia), an H.248 stack implementation (Megaco), tools for
building documentation (docbuilder), a debugging tool and a bug-�nding tool (Dialyzer).

Many real-world applications are powered by Erlang. The AXD301, an asynchronous
transfer mode switch developed by Ericsson, was written by a large programming team
and is composed of more than 1.6 million lines of Erlang code. It proved that the Erlang
(OTP) programming principles scale to realistic large system very well. Many other
projects outside Ericcson are written in Erlang: Amazon’s SimpleDB,2 Yahoo! Harvester3

and Facebook’s Chat4 are some notable examples.

Analysing such a rich language is a demanding engineering problem. We will focus
on the core features of higher-order functional computation, dynamic process spawning
and send/receive. The techniques used to analyse this core have all the ingredients that
are needed to extend the approach to the full language.

1see https://www.it.uu.se/research/group/hipe
2see http://aws.amazon.com/simpledb
3see http://drdobbs.com/high-performance-computing/220600332
4see Eugene Letuchy, Erlang Factory Conference 2009 http://www.erlang-factory.com

29

https://www.it.uu.se/research/group/hipe
http://aws.amazon.com/simpledb
http://drdobbs.com/high-performance-computing/220600332
http://www.erlang-factory.com

Chapter 4

Models of Message-Passing

Concurrency

We start this chapter with a formalisation of the fragment of Erlang we will focus on.
Then we discuss the features of the language and the challenges they pose for automatic
veri�cation. Guided by this analysis we explore the design space for (decidable) abstract
models and propose Actor Communicating Systems as a viable tradeo� between precision
and decidability.

4.1 A Prototypical Fragment of Erlang

We now introduce λActor, a prototypical untyped functional language with actor concur-
rency. λActor is inspired by single-node Core Erlang [Car01]—the o�cial intermediate
representation of Erlang code—without built-in functions and fault-tolerance features. It
exhibits in full the higher-order features of Erlang, with message-passing concurrency
and dynamic process creation. The syntax of λActor is de�ned as follows:

e ∈ Exp ::= x | c(e1, . . . , en) | e0(e1, . . . , en) | fun

| letrec f1(x1, . . . , xk1) = e1. · · · fn(x1, . . . , xkn) = en. in e

| case e of pat1 → e1; . . . ; patn → en end

| receive pat1 → e1; . . . ; patn → en end

| send(e1, e2) | spawn(e) | self()

fun ::= fun(x1, . . . , xn)→ e

pat ::= x | c(pat1, . . . , patn)

where c ranges over a �xed �nite set Σ of constructors.
Syntactic conventions For ease of comparison we keep the syntax close to Core Er-
lang. Variable names begin with an uppercase letter. We write ‘ ’ for an unnamed

31

4. Models of Message-Passing Concurrency

unbound variable. Instead of writing n-tuples as a constructor application tuple(
e1 . . . en) we use Erlang’s syntax {e1 . . . en}. Sequencing X = e1, e2 is a shorthand
for (fun(X) →e2)(e1) and we we omit brackets for nullary constructors. The charac-
ter ‘%’ marks the start of a line of comment. We write fv(e) for the free variables of
an expression and we de�ne a λActor program P to be a closed λActor expression,
i.e. fv(e) = ∅.
Labels We associate a unique label ` to each sub-expression e of a program and indicate
that e is labelled by ` by writing ` : e. Take a term ` : (`0 : e0(`1 : e1, . . . , `n : en)), we
de�ne `.argi := `i and arity(`) := n.

Reduction semantics

The fully formal speci�cation of the operational semantics of λActor is given in De�ni-
tion 5.1 and described in Section 5.1, but to illustrate λActor’s concurrency model we
sketch a small-step reduction semantics here. The rewrite rules for function application
and λ-abstraction are identical to call-by-value λ-calculus; we write evaluation contexts
asE[]. A state of the computation of a λActor program is a set Π of processes running in
parallel. A process 〈e〉ιm, identi�ed by the pid ι, evaluates an expression e with mailbox m
holding unconsumed messages. Purely functional reductions performed by each process
are independently interleaved. A spawn construct, spawn(fun()→ e), evaluates to a fresh
pid ι′ and creates a new process 〈e〉ι

′

ε , with pid ι′:

〈E[spawn(fun()→ e)]〉ιm ‖ Π −→ 〈E[ι′]〉ιm ‖ 〈e〉
ι′

ε ‖ Π

A send construct, send(ι, v), evaluates to the message v with the side-e�ect of appending
it to the mailbox of the receiver process ι; thus send is non-blocking:

〈E[send(ι, v)]〉ι
′

m′ ‖ 〈e〉
ι
m ‖ Π −→ 〈E[v]〉ι

′

m′ ‖ 〈e〉
ι
m·v ‖ Π

The evaluation of a receive construct, receive p1 →e1;. . . pn →en end, will block if
the mailbox of the process in question contains no message that matches any of the
patterns pi. Otherwise, the �rst message m that matches a pattern, say pi, is consumed
by the process, and the computation continues with the evaluation of ei. The pattern-
matching variables in ei are bound by a substitution θ to the corresponding matching
subterms of the message m; if more than one pattern matches the message, then the �rst
in textual order is �red

〈E[receive p1 → e1 . . . pn → en end]〉ιm·m·m′ ‖ Π −→ 〈E[ei θ]〉ι
′

m·m′ ‖ Π;

Note that mailboxes are not First-In-First-Out (FIFO) bu�ers, but rather First-In-First-
Fireable-Out (FIFFO): incoming messages are queued at the end of the mailbox, and the
message that a receive construct extracts is not necessarily the �rst.

32

4.1. A Prototypical Fragment of Erlang

1 letrec
2
3 %%% LOCKED RESOURCE BEHAVIOUR MODULE

4 res start(Res) =
5 spawn(fun() → res free(Res)).
6 res free(Res) =
7 receive {lock, P} →
8 send(P, {acquired, self()}),
9 res locked(Res, P)

10 end.
11 res locked(Res, P) =
12 receive
13 {req, P, Cmd} →
14 case Res(P, Cmd) of
15 {NewRes, ok} →
16 res locked(NewRes, P);
17 {NewRes, {reply, A}} →
18 send(P, {ans, self(), A}),
19 res locked(NewRes, P)
20 end;
21 {unlock, P} → res free(Res)
22 end.
23
24 % Locked Resource API

25 res lock(Q) =
26 send(Q, {lock, self()}),
27 receive {acquired, Q} → ok end.
28 res unlock(Q) =
29 send(Q, {unlock, self()}).
30 res request(Q, Cmd) =
31 send(Q, {req, self(), Cmd}),
32 receive {ans, Q, X} → X end.
33 res do(Q, Cmd) =
34 send(Q, {req, self(), Cmd}).

35
36
37 %%% CELL IMPLEMENTATION MODULE

38 cell start() =
39 res start(cell(zero)).
40 cell(X) = fun(P, Cmd) →
41 case Cmd of
42 {write, Y} → {cell(Y), ok};
43 read → {cell(X), {reply, X}}
44 end.
45
46 % Cell API

47 cell lock(C) = res lock(C).
48 cell unlock(C) = res unlock(C).
49 cell read(C) = res request(C, read).
50 cell write(C, X) =
51 res do(C, {write, X}).
52
53 %%% INCREMENT CLIENT

54 inc(C) =
55 cell lock(C),
56 cell write(C, {succ, cell read(C)}),
57 cell unlock(C).
58 add to cell(M, C) =
59 case M of
60 zero → ok;
61 {succ, M’} →
62 spawn(fun() → inc(C)),
63 add to cell(M’, C)
64 end.
65
66 %%% ENTRY POINT

67 in C = cell start(),
68 add to cell(N, C).

Figure 4.1 – Locked Resource (running example).

33

4. Models of Message-Passing Concurrency

Y Example 4.1 (Locked Resource). Figure 4.1 shows an example λActor program. The
code has three logical parts, which would constitute three modules in Erlang:

1. the de�nition of a generic ‘resource’ behaviour1 (lines 3–34),

2. an instantiation of the behaviour implementing a cell (lines 37–51),

3. a client making use of the cell’s de�nitions and setting up a system (lines 53–68).

The �rst part de�nes the protocol that governs the lock-controlled, concurrent access
of a shared resource by a number of clients. A resource is viewed as a generic server
implementing the locking protocol, parametrised on a function that speci�es how to
react to requests. Note the use of higher-order arguments and return values. The
function res start creates a new process that runs an unlocked (res free) instance of
the resource. When unlocked, a resource waits for a {lock, P} message to arrive from
a client P. Upon receipt of such a message, an acknowledgement message is sent back
to the client and the control is yielded to res locked. When locked (by a client P), a
resource can accept requests {req,P,Cmd} from P—and from P only—for an unspeci�ed
command Cmd to be executed.

Note that the variable P in the patterns of res locked is bound. An unusual feature
of Erlang, it allows us in this example to match only messages sent by the pid currently
bound to P; this feature corresponds, operationally, to equality checks on the values that
would be bound to the bound variables by the match; this equality check is however
performed before extracting the message from the queue so that, should the check fail,
the message is skipped and the next message can be processed.

After running the requested command, the resource is expected to return the updated
resource handler and an answer, which may be the atom ok, which requires no additional
action, or a couple {reply, Ans}which signals that the answer Ans should be sent back to
the client. Here we exploit higher-order features in two ways. First a resource is modelled
as a functional argument that gets called when appropriate. Secondly this call itself yields
a functional value that represents the updated resource. When an unlock message is
received from P the control is given back to res free. Note that the mailbox matching
mechanism allows multiple locks and requests to be sent asynchronously to the mailbox
of the locked resource without causing con�icts: the pattern matching in the locked
state ensures that all the pending lock requests get delayed for later consumption once
the resource is unlocked. The functions res lock, res unlock, res request, res do
encapsulate the locking protocol, hiding it from the user who can then use this API as if
it was purely functional.

The second part implements a simple shared resource that holds a natural number,
which is encoded using the constructors {succ, } and zero, and allows a client to read
its value or overwrite it with a new one. Similarly as before, we provide the user with an

1see Section 3.3

34

4.2. The Quest for a Decidable Abstraction

API that hides the details of the protocol. Without lock messages, a shared resource with
such a protocol easily leads to inconsistencies: it is a perfect application for our locking
behaviour.

The last part de�nes the function inc which accesses a locked cell to increment
its value. The function add to cell adds M to the contents of the cell by spawning M
processes incrementing it concurrently. Finally the entry-point of the program sets up
a process with a shared locked cell and then calls add to cell. Note that N is a free
variable; to make the example a program we can either close it by setting N to a constant
or make it range over all natural numbers with the extension described in Section 5.2.

An interesting correctness property of this code is mutual exclusion of the lock-
protected region (i.e. line 56) of the concurrent instances of inc.

4.2 The Quest for a Decidable Abstraction

Concurrent programs are hard to write. They are just as hard to verify. In the case
of Erlang programs, the inherent complexity of the veri�cation task can be seen from
several diverse sources of in�nity in the state space.

(∞ 1) Data domains, and hence the message space, are unbounded: functions may
return, and variables may be bound to, terms of an arbitrary size.

(∞ 2) General recursion requires a (process local) call-stack.

(∞ 3) Higher-order functions are �rst-class values; closures can be passed as paramet-
ers or returned.

(∞ 4) An unbounded number of processes can be spawned dynamically.

(∞ 5) Mailboxes have unbounded capacity.

Our goal is to verify safety properties of Erlang-like programs automatically, using a
combination of static analysis and in�nite-state model checking. The challenge is that one
must reason about the asynchronous communication of an unbounded set of messages,
across an unbounded set of Turing-powerful processes. Let us consider the items above
and the constraints they force on us in the search for a suitable abstract model.

The main reason why these sources of unboundedness are di�cult to handle al-
gorithmically is that each of them easily supports encoding Turing-powerful models of
computation, such as Minsky machines, i.e. �nite automata equipped with two counters
that can be increased, decreased and tested for zero.

In the presence of pattern-matching algebraic data types, the (sequential) functional
fragment of λActor is already Turing powerful: counters can be easily encoded by
using only two constructors, one for the successor and one for zero. Restricting it to a

35

4. Models of Message-Passing Concurrency

pushdown (equivalently, �rst-order) fragment but allowing concurrent execution would
enable, using very primitive synchronization, the simulation of a Turing-powerful �nite
automaton with two stacks. In [OR11], Ong and Ramsay propose a clean restriction on
the use of pattern-matching that enables automatic veri�cation of sequential higher-order
functional programs. In their setting, a pattern is called weak if no variable bound by it
can be used in the body of the function. Purely functional higher-order programs with
arbitrary constructors are not Turing-powerful and can be veri�ed against a rich class
of properties. Unfortunately this restriction is not enough in the concurrent case. With
only weak patterns, three processes, mailboxes with capacity 1 and either

1. order-1 functions, �nite data, or

2. order-0 functions, constructors of arity 2

we can represent 2-counters machines. Thus the abstract model will need to represent
items (∞ 1) to (∞ 3) very coarsely.

Handling an unbounded number of distinct pids is also problematic. Even when
mailboxes have bounded capacity and processes are �nite state machines, the ability to
send pids in messages is fatal for decidability. We will elaborate on this in Section 9.5 and
�nd ways to handle unboundedly many pids in Part II. For now, we will allow unbounded
process creation but collapse the unbounded set of dynamic pids into a �nite set of static
process addresses called pid-classes. A pid-class is a bag (multiset) of pids which will be
undistinguishable as addresses in the abstract model. Sending a message to a pid-class ι̂
corresponds to sending a message to any of the pids belonging to it.

FIFFO mailboxes are also highly expressive on their own. A single �nite-control
process equipped with a FIFFO or FIFO mailbox can encode a Turing-powerful queue
automaton in the sense of Minsky. Unbounded queues are inherently more powerful
than stacks: a single unbounded queue can encode the tape of a Turing machine. The
literature considered a number of ways to weaken mailboxes so that some properties
become decidable. For instance, if the message alphabet consists of only one message, a
�nite collection of �nite-control processes can be simulated by Petri nets [AJ93]. If we
impose a bound on channel capacities instead, we obtain a �nite state system. A quite
proli�c weakening is Lossy Channel Systems [AJ93]: they postulate that mailboxes are
lossy, that is, messages can be discarded before and after any transition, a feature that
e�ectively captures the behaviour of unreliable channel communication. Not only do
these systems allow to accurately and concisely model error-tolerant protocols but they
also enjoy the decidability of some interesting veri�cation problems such as (backward)
control-state reachability. In our context however, since Erlang’s semantics enforces
some guarantees on the delivery of messages, the lossiness assumption would be of little
use. Instead, we propose to weaken mailboxes using counter abstraction: a mailbox is
simply a bag of messages in no particular order.

36

4.3. Actor Communicating Systems

Thus constrained, we opt for a model of concurrent computation that has �nite
control, a �nite number of messages, unordered mailboxes, and a �nite number of process
classes.

4.3 Actor Communicating Systems

Motivated by the previous analysis, we introduce Actor Communicating System (ACS),
which models the interaction of an unbounded set of communicating processes. An ACS
has a �nite set of control states Q, a �nite set of pid-classes P , a �nite set of messages M ,
and a �nite set of transition rules. ACS models are in�nite state: the mailbox of a process
has unbounded capacity, and the number of processes in an ACS may grow arbitrarily
large. However the set of pid-classes is �xed, and processes of the same pid-class are not
distinguishable.

De�nition 4.1 (Actor Communicating System). An Actor Communicating System (ACS)
A is a tuple 〈P,Q,M,R, ι0, q0〉 where P is a �nite set of pid-classes, Q is a �nite set of
control-states, M is a �nite set of messages, ι0 ∈ P is the pid-class of the initial process,
q0 ∈ Q is the initial state of the initial process and R is a �nite set of rules of the form
ι : q

λ−→ q′ where ι ∈ P , q, q′ ∈ Q and λ is a label that can take one of four possible forms:

- τ , which represents an internal (sequential) transition of a process of pid-class ι

- ?m with m ∈M : a process of pid-class ι extracts (and reads) a message m from its
mailbox

- ι′!m with ι′ ∈ P , m ∈M : a process of pid-class ι sends a message m to a process
of pid-class ι′

- νι′. q′′ with ι′ ∈ P and q′′ ∈ Q: a process of pid-class ι spawns a new process of
pid-class ι′ that starts executing from q′′

We now give semantics to ACS. In light of the discussion in the previous section,
we apply a counter abstraction on mailboxes and processes. Mailboxes disregard the
ordering of messages, but track the number of occurrences of every message. For process
spawining we count, for each control-state of each pid-class, the number of processes in
that pid-class that are currently in that state.

It is important to make sure that such an abstraction contains all the behaviours of
the semantics that uses FIFFO mailboxes: if there is a term in the mailbox that matches
a pattern, then the corresponding branch is non-deterministically �red. To see the
di�erence, take the ACS that has one process (named ι), three control states q, q1 and q2,
and two rules ι : q ?a−→ q1, ι : q

?b−→ q2. When equipped with a FIFFO mailbox containing
the sequence c a b, the process can only evolve from q to q1 by consuming a from the

37

4. Models of Message-Passing Concurrency

mailbox, since it can skip c but will �nd a matching message (and thus not look further
into the mailbox) before reaching the message b. In contrast, the VAS semantics would
let q evolve non-deterministically to both q1 and q2, consuming a or b respectively: the
mailbox is abstracted to [a 7→ 1, b 7→ 1, c 7→ 1] with no information on whether a or
b arrived �rst. However, the abstracted semantics does contain the traces of the FIFFO
semantics.

The semantics of an ACS is a state transition system where states have a �nite number
of counters (with values in N) that support increment and decrement (when non-zero)
operations. Such in�nite-state systems are known as Vector Addition Systems (VAS),
which are equivalent to Petri nets (see De�nition 2.4).

De�nition 4.2 (Semantics of ACS). The semantics of an ACS A = (P,Q,M,R, ι0, q0)
is the transition system induced by the VAS V = (I,R) where I = P × (Q]M) and
R = {r | r ∈ R}). The transformation r 7→ r is de�ned as follows.2

ACS Rules: r VAS Rules: r

ι : q
τ−→ q′ [(ι, q) 7→ −1, (ι, q′) 7→ 1]

ι : q
?m−→ q′ [(ι, q) 7→ −1, (ι, q′) 7→ 1, (ι,m) 7→ −1]

ι : q
ι′!m−−→ q′ [(ι, q) 7→ −1, (ι, q′) 7→ 1, (ι′,m) 7→ 1]

ι : q
νι′. q′′−−−→ q′ [(ι, q) 7→ −1, (ι, q′) 7→ 1, (ι′, q′′) 7→ 1]

Given a JVK-state v ∈ NI , the component v(ι, q) counts the number of processes in the
pid-class ι currently in state q, while the component v(ι,m) is the sum of the number of
occurrences of the message m in the mailboxes of the processes of the pid-class ι.

While in�nite-state, many non-trivial properties are decidable on VAS including
reachability, coverability and place boundedness; for more details see [FS01]. In this
thesis we focus on coverability, which is Expspace-complete [Rac78]: given two states s
and t, is it possible to reach from s a state t′ that covers t (i.e. t′ ≤ t)?

Which kinds of correctness properties of λActor programs can one specify by cover-
ability of an ACS? We will be using ACS to over-approximate the semantics of a λActor
program, so if a state of the ACS is not coverable, then it is not reachable in any execution
of the program. It follows that we can use coverability to express safety properties such
as:

1. unreachability of error program locations, i.e. v(ι, qerr) = 1 is uncoverable;

2. mutual exclusion, i.e. v(ι, qcritical) = 2 is uncoverable;
2All unspeci�ed components of the vectors r as de�ned in the table are set to zero.

38

4.3. Actor Communicating Systems

3. boundedness of mailboxes: is it possible to reach a state where the mailbox of
pid-class ι has more than k messages? I.e. states with

∑
m∈M v(ι,m) = k are

uncoverable.

39

Chapter 5

Verifying λActor programs

The goal of this chapter is de�ning an algorithm to extract a sound ACS description of an
arbitrary λActor program. By sound we mean that the semantics of the ACS should be
simulating the semantics of the program: there should exist an abstraction function from
states of the program to states of the ACS such that if a state of the program is reachable,
its abstraction can be reached in the VAS semantics of the ACS.

The procedure we propose is divided in two parts. First we tackle sources of in�nity
(∞ 1) to (∞ 3) with a parametric abstract interpretation resposible for extracting the
salient control-�ow information. In order to do this in a general way we de�ne a
store-based operational semantics from which a control-�ow analysis can be derived
systematically. Second, from the analysis we extract an ACS model that is shown to be a
sound approximation of the input program.

To obtain a control-�ow analysis for λActor we apply the methodology proposed
by Might and Horn [MH11]. The key observation, explained lucidly in [Mig10], is
the following. When the domain describing states of the operational semantics is not
recursive, de�ning an abstraction often can be done by abstracting some basic domains
and lifting the abstraction in a generic way on the domains constructed combining these
basic ones. In the case of higher-order functional programs, the domain is recursive: a
closure is a program expression coupled with an environment, and environments map
variables to closures. A circular dependency as the above can be solved by introducing a
level of indirection in one of the circular references. In the example, one can introduce
a store mapping addresses to closures: environments map variables to addresses, thus
removing the recursive structure in the domain de�nition. Figure 5.1 shows the operation
pictorially: we go from a domain with cyclic dependencies (on the right) to an isomorphic
acyclic one (on the left) by introducing a store.

In Section 5.1 we give an operational semantics to λActor, structured in a way that
makes the semantic domain non-recursive and ready to be abstracted e�ectively. Then
we proceed by formalising the abstraction in Section 5.2. The chapter concludes with the
procedure to extract from the analysis an ACS, and the argument for its correctness.

41

5. Verifying λActor programs

Closure

Expr

Env

Var

Closure

Expr

Store

Addr

Env

Var

Figure 5.1 – Dependencies in the concrete semantics domain before and after introducing an
indirection through a store.

5.1 An Operational Semantics for λActor

In this section, we de�ne an operational semantics for λActor using a time-stamped

CESK* machine,1 following the methodology advocated by Van Horn and Might [VM10].
As explained in the introduction, such machines make use of store-allocated continuations
to separate the recursive structure in its state space from the recursion in a programs’s
control/data �ow. As we shall illustrate in Section 5.2, such a formalism is key to a
transparently sound and parametric abstract interpretation.

A concrete machine semantics

Without loss of generality, we assume that in a λActor program, variables are distinct,
and constructors and cases are only applied to (bound) variables. The λActor machine
de�nes a transition system on (global) states, which are elements of the set State

s ∈ State := Procs ×Mailboxes × Store

π ∈ Procs := Pid ⇀ ProcState

µ ∈ Mailboxes := Pid ⇀ Mailbox

An element ofProcs associates a process with its (local) state, and an element ofMailboxes
associates a process with its mailbox. We split the Store into two partitions

σ ∈ Store := (VAddr ⇀ Value)× (KAddr ⇀ Kont)

each with its address space, to separate values and continuations. By abuse of notation
σ(x) shall mean the application of the �rst component when x ∈ VAddr and of the
second when x ∈ KAddr .

The local state of a process is a tuple

q ∈ ProcState := (ProgLoc] Pid)× Env ×KAddr × Time.

Its components are:
1CESK stands for Control, Environment, State and (K)ontinuation

42

5.1. An Operational Semantics for λActor

1. a pid, or a program location
2 which is a subterm of the program, labelled with its

occurrence; whenever it is clear from the context, we shall omit the label;

2. an environment, which is a map from variables to pointers to values

ρ ∈ Env := Var ⇀ VAddr ;

3. a pointer to a continuation, which indicates what to evaluate next when the current
evaluation returns a value;

4. a time-stamp, which will be described later.

Values are either closures or pids:

d ∈ Value := Closure] Pid Closure := ProgLoc × Env

Note that, as de�ned, closures include both functions (which is standard) as well as
constructor terms.

All the domains we de�ne are naturally partially ordered: ProgLoc and Var are
discrete partial orders, all the others are de�ned by the appropriate pointwise extensions.

Mailbox and message passing

A mailbox is just a �nite sequence of values: m ∈ Mailbox := Value∗. We denote the
empty mailbox by ε. A mailbox is supported by two operations:

mmatch: pat∗ ×Mailbox × Env × Store → (N× (Var ⇀ Value)×Mailbox)⊥

enq: Value ×Mailbox → Mailbox

The function mmatch takes a list of patterns, a mailbox, the current environment and a
store (for resolving pointers in the values stored in the mailbox) and returns the index
of the matching pattern, a substitution witnessing the match, and the mailbox resulting
from the extraction of the matched message. To model Erlang-style FIFFO mailboxes we
set enq(d,m) := m · d and de�ne:

mmatch(p1 . . . pn,m, ρ, σ) := (i, θ,m1 ·m2)

such that
m = m1 · d ·m2 ∀d′ ∈ m1. ∀j.matchρ,σ(pj, d

′) = ⊥
θ = matchρ,σ(pi, d) ∀j < i.matchρ,σ(pj, d) = ⊥

where matchρ,σ(p, d) seeks to match the term d against the pattern p, following the point-
ers ρ to the store σ if necessary, and returning the witnessing substitution if matchable,
and ⊥ otherwise.

2Precisely a program location is a node in the abstract syntax tree of the program being analysed.

43

5. Verifying λActor programs

Evaluation contexts as continuations

Next we represent (in an inside-out manner) evaluation contexts as continuations. A
continuation consists of a tag indicating the shape of the evaluation context, a pointer to a
continuation representing the enclosing evaluation context, and, in some cases, a program
location and an environment. Thus κ ∈ Kont consists of the following constructs:

- Stop represents the empty context.

- Argi〈`, v0 . . . vi−1, ρ, a〉 represents the context

E[v0(v1, . . . , vi−1, [], e′i+1, . . . , e
′
n)]

where e0(e1, . . . , en) is the subterm located at `; ρ closes the terms ei+1, . . . , en to
e′i+1, . . . , e

′
n respectively; the address a points to the continuation representing the

enclosing evaluation context E.

Addresses, pids and time-stamps

While the machine supports arbitrary concrete representations of time-stamps, addresses
and pids, we present here an instance based on contours [Shi91] which shall serve as the
reference semantics of λActor, and the basis for the abstraction of Section 5.2.

A way to represent a dynamic occurrence of a symbol is the history of the computation
at the point of its creation. We record history as contours which are strings of program
locations

t ∈ Time := ProgLoc∗

The initial contour is just the empty sequence t0 := ε, while the tick function updates the
contour of the process in question by prepending the current program location, which is
always a function call (see rule Apply):

tick : ProgLoc × Time → Time

tick(`, t) := ` · t

Addresses for values (b ∈ VAddr) are represented by tuples comprising the current
pid, the variable in question, the bound value and the current time stamp. Addresses
for continuations (a, c ∈ KAddr) are represented by tuples comprising the current pid,
program location, environment and time (i.e. contour); or ∗ which is the address of the
initial continuation (Stop).

VAddr := Pid × Var × Data × Time

KAddr := (Pid × ProgLoc × Env × Time)] {∗}

44

5.1. An Operational Semantics for λActor

The data domain (δ ∈ Data) is the set of closed λActor terms; the function res : Store×
Value → Data resolves all the pointers of a value through the store σ, returning the
corresponding closed term:

res(σ, ι) := ι

res(σ, (e, ρ)) := e[x 7→ res(σ, σ(ρ(x))) | x ∈ fv(e)]

New addresses are allocated by extracting the relevant components from the context
at that point:

newkpush : Pid × ProcState → KAddr

newkpush(ι, 〈`, ρ, _, t〉) := (ι, `.arg0, ρ, t)

newkpop : Pid ×Kont × ProcState → KAddr

newkpop(ι, κ, 〈_, _, _, t〉) := (ι, `.argi+1, ρ, t)

where κ = Argi〈`, . . . , ρ, _〉

newva : Pid × Var × Data × ProcState → VAddr

newva(ι, x, δ, 〈_, _, _, t〉) := (ι, x, δ, t)

Remark 5.1. To enable data abstraction in our framework, the address of a value contains
the data to which the variable is bound: by making appropriate use of the embedded
information in the abstract semantics, we can �ne-tune the data-sensitivity of our analysis,
as we shall illustrate in Section 5.2. However when no data abstraction is needed, this
data component can safely be discarded.

Following the same scheme, pids (ι ∈ Pid) can be identi�ed with the contour of the
spawn that generated them: Pid := (ProgLoc × Time). Thus the generation of a new
pid is de�ned as

newpid : Pid × ProgLoc × Time → Pid

newpid((`
′, t′), `, t) := (`, tick∗(t, tick(`′, t′))

where tick∗ is just the simple extension of tick that prepends a whole sequence to another.
Note that the new pid contains the pid that created it as a sub-sequence: it is indeed
part of its history (dynamic context). The pid ι0 := (`0, ε) is the pid associated with the
starting process, where `0 is just the root of the program.
Remark 5.2. Note that the only sources of in�nity for the state space are time, mailboxes
and the data component of value addresses. If these domains are �nite then the state
space is �nite and hence reachability is decidable.

It is possible to present a more general version of the concrete machine semantics. We
can reorganise the machine semantics so that components such as Time , Pid , Mailbox ,

45

5. Verifying λActor programs

KAddr andVAddr are presented as parameters (which may be instantiated as the situation
requires). In this thesis we present a contour-based machine, which is general enough to
illustrate our method of veri�cation.

Now that the state space is set up, we can de�ne the operational semantics of λActor.

De�nition 5.1 (Concrete Semantics of λActor). The concrete semantics of λActor is
the (non-deterministic) transition relation on states (→) ⊆ State × State de�ned by the
rules in Figure 5.2. The transition s→ s′ is de�ned by a case analysis of the shape of s.
We present the rules for application, message passing and process creation; we omit the
other rules (letrec, case and treatment of pids as returned value) since they follow the
same shape.

The rules for the purely functional reductions are a simple lifting of the corresponding
rules for the sequential CESK* machine: when the currently selected process is evaluating
a variable, its address is looked up in the environment and the corresponding value is
fetched from the store and returned, as dictated by rule Vars. Rule Apply is used when
evaluating an application: control is given to each argument—including the function to
be applied—in turn; Rules FunEval and ArgEval are then applied, collecting the values in
the continuation. After all arguments have been evaluated, new values are recorded in
the environment (and the store), and control is given to the body of the function to be
applied. Rule Receive can only �re if mmatch returns a valid match from the mailbox of
the process. In case there is a match, control is passed to the expression in the matching
clause, and the substitution θ witnessing the match is used to generate the bindings
for the variables of the pattern. When applying a send, according to rule Send, the
recipient’s pid is �rst extracted from the continuation, and enq is then called to dispatch
the evaluated message to the designated mailbox. When applying a spawn with rule
Spawn, the argument must be an evaluated nullary function; a new process with a fresh
pid is then created whose code is the body of the function.

One can easily add rules for run-time errors such as wrong arity in function applica-
tion, non-exhaustive patterns in cases, sending to a non-pid and spawning a non-function.

46

5.1. An Operational Semantics for λActor

Functional reductions

ArgEval

if π(ι) = 〈v, ρ, a, t〉
σ(a) = κ = Argi〈`, d0 . . . di−1, ρ′, c〉
di := (v, ρ)
b := newkpop(ι, κ, π(ι))

then π′ = π[ι 7→ 〈`.argi+1, ρ
′, b, t〉]

σ′ = σ[b 7→ Argi+1〈`, d0 . . . di, ρ′, c〉]

Apply

if π(ι) = 〈v, ρ, a, t〉, arity(`) = n
σ(a) = κ = Argn〈`, d0 . . . dn−1, ρ′, c〉
d0 = (fun(x1 . . . xn)→ e, ρ0) dn := (v, ρ)
bi := newva(ι, xi, res(σ, di), π(ι))
t′ := tick(`, π(ι))

then π′ = π[ι 7→ 〈e, ρ′[x1 → b1 . . . xn → bn], c, t′〉]
σ′ = σ[b1 7→ d1, . . . , bn 7→ dn]

Communication

Receive

if π(ι) = 〈receive p1 → e1 . . . pn → en end, ρ, a, t〉
mmatch(p1 . . . pn, µ(ι), ρ, σ) = (i, θ,m)
θ = [x1 7→ d1, . . . , xk 7→ dk]
bj := newva(ι, xj , res(σ, dj), π(ι))
ρ′ := ρ[x1 7→ b1, . . . , xk 7→ bk]

then π′ = π[ι 7→ 〈ei, ρ′, a, t〉]
µ′ = µ[ι 7→ m]
σ′ = σ[b1 7→ d1, . . . , bk 7→ dk]

Send

if π(ι) = 〈v, ρ, a, t〉
σ(a) = κ = Arg2〈`, d, ι′, _, c〉

d = (send, _)
then π′ = π[ι 7→ 〈v, ρ, c, t〉]

µ′ = µ[ι′ 7→ enq((v, ρ), µ(ι′))]

FunEval

if π(ι) = 〈` : (e0(e1, . . . , en)), ρ, a, t〉
b := newkpush(ι, π(ι))

then π′ = π[ι 7→ 〈e0, ρ, b, t〉]
σ′ = σ[b 7→ Arg0〈`, ε, ρ, a〉]

Vars

if π(ι) = 〈x, ρ, a, t〉
σ(ρ(x)) = (v, ρ′)

then π′ = π[ι 7→ 〈v, ρ′, a, t〉]

Initial state

Init The initial state associated with a
program P is sP := 〈π0, µ0, σ0〉 where
π0 = [ι0 7→ 〈P, [],∗, t0〉]
µ0 = [ι0 7→ ε]
σ0 = [∗ 7→ Stop]

Process creation

Spawn

if π(ι) = 〈fun()→ e, ρ, a, t〉
σ(a) = Arg1〈`, d, ρ′, c〉

d = (spawn, _)
ι′ := newpid(ι, `, ϑ)

then

π′ = π

[
ι 7→ 〈ι′, ρ′, c, t〉,
ι′ 7→ 〈e, ρ,∗, t0〉

]
µ′ = µ[ι′ 7→ ε]

Self

if π(ι) = 〈self(), ρ, a, t〉
then π′ = π[ι 7→ 〈ι, ρ, a, t〉]

Figure 5.2 – Operational Semantics Rules. The tables de�ne the transition relation
s = 〈π, µ, σ, ϑ〉 → 〈π′, µ′, σ′, ϑ′〉 = s′ by cases; the primed components of the state are identical
to the non-primed components, unless indicated otherwise in the “then” part of the rule. The meta-
variable v stands for terms that cannot be further rewritten such as λ-abstractions, constructor
applications and un-applied primitives.

47

5. Verifying λActor programs

5.2 Parametric Abstract Interpretation

Now that the concrete operational semantics is setup with a non-recursive state space,
we can proceed in de�ning an analysis based on it. In Remark 5.2 we identify Time ,
Mailbox and Data as responsible for the unboundedness of the state space. Our strategy
is abstracting these basic domains and lift these abstractions pointwise to the composed
domains. Instead of �xing the abstractions of the basic domains, we leave them as
parameters and state the conditions they must satisfy for guaranteeing soundness of the
overall analysis.

De�nition 5.2 (Basic domains abstraction). A basic domains abstraction is a triple
I = 〈D, T ,M〉 consisting of a data, a time and a mailbox abstraction, de�ned as follows.

(i) A data abstraction is a tripleD = 〈D̂ata, αd, r̂es〉where D̂ata is a �at (i.e. discretely
ordered) domain of abstract data values and

αd : Data → D̂ata

r̂es : Ŝtore × V̂alue →P(D̂ata).

and αd is monotone.

(ii) A time abstraction is a tuple T = 〈T̂ime, αt, t̂ick, t̂0〉 where T̂ime is a �at domain
of abstract contours, t̂0 ∈ T̂ime , and

αt : Time → T̂ime

t̂ick : ProgLoc × T̂ime → T̂ime.

and αt is monotone.

(iii) A mailbox abstraction is a tuple M = 〈M̂ailbox ,≤m,tm, αm, ênq, ε̂, m̂match〉
where (M̂ailbox ,≤m,tm) is a join-semilattice with least element ε̂ ∈ M̂ailbox ,

αm : Mailbox → M̂ailbox

ênq : V̂alue × M̂ailbox → M̂ailbox

m̂match: pat∗ × M̂ailbox × Ênv × Ŝtore →P(N× (Var ⇀ V̂alue)× M̂ailbox)

and αm and ênq are monotone on mailboxes.

48

5.2. Parametric Abstract Interpretation

An abstract interpretation of the basic domains determines an interpretation of the
other abstract domains as follows.

Ŝtate := P̂rocs × ̂Mailboxes × Ŝtore

P̂rocs := P̂id →P(̂ProcState)

̂ProcState := (ProgLoc] P̂id)× Ênv × K̂Addr × T̂ime

Ŝtore := (V̂Addr →P(V̂alue))× (K̂Addr →P(K̂ont))

̂Mailboxes := P̂id → M̂ailbox

V̂alue := Ĉlosure] P̂id

Ĉlosure := ProgLoc × Ênv

Ênv := Var ⇀ V̂Addr

P̂id := (ProgLoc × T̂ime)] {ι̂0}
ι̂0 := t̂0

each equipped with an abstraction function de�ned by an appropriate pointwise extension,
the details of which can be found in Appendix A. We will call all of them α since it will not
introduce ambiguities. To distinguish this abstraction from the one to the ACS semantics,
we call the abstraction function on states αcfa : State → Ŝtate . The abstract domain
K̂ont is the pointwise abstraction of Kont , and we will use the same tags as those in the
concrete domain. The abstract functions ̂newkpush, n̂ewkpop, n̂ewva and n̂ewpid, are de�ned
exactly as their concrete versions, but on the abstract domains.

When B is a �at domain, the abstraction of a partial map C = A ⇀ B to Ĉ = Â→
P(B̂) is de�ned as

αC(f) := λâ ∈ Â. {αB(b) | (a, b) ∈ f and αA(a) = â}

where the preorder on Ĉ is f̂ ≤Ĉ ĝ ⇔ ∀â. f̂(â) ⊆ g(â).
The operations on the parameter domains need to ‘behave’ with respect to the

abstraction functions: the standard correctness conditions listed below must be satis�ed
by their instances. These conditions amount to requiring that what we get from an
application of a concrete auxiliary function is adequately represented by the abstract
result of the application of the abstract counterpart of that auxiliary function. The
partial orders on the domains are standard pointwise extensions of partial orders of the
parameter domains.

49

5. Verifying λActor programs

De�nition 5.3 (Sound basic domains abstraction). A basic domains abstraction I is
sound just if the following conditions are met by the auxiliary operations:

αt(tick(`, t)) ≤ t̂ick(`, αt(t)) (5.1)
σ̂ ≤ σ̂′ ∧ d̂ ≤ d̂′ =⇒ r̂es(σ̂, d̂) ≤ r̂es(σ̂′, d̂′) (5.2)
∀σ̂ ≥ α(σ). αd(res(σ, d)) ∈ r̂es(σ̂, α(d)) (5.3)

αm(enq(d,m)) ≤ ênq(α(d), αm(m)) αm(ε) = ε̂ (5.4)

if mmatch(~p,m, ρ, σ) = (i, θ,m′) then

∀m̂ ≥ α(m). ∀σ̂ ≥ α(σ). ∃m̂′ ≥ α(m′). (i, α(θ), m̂′) ∈ m̂match(~p, m̂, α(ρ), σ̂) (5.5)

Following the Abstract Interpretation framework, one can exploit the soundness
constraints to derive, by algebraic manipulation, the de�nitions of the abstract auxiliary
functions which would then be correct by construction [MJ08].

Once the abstract domains are �xed, the rules that de�ne the abstract transition
relation are straightforward abstractions of the original ones.

De�nition 5.4 (Abstract Semantics of λActor). The non-deterministic abstract trans-
ition relation on abstract states () ⊆ Ŝtate × Ŝtate is de�ned by the rules in Figure 5.3.
These rules are the abstract counterparts of the rules for the operational semantics of
Figure 5.2. When referring to a particular program P , its abstract semantics is the portion
of the graph reachable from sP .

The formal link between the concrete and abstract semantics is the following sound-
ness result, which states that the abstract transitions simulate the concrete ones.

Theorem 5.1 (Soundness of Analysis). Given a sound abstraction of the basic domains, if

s→ s′ and αcfa(s) ≤ u, then there exists u′ ∈ Ŝtate such that αcfa(s
′) ≤ u′ and u u′.

One of the substantial advantages of using the Abstract Interpretation methodology
is that the proofs of soundness follow now by construction. In fact the theorem above is
proved by case analysis and unfoldings of de�nitions. We only give a brief sketch of the
proof which can be found in full in Appendix A.

Proof (Sketch). The proof is by case analysis on the rule justifying a transition s→ s′.
We show the case for rule Receive for illustration, the other cases follow the same scheme.

50

5.2. Parametric Abstract Interpretation

Functional abstract reductions

AbsArgEval

if π̂(̂ι) 3 〈v, ρ̂, â, t̂ 〉
σ̂(â) 3 κ̂ = Argi〈`, d̂0 . . . d̂i−1, ρ̂′, ĉ 〉
d̂i := (v, ρ̂) b̂ := ̂newkpop(̂ι, κ̂, q̂)

then π̂′ = π̂ t [ι̂ 7→ {〈`.argi+1, ρ̂
′, b̂, t̂ 〉}]

σ̂′ = σ̂ t [b̂ 7→ {Argi+1〈`, d̂0 . . . d̂i, ρ̂′, ĉ 〉}]

AbsApply

if π̂(̂ι) 3 q̂ = 〈v, ρ̂, â, t̂ 〉, arity(`) = n

σ̂(â) 3 Argn〈`, d̂0 . . . d̂n−1, ρ̂′, ĉ〉
d̂0 = (fun(x1 . . . xn)→ e, ρ̂0) d̂n := (v, ρ̂)

δ̂i ∈ r̂es(σ̂, d̂i,) b̂i := n̂ewva(̂ι, xi, δ̂i, q̂)

ρ̂′′ := ρ̂′[x1 7→ b̂1, . . . , xn 7→ b̂n]

then π̂′ = π̂ t [ι̂ 7→ {〈e, ρ̂′′, ĉ , ˆtick(l, t̂)〉}]

σ̂′ = σ̂ t [b̂1 7→ {d̂1} , . . . , b̂n 7→ {d̂n}]

Abstract communication

AbsReceive

if π̂(̂ι) 3 q̂ = 〈e, ρ̂, â, t̂ 〉
e = receive p1 → e1 . . . pn → en end

m̂match(p1 . . . pn, µ̂(̂ι), ρ̂, σ̂) 3 (i, θ̂, m̂)

θ̂ = [x1 7→ d̂1, . . . , xk 7→ d̂k]

δ̂j ∈ r̂es(σ̂, d̂j) b̂j := n̂ewva(̂ι, xj , δ̂j , q̂)

ρ̂′ := ρ̂[x1 7→ b̂1, . . . , xk 7→ b̂k]

then π̂′ = π̂ t [ι̂ 7→ {〈ei, ρ̂′, â, t̂ 〉}]
µ̂′ = µ̂[ι̂ 7→ m̂]

σ̂′ = σ̂ t [b̂1 7→ {d̂1} , . . . , b̂k 7→ {d̂k}]

AbsSend

if π̂(̂ι) 3 〈v, ρ̂, â, t̂ 〉
σ̂(â) 3 Arg2〈`, d̂, ι̂′, _, ĉ〉
d̂ = (send, _)

then π̂′ = π̂ t [ι̂ 7→ {〈v, ρ̂, ĉ, t̂ 〉}]
µ̂′ = µ̂[ι̂′ 7→ ênq((v, ρ̂), µ̂(̂ι′))]

AbsFunEval

if π̂(̂ι) 3 q̂ = 〈` : (e0(e1, . . . , en)), ρ̂, â, t̂ 〉
b̂ := ̂newkpush(̂ι, q̂)

then π̂′ = π̂ t [ι̂ 7→ {〈e0, ρ̂, b̂, t̂ 〉}]

σ̂′ = σ̂ t [b̂ 7→ {Arg0〈`, ε, ρ̂, â〉}]

AbsVars

if π̂(̂ι) 3 〈x, ρ̂, â, t̂ 〉
σ̂(ρ̂(x)) 3 (v, ρ̂′)

then π̂′ = π̂ t [ι̂ 7→ {〈v, ρ̂′, â, t̂ 〉}]

Initial abstract state

AbsInit The initial state associated with a
program P is

ŝP := α(sP) = 〈π̂0, µ̂0, σ̂0〉

where π̂0 = [ι̂0 7→ {〈P, [],∗, t̂0〉}]
µ̂0 = [ι̂0 7→ ε̂]
σ̂0 = [∗ 7→ {Stop}]

Abstract process creation

AbsSpawn

if π̂(̂ι) 3 〈fun()→ e, ρ̂, â, t̂ 〉
σ̂(â) 3 Arg1〈`, d̂, ρ̂′, ĉ〉

d̂ = (spawn, _)

ι̂′ := n̂ewpid(̂ι, `, t̂)
then

π̂′ = π̂ t

[
ι̂ 7→ {〈̂ι′, ρ̂′, ĉ, t̂ 〉}
ι̂′ 7→ {〈e, ρ̂,∗, t̂0〉}

]
µ̂′ = µ̂ t [ι̂′ 7→ ε̂]

AbsSelf

if π̂(̂ι) 3 〈self(), ρ̂, â, t̂ 〉
then π̂′ = π̂ t [ι̂ 7→ {〈̂ι, ρ̂, â, t̂ 〉}]

Figure 5.3 – Rules de�ning the Abstract Semantics. The tables describe the conditions
under which a transition ŝ = 〈π̂, µ̂, σ̂〉 〈π̂′, µ̂′, σ̂′〉 = ŝ′ can �re; the primed versions of the
components of the states are identical to the non-primed ones unless indicated otherwise in the
“then” part of the corresponding rule. We write t for the join operation of the appropriate domain.

51

5. Verifying λActor programs

Assume s = 〈π, µ, σ〉 → 〈π′, µ′, σ′〉 = s′ is proved using rule Receive, and let
e = receive p1 → e1 . . . pn → en end. Then

q = π(ι) = 〈e, ρ, a, t〉 q′ = 〈ei, ρ′, a, t〉
(i, θ,m) = mmatch(p1 . . . pn, µ(ι), ρ, σ) π′ = π[ι 7→ q′]

θ = [x1 7→ d1, . . . , xk 7→ dk] ρ′ = ρ[x1 7→ b1, . . . , xk 7→ bk]

bj = newva(ι, xj, δj, q) µ′ = µ[ι 7→ m]

δj = res(σ, dj) σ′ = σ[b1 7→ d1, . . . , bk 7→ dk].

Now let u = 〈π̂, µ̂, σ̂〉 such that αcfa(s) ≤ u, which implies α(π) ≤ π̂, α(µ) ≤ µ̂, and
α(σ) ≤ σ̂. We prove that there exists a u′ such that u u′ by application of rule
AbsReceive and αcfa(s

′) ≤ u′. Since α(π) ≤ π̂, we have q̂ = 〈e, ρ̂, â, t̂ 〉 ∈ π̂(̂ι) where
we write ρ̂ := α(ρ), â := α(a), t̂ = αt(t) and ι̂ = αpid(ι). From α(µ) ≤ µ̂ we know
that αm(µ(ι)) ≤m µ̂(̂ι). From the assumption of soundness of the mailbox abstraction by
condition (5.5) and α(σ) ≤ σ̂ we can infer

(i, α(θ), m̂) ∈ m̂match(~p, µ̂(̂ι), ρ̂, σ̂)

with αm(m) ≤m m̂. The abstract substitution is

α(θ) = [x1 7→ α(d1), . . . , xk 7→ α(dk)]

Again by soundness of the basic domain abstraction we have δ̂j := αd(δj) ∈ res(σ̂, α(dj));
to obtain new abstract variable addresses we can now set b̂j := n̂ewva(̂ι, xj, δ̂j, q̂), for
j = 1, . . . , k. Rule AbsReceive is thus applicable to u and u′ = 〈π̂′, µ̂′, σ̂′〉 yielding

π̂′ := π̂ t [ι̂ 7→ q̂′] q̂′ := 〈ei, ρ̂′, â, t̂ 〉
µ̂′ := µ̂[ι̂ 7→ m̂] ρ̂′ := ρ̂[x1 7→ b̂1, . . . , xk 7→ b̂k]

σ̂′ := σ̂ t [b̂1 7→ α(d1), . . . , b̂k 7→ α(dk)] û′ := 〈π̂′, µ̂′, σ̂′, ϑ̂〉

Now we can show that αcfa(s
′) ≤ u′ component by component:

i) α(π′) ≤ π̂ ≤ π̂ t [ι̂ 7→ q̂′] = π̂′

ii) by αm(m) ≤m m̂, α(µ′) = α(µ[ι 7→ m]) ≤ µ̂[ι̂ 7→ m̂] = µ̂′

iii) α(σ′) = α(σ[b1 7→ d1, . . . , bk 7→ dk]) ≤ σ̂t [b̂1 7→ α(d1), . . . , b̂k 7→ α(dk)] = σ̂′

which completes the proof of this case. The other cases are similarly proved by straightfor-
ward unfolding of the de�nitions and use of the soundness of the basic domain abstraction
assumption.

52

5.2. Parametric Abstract Interpretation

Now that we have de�ned a sound abstract semantics we give su�cient conditions
for its computability.

Theorem 5.2 (Decidability of Analysis). If a given (sound) abstraction of the basic domains

is �nite, then the derived abstract transition relation de�ned in Figure 5.3 is �nite; it is also

decidable, if the associated auxiliary operations (in De�nition 5.3) are computable.

Proof. The proof is by a simple inspection of the rules: all the individual rules are decidable
and the state space is �nite.

Before showing how we can derive a sound ACS model from this analysis, we brie�y
present some useful possible instantiations of the abstract basic domains.

A simple mailbox abstraction

Abstract mailboxes need to be �nite too in order for the analysis to be computable.
By abstracting addresses (and data) to a �nite set, values, and thus messages, become
�nite too. The only unbounded dimension of a mailbox becomes then the length of
the sequence of messages. We then abstract mailboxes by losing information about the
sequence and collecting all the incoming messages in an un-ordered set:

Mset := 〈P(V̂alue),⊆,∪, αset, ênqset, ∅, m̂matchset〉

where the abstract version of enq is the insertion in the set, as easily derived from the
soundness requirement; the matching function is similarly derived from the correctness
condition: writing ~p = p1 . . . pn

αset(m) := {α(d) | ∃i. mi = d}
ênqset(d̂, m̂) := {d̂ } ∪ m̂

m̂matchset(~p, m̂, ρ̂, σ̂) := {(i, θ̂, m̂) | d̂ ∈ m̂, θ̂ ∈ ˆmatchρ̂,σ̂(pi, d̂)}

We omit the straightforward proof that this constitutes a sound abstraction.

Abstracting data

Had we not included data in the value addresses in the de�nition of VAddr , cutting
contours would have been su�cient to make this domain �nite. A simple solution is to
discard the value completely by using the trivial data abstraction D̂ata0 := {†} which is
sound. If more precision is needed, any �nite data-abstraction would do: the analysis
would then be able to distinguish states that di�er only because of di�erent bindings in
their frame.

53

5. Verifying λActor programs

We present here a data abstraction particularly well-suited to languages with algebraic
data-types such as λActor: the abstraction becσ̂,D discards every sub-term of e that is
nested at a deeper level than a parameter D.

b(e, ρ̂)cσ̂,0 := {†}
b(fun. . ., ρ̂)cσ̂,D+1 := {†}

b(c(x1 . . . xn), ρ̂)cσ̂,D+1 := {c(δ̂1 . . . δ̂n) | d̂i ∈ σ̂(ρ̂(xi)), δ̂i ∈ bd̂icσ̂,D}

where † is a placeholder for discarded subterms.
An analogous D-deep abstraction can be easily de�ned for concrete values and we

use the same notation for both; we use the notation bδcD for the analogous function on
elements of Data .

We de�ne DD = 〈D̂ataD, αD, r̂esD〉 to be the ‘depth-D’ data abstraction where

D̂ataD+1 := {†} ∪ {c(δ̂1 . . . δ̂n) | δ̂i ∈ D̂ataD}
αD(δ) := bδcD

r̂esD(σ̂, d̂) := bd̂cσ̂,D
The proof of its soundness is easy and we omit it.

Abstracting time

Let us now de�ne a speci�c time abstraction that amounts to a concurrent version of
a standard k-CFA. A k-CFA is an analysis parametric in k, which is able to distinguish
dynamic contexts up to the bound given by k. We proceed as in standard k-CFA by
truncating contours at length k to obtain their abstract counterparts:

T̂imek :=
⋃

0≤i≤k ProgLoc
i

αkt (`1 . . . `k · t) := `1 . . . `k

Putting it all together

The simplest analysis we can then de�ne is the one induced by the basic domains ab-
straction I0 := 〈D̂ata0, T̂ime0, M̂ailbox set〉. With this instantiation many of the domains
collapse in to singletons. Implementing the analysis as it is would lead however to an
exponential algorithm because it would record separate store and mailboxes for each
abstract state. To get a better complexity bound, we apply a widening following the lines
of [VM10, Section 7]: instead of keeping a separate store and separate mailboxes for each
state we can join them keeping just a global copy of each (see Section 5.4). This reduces
signi�cantly the space we need to explore: the algorithm becomes polynomial time in
the size of the program (which is re�ected in the size of ProgLoc).

54

5.3. Generating the Actor Communicating System

Considering other abstractions for the basic domains easily leads to exponential
algorithms; in particular, the state-space grows linearly wrt the size of abstract data so
the complexity of the analysis using D̂ataD is exponential in D.

Dealing with open programs

Often it is useful to verify an open expression where its input is taken from a regular
set of terms (see [OR11]). We can reproduce this in our setting by introducing a new
primitive choice that non-deterministically calls one of its arguments. For instance, an
interesting way of closing N in Example 4.1 would be by binding it to any num():

letrec
. . .
any num() = choice(

fun() → zero,
fun() → {succ, any num()}

).
in C = cell start(), add to cell(any num(), C).

Now the uncoverability of the state where more than one instance of inc is running
the protected section would prove that mutual exclusion is ensured for any number of
concurrent copies of inc.

5.3 Generating the Actor Communicating System

The CFA algorithm we presented allows us to derive a sound ‘�at’ representation of the
control-�ow of the program. The analysis takes into account higher-order computation
and (limited) information about synchronization. Now that we have this rough scheme
of the possible transitions, we can ‘guard’ those transitions with actions which must take
place in their correspondence; these guards, in the form of ‘receive a message of this form’
or ‘send a message of this form’ or ‘spawn this process’ cannot be modelled faithfully while
retaining decidability of useful veri�cation problems, as noted in Section 4.3. The best
we can do, while remaining sound, is to relax the synchronization and process creation
primitives with counting abstractions and use the guards to restrict the applicability of
the transitions. In other words, these guarded (labelled) rules will form the de�nition of
an ACS that simulates the semantics of the input λActor program.

First let us �x some terminology. We identify a common pattern of the rules in
Figure 5.3. In each rule R, the premise distinguishes an abstract pid ι̂ and an abstract
process state q̂ = 〈e, ρ̂, â, t̂ 〉 associated with ι̂ i.e. q̂ ∈ π̂(̂ι) and the conclusion of the rule
associates a new abstract process state—call it q̂′—with ι̂ i.e. q̂′ ∈ π̂′(̂ι). Henceforth we
shall refer to (̂ι, q̂, q̂′) as the active components of the rule R. We write (̂ι, q̂, q̂′) |=R ŝ ŝ′

if ŝ ŝ′ is proved by rule R with active components (̂ι, q̂, q̂′).

55

5. Verifying λActor programs

De�nition 5.5 (Generated ACS). Given a λActor program P , a sound basic domains
abstraction I = 〈T ,M,D〉 and Dmsg = 〈M̂sg , αmsg, r̂esmsg〉, a sound data abstraction for
messages, the Actor Communicating System generated by P , I and Dmsg is de�ned as

AP := 〈P̂id , ̂ProcState, M̂sg , R, α(ι0), α(π0(ι0))〉

where sP = 〈π0, µ0, σ0, t0〉 is the initial state (according to Init) with π0 = [ι0 7→
〈P , [],∗, t0〉] and the rules in R are de�ned by cases as follows. If (̂ι, q̂, q̂′) |=R ŝ ŝ′,
then:

1. If R is AbsFunEval or AbsArgEval or AbsApply, then

ι̂ : q̂
τ−→ q̂′ ∈ R (AcsTau)

2. If R is AbsReceive where d̂ = (pi, ρ̂
′) is the abstract message matched by m̂match

and m̂ ∈ r̂esmsg(σ̂, d̂), then
ι̂ : q̂

?m̂−→ q̂′ ∈ R (AcsRec)

3. If R is AbsSend where d̂ is the abstract value that is sent and m̂ ∈ r̂esmsg(σ̂, d̂),
then

ι̂ : q̂
ι̂′!m̂−−→ q̂′ ∈ R (AcsSend)

4. If R is AbsSpawn where ι̂′ is the new abstract pid that is generated in the premise
of the rule, which gets associated with the process state q̂′′ = 〈e, ρ̂,∗〉, then

ι̂ : q̂
νι̂′.q̂′′−−−→ q̂′ ∈ R (AcsSp)

As we will make precise later, keeping P̂id and ̂ProcState small is of paramount
importance for the model checking of the generated ACS to be feasible. This is the main
reason why we keep the message abstraction independent from the data abstraction: this
allows us to increase precision with respect to types of messages, which is computationally
cheap, and keep the expensive precision on data as low as possible. Note that these two
‘dimensions’ are in fact independent and a more precise message space enhances the
precision of the ACS even when using D̂ata0 as the data abstraction.

In our examples (and in our implementation) we use a D̂ataD abstraction for messages
where D is the maximum depth of the receive patterns of the program.

It is important to note that most of the decidable properties of the generated ACS are
not even expressible on the CFA graph alone: being able to predicate on the contents
of the counters means we can decide boundedness, mutual exclusion and many other
expressive properties. The next example shows one simple way in which the generated
ACS can be more precise than the bare CFA graph.

56

5.3. Generating the Actor Communicating System

Y Example 5.3 (Generated ACS improving on CFA). Given the following program:
letrec

server() =
receive {init, P, X} →

send(P, ok), do serve(X)
end.

do serve(X) =
receive

{init, , } → error;
{set , Y} → do serve(Y);
{get , P} → send(P,X),

do serve(X);
end.

in S = spawn(server),
send(S, {init, self(), a}),
receive ok → send(S, {set, b}) end.

our algorithm would output the following ACS starting from ‘main’:3

serverι̂s : do_serve receive error
?init ι̂0!ok

?set

?init

mainι̂0 :
νι̂s.server ι̂s!init ?ok ι̂s!set

The error state is reachable in the CFA graph but not in its Parikh semantics: the token
init is only sent once and never after ok is sent back to the main process. Once init
has been consumed in the transition from ‘server’ to ‘do_serve’ the counter for it will
remain set to zero forever.

Soundness

We now show that the semantics of the generated ACS is indeed a sound approximation
of the semantics of λActor programs. To formalise the soundness argument we need to
relate the states of the concrete operational semantics and the states of the generated
ACS’ semantics.

De�nition 5.6 (Abstraction function). The abstraction function

αacs : State → (P̂id × (̂ProcState] M̂sg)→ N)

3Labels are abbreviated to unclutter the picture; for example {init,†,†} is abbreviated with init.

57

5. Verifying λActor programs

relating concrete states and states of an ACS is de�ned as

αacs(〈π, µ, σ〉) :=

{
(̂ι, q̂) 7→

∣∣{ι | α(ι) = ι̂, α(π(ι)) = q̂ }
∣∣

(̂ι, m̂) 7→
∣∣{(ι, i) | α(ι) = ι̂, αmsg(res(σ, µ(ι)i)) = m̂}

∣∣
Theorem 5.3 (Soundness of generated ACS). For all choices of I and Dmsg, for all concrete

states s and s′, if s→ s′ and αacs(s) ≤ v then there exists v′ such that αacs(s
′) ≤ v′, and

v→acs v
′
.

The full proof of the theorem can be found in Appendix B, but we show the case of
message reception here for illustration; the other cases are analogous.

Proof (Sketch). As in Theorem 5.1, we proceed by case analysis on the rule justifying
s→ s′. We show the argument for rule Receive.

By applying Theorem 5.1 to the abstract state ŝ = αcfa(s) we have ŝ ŝ′ using
abstract rule AbsReceive with active component (̂ι, q̂, q̂′) where ι̂ = α(ι), q̂ = α(q) and
q̂′ = α(q′). Observe that s = 〈π, σ, µ〉 and ŝ = 〈π̂, σ̂, µ̂〉 where π̂ = α(π), σ̂ = α(σ) and
µ̂ = α(µ). Let the message matched by mmatch and extracted from µ(ι) be d = (pi, ρ

′),
then by soundness of the basic domain abstraction, Equation (5.5) ensures that a message
d̂ = (pi, ρ̂

′) can be matched in µ̂(̂ι) by m̂match, with ρ̂′ = α(ρ′). We can therefore
assume d̂ is indeed the message matched during ŝ ŝ′. Since the message abstraction is
a sound data abstraction we know that m̂ := αmsg(res(σ, d)) ∈ r̂esmsg(σ̂, d̂) and hence
we have r := ι̂ : q̂

?m̂−→ q̂′ ∈ R. Additionally we know

1. αacs(s)(̂ι, q̂) ≥ 1,

2. αacs(s)(̂ι, m̂) ≥ 1,

3. αacs(s
′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1,

4. αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1 and

5. αacs(s
′)(̂ι, m̂) = αacs(s)(̂ι, m̂)− 1

since d is the message extracted from µ(ι) and m̂ = αmsg(res(σ, d)). Now assume
αacs(s) ≤ v, this implies v(̂ι, q̂) ≥ 1 and v(̂ι, m̂) ≥ 1 and so we can de�ne

v′ := v

 (̂ι, q̂) 7→ v(̂ι, q̂)− 1,

(̂ι, m̂) 7→ v(̂ι, m̂)− 1,

(̂ι, q̂′) 7→ v(̂ι, q̂′) + 1

.
It is then clear that, using rule r ∈ R, v→acs v

′ and, from items 1–5 above, αacs(s
′) ≤ v′,

as desired.

58

5.3. Generating the Actor Communicating System

Corollary 5.4. Let AP be the ACS derived from a given λActor program P . We have

JAPK simulates the semantics of P : for each P-run s → s1 → s2 → . . . , there exists a
JAPK-run v→acs v1 →acs v2 →acs . . . such that αacs(s) = v and for all i, αacs(si) ≤ vi.

Simulation preserves all paths so reachability (and coverability) is preserved.

Corollary 5.5. If there is no v ≥ αacs(s
′) such that αacs(s)→∗acs v then s 6→∗ s′.

Y Example 5.4 (ACS Generated from Example 4.1). Consider Example 4.1 with the parametric
entry point of Section 5.2, and the 0-CFA analysis of Section 5.2. A (simpli�ed) pictorial
representation of the ACS generated by our procedure is shown in Figure 5.4.

The three pid-classes correspond to the starting process ι̂0 and the two static calls of
spawn in the program, the one for the shared cell process ι̂c and the other, ι̂i, for all the
processes running inc.

The �rst component of the ACS, the starting one, just spawns a shared cell and an
arbitrary number of concurrent copies of the third component; these actions increment
the counter associated with states ‘res_free’ and ‘inc0’. The second component represents
the intended protocol quite closely; note that by abstracting messages they essentially
become tokens and the payload is ignored. The rules of the third component clearly
show its sequential behaviour. The entry point is (̂ι0, cell_start).

The VAS semantics is accurate enough in this case to prove mutual exclusion of, say,
state ‘inc2’, which is protected by locks. Let’s say for example that n > 0 processes of
pid-class ι̂i reached state ‘inc1’; each of them sent a lock message to the cell; note that
now the message does not contain the pid of the requester so all these messages are
indistinguishable; moreover the order of arrival is lost, we just count them. Suppose that
ι̂c is in state ‘res_free’; since the counter for lock is n and hence not zero, the rule labeled
with ?lock is enabled; however, once �red the counter for ‘res_free’ is zero and the rule
is disabled. Now exactly one ack can be sent to the ‘collective’ mailbox of pid-class ι̂i so
the rule receiving the ack is enabled; but as long as it is �red, the only ack message is
consumed and no other ι̂i process can proceed. This holds until the lock is released and
so on. Hence only one process at a time can be in state ‘inc2’. This property can be stated
as a coverability problem: can [(̂ιi, inc2) 7→ 2] be covered? Since the ACS semantics is
given in terms of a VAS, the property is decidable and the answer can be algorithmically
calculated. As we saw the answer is negative and then, by soundness, we can infer it
holds in the actual semantics of the input program too.

59

5. Verifying λActor programs

cell_startι̂0 : res_start sp_inc stop
τ νι̂c.res_free

νι̂i.inc0

τ

res_freeι̂c :

ack

res_locked

Res

cell?loc
k ι̂i!ack

?req
?unlock

τ

ι̂i!an
s

τ

inc0ι̂i : inc1 inc2 inc3 inc4 inc5 stop
ι̂c!lock ?ack ι̂c!req ?ans ι̂c!req ι̂c!unlock

Figure 5.4 – ACS generated by the algorithm from Example 4.1.

5.4 An E�cient Algorithm for ACS Generation

The ACS generation procedure of De�nition 5.5 is based on the analysis of De�nition 5.4
so it is parametric in the basic domain abstraction. The complexity of the ACS generation
depends on the choice of these parameters. However, even using the simplest instance
with I0, the set of abstract states is exponential in the size of the input program. An
algorithm enumerating the abstract states reachable from the initial one using would
then be exponential time. Van Horn and Might [VM10] propose to use a widening to
obtain a polynomial time 0-CFA algorithm for the exploration of reachable abstract
states. We observe that if ŝ s′ then ŝ ≤ ŝ′; if two states ŝ1 and ŝ1 are successors of ŝ,
i.e. ŝ s1 and ŝ s2, then ŝ1 ŝ1 t ŝ2 and ŝ2 ŝ1 t ŝ2. Therefore by joining the
successors at each step of the exploration, we remain sound and do not introduce new
spurious transitions. This procedure corresponds to keeping a global store, mailbox and
pid to process state map, common to every reachable state and joining the corresponding
components of new reachable states on the global ones at each step of the analysis until
a �xpoint is reached.

The general algorithm for the exploration of the abstract transition system is shown
in Figure 5.5. The procedure iterates over an increasing chain of abstract states, the
maximum length of which is polynomial in the size of the program and the size of
̂ProcState , K̂ont and P̂id . When using the I0 abstraction described at the end of Sec-

tion 5.2, ̂ProcState and K̂ont are polynomial and P̂id is linear in the size of the program.
Assuming |Dmsg| to be independent from the size ofP , such instantiation yields an overall

60

5.4. An E�cient Algorithm for ACS Generation

AcsGenI,Dmsg(P)
ŝ := ⊥
ŝ′ := ŝP (from rule AbsInit)
R := ∅
while ŝ′ 6= ŝ do
ŝ := ŝ′

for each ŝ′′ such that (̂ι, q̂, q̂′) |=R ŝ
′ ŝ′′ do

ŝ′ := ŝ′ t ŝ′′
R := R ∪ {ι̂ : q̂ λ−→ q̂′ | λ obtained using De�nition 5.5}

return (ŝ, R)

Figure 5.5 – The ACS generation algorithm.

polynomial time procedure.

More precise instantiations for I easily lead to exponential algorithms. For instance,
using the D̂ataD abstraction the size of ̂ProcState grows exponentially in D.

Henceforth we call dimension of an ACS the dimension of the VAS underlying its VAS
semantics. The complexity of coverability on VAS is Expspace in the dimension of the
VAS; hence for the approach to be practical, it is critical to keep the dimension of the
generated ACS small.

Our algorithm produces an ACS with dimension (| ̂ProcState| + |M̂sg |) × |P̂id |.
Assuming |M̂sg | to be a constant, using the I0 basic domain abstraction ensures that the
dimension of the generated ACS is polynomial in the size of the program, in the worst
case. Due to the parametricity of the abstract interpretation we can adjust for the right
levels of precision and speed. For example, if the property at hand is not sensitive to pids,
one can choose a coarser pid abstraction.

It is also possible to greatly reduce the size of ̂ProcState : we observe that many of the
control states result from intermediate functional reductions; such reductions performed
by di�erent processes are independent, thanks to the actor model paradigm. This allows
for the use of preorder reductions. In our prototype, as described in Section 6.1, we
implemented a simple reduction that safely removes states which only represent internal
functional transitions, irrelevant to the property at hand. This has proven to be a simple
yet e�ective transformation yielding a signi�cant speedup. We conjecture that, after the
reduction, the cardinality of ̂ProcState is quadratic only in the number of send, spawn
and receive of the program.

61

5. Verifying λActor programs

5.5 Limitations

As we saw in the examples, the ACS abstraction is quite powerful in that it allows to
state and algorithmically verify very precise concurrency-relevant properties. As we
discussed in Chapter 4, natural ways of increasing precision almost inevitably render the
analysis undecidable. Although quite expressive, ACS models are however abstract, and
thus there are programs and properties that, inescapably, cannot be proved using any of
the presented abstractions.

A �rst cause of imprecision is non-trivial control-�ow. This can be counteracted by
increasing the context-sensitivity of the CFA, incurring in a considerable performance
cost. On the positive side, many practical improvements of CFA have been recently
proposed in the literature [EMH10; JLMH13], and they can be easily incorporated into
the �rst phase of our analysis.

Related to control-�ow approximation is the issue of representing higher-order call-
stack behaviour. To appreciate this e�ect consider the program in Figure 5.6: it de�nes a
higher-order combinator that spawns a number of identical workers, each applied to a
di�erent task in a list. It then waits for all the workers to return a result before collecting
them in a list which is subsequently returned. The desired property is that the combinator
only returns when every worker has sent back its result. Unfortunately to prove this
property stack reasoning is required, which is beyond the capabilities of an ACS.

If call-stacks are problematic, faithful representations of mailboxes can be even harder
to integrate in our framework. The current abstraction deliberately forgets the sequence
of message arrival to attain decidability. Unfortunately, in some cases the communication
protocol may rely on the exact sequence of arrival for correctness. Consider the program
in Figure 5.7: it de�nes a simple function that discards a message in the mailbox and
feeds the next to its functional argument and so on in a loop. Another process sends a
‘bad argument’ and a good one in alternation such that only the good ones are fed to the
function.

A safety property of interest is that the function is never called with a bad argument.
This cannot be proved because sequential information of the mailboxes, which is essential
for the veri�cation, is lost in the counter abstraction.

We observe however that the imprecision with respect to mailboxes is mitigated by
the fact that, in practice, Erlang programmers often intentionally avoid relying on the
exact sequence of arrival of messages. This happens for two reasons. First, the FIFFO
mechanism of message matching assures that even if the mailbox contains messages
in a certain order, it is the receiver that decides in which order to fetch them by only
including certain patterns in the receives. To a certain extent, this information is used by
our analysis. Second, in a distributed setting the message-delivery guarantees are weaker:
if two messages are sent to an actor from two di�erent remote nodes, their sequence
in the receiver’s mailbox cannot be assumed to re�ect the order in which the messages
were sent [see CS05].

62

5.5. Limitations

1 letrec
2 worker(Task) = . . .
3
4 spawn wait(F, L) = spawn wait’(F, fun()→[], L).
5
6 spawn wait’(F, G, L) =
7 case L of
8 [] → G();
9 [T|Ts] →

10 S = self(),
11 C = spawn(fun() → send(S, {ans, self(), F(T) })),
12 F’ = fun() →
13 receive
14 {ans, C, R} → [R | G()]
15 end,
16 spawn wait’(F, F’, Ts)
17 end.
18
19 in spawn wait(worker, [task1, task2, . . .]).

Figure 5.6 – A program that Soter cannot verify because of the stack.

A �nal notable source of imprecision is the one introduced by pid-classes. The fact
that pid-classes are required to be �nite has a number of consequences. The most obvious
e�ect is that the mailboxes of di�erent processes get merged, adding imprecision to
the loss of sequencing information. Secondly, the topology of the system is static. By
topology of the system here we mean the graph that connects an actor with all the
actors with pids known to it. In general, the number of actors, and hence of distinct pids,
grows with time and since pids are values and can be exchanged as messages, actors
can become connected or disconnected dynamically. This complexity is not expressible
with pid-classes. Unlike the case of sequences in mailboxes, many idiomatic concurrency
patterns make heavy use of both, the uniqueness of pids and the dynamic evolution of
the topology. A paradigmatic example is the one of servers: when a client sends a request
to a public server, the request message usually contains the pid of the client to allow
the server to reply privately to the request. With the pid-classes abstraction we cannot
model the fact that no client other than the requester will receive the answer, nor the
fact that the server acquires (and then discards) knowledge about the pid of the client
during the exchange.

To remedy to this limitation, in Part II we turn to a model of computation that can
express these patterns accurately, the π-calculus. We will propose a way to characterise

63

5. Verifying λActor programs

1 letrec
2 no a(X) = case X of
3 a → error;
4 b → ok
5 end.
6
7 send b(P) = send(P, b), send a(P).
8 send a(P) = send(P, a), send b(P).
9

10 stutter(F) = receive → unstut(F) end.
11 unstut(F) = receive X → F(X), stutter(F) end.
12
13 in P = spawn(fun() → stutter(no a)),
14 send a(P).

Figure 5.7 – A program that Soter cannot verify because of the sequencing in mailboxes.

systems with a very precise representation of process identities, that support automatic
model checking procedures.

64

Chapter 6

Soter: a Veri�cation Tool for Erlang

In this chapter we present the tool we built to validate the approach presented in the
previous chapters. We �rst give an overview of the implementation design, and then
look into its performance and how it can be used by means of a case study. The impatient
reader can jump to Section 6.2 for some benchmarks.

6.1 The Soter Tool

Soter is an experimental, prototype Haskell implementation of the analysis presented in
the previous sections. It accepts a substantial (concurrent) subset of the Erlang language:
supported features include algebraic data-types with pattern-matching, higher-order,
spawning of new processes, asynchronous communication.

As presented in Figure 6.1, Soter’s work�ow has three phases. In phase 1, the input
Erlang module with correctness annotations is compiled using the standard Erlang
compiler erlc to a module of Core Erlang—the o�cial intermediate representation of
Erlang. The code is then normalised in preparation for the next phase: the code is
transformed to a form that satis�es the assumptions made in Chapter 5. Correctness
properties, expressible in various forms, are speci�ed by annotating the program source.
The user can insert assertions, or label program points and mailboxes and then state
constraints they must satisfy.

For example, the resource-locking program in Figure 4.1 can be annotated by labelling
the critical section of the client:

inc(C) =
cell lock(C),
?label(critical),
cell write(C, {succ, cell read(C)}),
cell unlock(C).

65

6. Soter: a Verification Tool for Erlang

Erlang
+annot.

erlc
Core

Erlang
Cover.

queries

AnalysisMsg Abs

Data Abs

Mailbox Abs

Time Abs

ACS Simpl Gen BFC
model

bfc X SAFE
× UNSAFE

Phase 1

Phase 2

Phase 3

Figure 6.1 – Soter’s work�ow. The input annotated program goes through 3 phases. Phase 1
converts it to Core Erlang and extracts the properties to be veri�ed. Phase 2 runs the CFA-style
analysis using the parameter base abstract domains (only message and data abstractions can be
currently tweaked). Phase 3 generates the BFC model from the simpli�ed ACS and the properties.
Then BFC is invoked to verify if the model is safe.

Then mutual exclusion can be expressed by the directive

-uncoverable("critical >= 2").

which requires that the number of processes running the line labelled with critical
should never exceed 1.

The main purpose of phase 2 is to soundly generate the ACS rules. It implements the
algorithm in Figure 5.5 with an optimisation for computing the �xpoint more e�ciently
(but with the same worst case complexity). The basic domain abstractions are set to
the ones presented in Section 5.2: DD, T0,Mset and DM as messages abstraction, where
D and M are parameters controlling the depth of the data and message abstraction
respectively. By default D is set to zero, so calls to the same function with di�erent
arguments are merged in the abstract model; the runtime of the analysis is exponential in
D. M is by default set toD+P where P is the maximum depth of the receive patterns of
the program; using large values for M does not incur the same slowdown as adjusting D.
In future releases, we plan to introduce parameters to tune the precision of the abstraction
so that users can control the context sensitivity of the analysis.

In phase 3, Soter generates a VAS in the format of BFC [KKW12], which is a fast
coverability checker for VAS with transfer arcs, developed by Alexander Kaiser. For each
property Soter needs to prove, BFC is called internally with the BFC model and a query
representing the safety property.

66

6.2. Empirical Evaluation

Soter can be run in three modes: ‘analysis only’ which produces the ACS, skip-
ping phase 3; ‘verify assertions’ which extracts the properties from user annotations;
‘verify absence-of-errors’ which generates BFC queries asserting the absence of runtime
exceptions. Currently, not all the exceptions that the Erlang runtime can throw are
represented; the supported ones include sending a message to a non-pid value, applying a
function with the wrong arity, and spawning a non-functional value. A notable omission
is pattern-matching failures.

Phases 1 and 2 are polytime in the size of the input program. Despite the Expspace-
completeness of the Petri net coverability problem, phase 3 is surprisingly e�cient; see
the outcome of the experiments in Table 6.1.

Web interface

In addition to a command-line interface, we have built a web interface for Soter available
at http://mjolnir.cs.ox.ac.uk/soter/. The user interface allows easy input of Erlang
programs and allows the user to try Soter directly from the browser, without having to
install any additional software. A library of annotated example programs is available to
be tried and modi�ed. Soter presents the generated abstract model as a labelled graph for
easy visualisation, and reports in detail on the performance and results of the veri�cation.

Figure 6.2 – Soter’s web interface.

6.2 Empirical Evaluation

In Table 6.1 we summarise our experimental results. Many of the examples are higher-
order and use dynamic (and unbounded) process creation and non-trivial synchronization.
Example 4.1 appears as reslock and Soter proves mutual exclusion of the clients’ critical

67

http://mjolnir.cs.ox.ac.uk/soter/

6. Soter: a Verification Tool for Erlang

section. concdb is the example program of [Huc99] for which we prove mutual exclu-
sion. pipe is inspired by the ‘pipe’ example of [KNY95]; the property proved here is
boundedness of mailboxes. sieve is a dynamically spawning higher-order concurrent
implementation of the Erathostene’s sieve which we will present in detail in the next
section;Soter can prove all the mailboxes are bounded.

Example LOC P SAFE?

ABS ACS SIZE TIME

D M Places Ratio Analysis BFC Total

reslock 356 1 yes 0 2 40 10% 0.56 0.82 1.48
sieve 230 3 yes 0 2 47 19% 0.26 2.46 2.76
concdb 321 1 yes 0 2 67 12% 1.10 5.19 6.46
state_factory 295 2 yes 0 1 22 4% 0.59 0.02 0.75
pipe 173 1 yes 0 0 18 8% 0.15 0.00 0.18
ring 211 1 yes 0 2 36 9% 0.55 0.25 0.88
parikh 101 1 yes 0 2 42 41% 0.05 0.07 0.13
unsafe_send 49 1 no 0 1 10 38% 0.02 0.00 0.02
safe_send 82 1 no* 0 1 33 36% 0.05 0.00 0.06
safe_send 82 4 yes 1 2 82 34% 0.23 0.06 0.32
firewall 236 1 no* 0 2 35 10% 0.36 0.02 0.44
firewall 236 1 yes 1 3 74 10% 2.38 0.00 2.69
finite_leader 555 1 no* 0 2 56 20% 0.35 0.01 0.40
finite_leader 555 1 yes 1 3 97 23% 0.75 0.86 1.70
stu�er 115 1 no* 0 0 15 19% 0.04 0.00 0.05
howait 187 1 no* 0 2 29 14% 0.19 0.00 0.22

Table 6.1 – Soter Benchmarks. The number of lines of code refers to the compiled Core Erlang.
The P column indicates the number of properties which need to be proved. The columns D and M

indicate the data and message abstraction depth respectively. In the SAFE? column, “no*” means
that the program satis�es the properties but the veri�cation was inconclusive; “no” means that
the program is not safe and Soter �nds a genuine counterexample. Places is the number of places
of the underlying Petri net after the simpli�cation; Ratio is the ratio of the number of places of
the generated Petri net before and after the simpli�cation. All times are in seconds.

All example programs, annotated with coverability queries, can be viewed and veri�ed
using Soter at http://mjolnir.cs.ox.ac.uk/soter/.

6.3 A Simple Case Study

We illustrate the workings of Soter by an example. Figure 6.3 shows an implementation
of Eratosthenes’ sieve by Rob Pike.1 We use here Erlang’s syntax.

1see “Concurrency and message passing in Newsqueak”, http://youtu.be/hB05UFqOtFA

68

http://mjolnir.cs.ox.ac.uk/soter/
http://youtu.be/hB05UFqOtFA

6.3. A Simple Case Study

1 main() →
2 Gen = spawn(fun() →
3 counter(2) end),
4 spawn(fun() →
5 sieve(Gen,self()) end),
6 dump().
7
8 dump() →
9 receive X →

10 io:write(X), dump()
11 end.
12
13 counter(N) →
14 ?label mail("counter mail"),
15 receive {poke, From} →
16 From ! {ans, N},
17 counter(N+1)
18 end.
19
20 sieve(In, Out) →
21 ?label mail("sieve mail"),
22 In ! {poke, self()},
23 receive {ans,X} →
24 Out ! X,
25 F = spawn(fun()→
26 filter(divisible by(X), In)
27 end),
28 sieve(F,Out)
29 end.

30
31 filter(Test, In) →
32 ?label mail("filter mail"),
33 receive {poke, From} →
34 filter(Test, In, From)
35 end.
36
37 filter(Test, In, Out) →
38 In ! {poke, self()},
39 receive {ans,Y} →
40 case Test(Y) of
41 false→ Out ! {ans,Y},
42 filter(Test, In);
43 true → filter(Test, In, Out)
44 end
45 end.
46
47 -ifdef(SOTER).
48 divisible by(X) →
49 fun(Y) → ?any bool() end.
50 -else.
51 divisible by(X) →
52 fun(Y) → case Y rem X of
53 0 → true;
54 → false
55 end
56 end.
57 -endif.

Figure 6.3 – Eratosthenes’ Sieve, actor style.

69

6. Soter: a Verification Tool for Erlang

The actor de�ned by counter provides the sequence of natural numbers as responses
to poke messages, starting from 2; the dump actor prints everything it receives. The sieve
actor’s goal is to send all prime numbers in sequence as messages to the dump actor; to
do so it pokes its current In actor waiting for a prime number. After forwarding the
received prime number, it creates (spawn) a new filter process, which becomes its new
In actor. The �lter actor, when poked, queries its In actor until a number satisfying Test
is received and then it forwards it; the test (an higher-order parameter) is initialized by
sieve to be a divisibility check that tests if the received number is divisible by the last
prime produced. The overall e�ect is a growing chain of filter actors each �ltering
multiples of the primes produced so far; at one end of the chain there is the counter, at
the other the sieve that forwards the results to dump.

Soter does not have native support for arithmetic operations, so line 48 de�nes a
stub to be used by Soter that returns true or false non-deterministically, thus soundly
approximating the de�nition based on division given in line 51.

The communication here is synchronous in spirit: whenever a message is sent, the
sender actor blocks waiting for a reply. To check this is the case, we can verify the
property that every mailbox contains in fact at most one message at any time. To be
able to express this constraint we label the mailboxes we are interested in with the
?label mail() macro: the instructions in lines 14, 21 and 32 mark the mailbox of any
process that may execute them with the corresponding label.

Then we can insert the following lines at the beginning of the module
-uncoverable("counter mail >= 2").
-uncoverable("filter mail >= 2").
-uncoverable("sieve mail >= 2").

which state the property we want to prove. The directive -uncoverable is ignored by
the Erlang compiler but it is interpreted by Soter as a property to be proved: all the states
satisfying the constraint are considered to be ‘bad states’. These inequalities state that if
the total number of messages in the labelled mailboxes exceed the given bound, we are
in a bad state.

Soter allows the user to mark program locations as well using the macro ?label();
the inequalities in this case state that the total number of processes executing the labelled
instruction at the same time must be less that the given bound.

When executed on the code in Figure 6.3, Soter will compute the ACS in Figure 6.4;
its semantics is a sound approximation of the actual semantics of the program. A VAS
description of it, incorporating the property, is then generated and fed to BFC to check
for the uncoverability of bad states; in this instance BFC successfully proves the program
safe.

The ACS is also rendered in graphical form in the web interface. The graph resulting
from analysing the sieve example is shown unedited in Figure 6.5.

70

6.3. A Simple Case Study

mainι0 :
νι1.counter νι2.sieve

?_

counterι1 : ?{poke,ι2}

?{poke,ι3}

ι2!{a
ns,_

}

ι3!{a
ns,_

}

sieveι2 :
ι1!{poke,ι2}

ι3!{poke,ι2}
?{ans,_}

ι0!_

νι3.divisible

divisibleι3 :

?{poke,_}

ι3!{poke,_}

ι 1
!{p

ok
e,

_}

?{an
s,_}

ι3!{ans,_}

ι2!{ans,_}

Figure 6.4 – A simpli�ed view of the ACS generated by Soter from the sieve example. The ι0
component represents the starting process which sets up the counter agent (ι1) and the sieve
agent (ι2) and then becomes the dump agent. During its execution, the sieve agent spawns new
�lter agents, all represented by the ι3 component.

71

6. Soter: a Verification Tool for Erlang

1

letrec
 main/0=fun()->
 let Me = ..
 let _cor1..
...

3

fun()->
 counter/1(succ(suc..
end

20

Pid97

vPid97.21

5

fun()->
 sieve/2(Gen,Me)
end

24

Pid37

vPid37.25

21

counter/1(succ(succ(..

129

Label: counter_mail

29

receive
 X->let _#1# = io:f..
 dump/0()
end

25

sieve/2(Gen,Me)

90

Label: sieve_mail

30

let _#1# = io:fwrite..
dump/0()

?succ(succ(_))
 33

41

succ(n)

68

succ(n)

Pid(0)!succ(succ(_))
 33

42

succ(succ(0))

70

succ(succ(0))

Pid(0)!succ(succ(_))
 33

55

fun()->
 let _cor7 = div..
 filter/2(_cor7,..
end

78

Pid56

vPid56.79

62

{poke,_cor6}

63

receive
 {ans,X#1#}->let _#..
 let _c..
 ..
...

86

let _#6# = send(_cor..
let _cor8 = fun()->
 let _c..
 filter..
...

?{ans,succ(_)}
 89

64

{poke,_cor6}

Pid97!{poke,Pid37}
 65

66

{poke,_cor6}

Pid56!{poke,Pid37}
 67

79

let _cor7 = div..
filter/2(_cor7,..

236

Label: filter_mail

110

{ans,_cor0}

112

{ans,_cor0}

Pid37!{ans,succ(_)}
 89

113

{ans,_cor0}

Pid56!{ans,succ(_)}
 114

126

let _#3# = send(From..
let _cor5 = (fun(n)-..
 succ(..
 end)(_c..
...

127

receive
 {poke,From}->let _..
 let _..
 ..
...

?{poke,Pid37}
 65

?{poke,Pid56}
 128

202

filter/3(_cor1#3#,_c..

209

{poke,_cor3#2#}

210

{poke,_cor3#2#}

204

{ans,Y}

205

{ans,Y}

Pid37!{ans,succ(_)}
 89

206

{ans,Y}

Pid56!{ans,succ(_)}
 114

207

{poke,_cor3#2#}

208

receive
 {ans,Y}->let _nfPo..
 case _nfP..
 false->..
...

234

let _nfPos = _cor2#2..
case _nfPos of
 false->let _#9# = ..
 filter/2(_c..
...

?{ans,succ(_)}
 114

Pid97!{poke,Pid56}
 128

Pid56!{poke,Pid56}
 211

221

Unknown [match_fail]

235

receive
 {poke,From#1#}->fi..
end

?{poke,Pid37}
 67

?{poke,Pid56}
 211

Pid(0) Pid97 Pid37 Pid56

Figure 6.5 – The graphical representation of the ACS generated by Soter from sieve.

72

Chapter 7

Related Work

7.1 Semantics of Erlang

In his PhD thesis [Fre01], Fredlund gives a small-step operational semantics for the
standard intermediate language Core Erlang; the formulation is valid for programs
running on a single node. The semantics is presented in two layers, the expression layer

which deals with the purely functional computation and relays communication e�ects
to the second layer, the process layer. The latter describes the operational semantics of
processes which are expressions equipped with a process identi�er and a mailbox. In
this work a logic for speci�cation based on the µ-calculus and a proof system, supported
by a proof assistant, is introduced. Successively, in [CS05; SF07], Fredlund’s semantics is
revised adding a third layer accounting for the distributed version of Erlang. The added
layer de�nes a labelled transition system giving semantics to multi-node Erlang systems.
This extended semantics accurately models the di�erences in how Erlang handles local
and distributed message delivery. An advantage of Fredlund’s layered approach is a clean
treatment of behavioural congruence results and increased modularity.

Our semantics is consistent with Fredlund’s single node semantics. However, ours
de�nes an unlabelled transition system: we aim at modelling closed systems and the
analysis is not compositional. Extending our framework to support the distributed case
is straightforward.

7.2 The Many Faces of Soundness

In de�ning our analysis, we placed a lot of emphasis on soundness. Di�erent de�nitions
and uses of soundness are however employed in the literature. In many cases the property
checking portion of a veri�cation or bug-�nding initiative is applied to an abstract model
extracted from the program by means of some static analysis. In general, a static analysis
algorithm tries to extrapolate approximate information on the dynamic behaviour of the

73

7. Related Work

program. Depending on how this information is used, one may need to put di�erent
constraints on the kind of approximation in order for the constructions based on it to be
correct. We identify three groups of soundness criteria:

1. over-approximation: the one used most often in veri�cation, including Soter’s
approach,

2. under-approximation: as found in bug-�nding frameworks,

3. the gray area: optimisations some times do not need strong soundness guarantees.

The nature of bug-�nding can be seen as the dual of the veri�cation approach: se-
mantically, bug-�nding checks a speci�cation against an under-approximation of the
semantics of a program; if an error is found then it must be contained in the actual
semantics, if there is no error then the program could still contain undetected bugs. On
the contrary, veri�cation usually checks a speci�cation against an over-approximation

of the semantics; if no error is found then the program is bug-free, otherwise the error
found can be either spurious or genuine.

When the static analysis information is used to direct compiler optimisations, weaker
soundness criteria may be enough. This happens for instance in those cases where
the static information is used to choose between two semantically equivalent machine
implementations; the choice does not alter the semantics, only the performance. In
these cases the precision of the abstraction allows for more aggressive optimisations
but unsoundness does not cause the transformations to fail. In [CSW06], for example, a
data-�ow and escape analysis is computed in order to estimate which data is going to be
sent in messages. This information is then used to implement a compiler optimization
for an hybrid abstract machine that allows both send by copy or by reference. The
optimization is able to automatically infer where it is advantageous to send by reference
and generates code to store the relevant data into the shared memory rather than into the
private process heap. Since message passing is completely transparent to the programmer
and data that gets exchanged by message is immutable, both send-by-copy and send-
by-reference are completely equivalent choices; the analysis does not need a strong
correctness property such as “it marks all the data that may eventually be part of a
message as shared” because any marking would give rise to the same behaviour; the only
di�erence is in the performance of the generated code.

Similar ideas are used in approaches based on soft-typing. A soft-typing system is a
hybrid of dynamic and static typing: a static type inference/checking algorithm is used, in
conjunction with a dynamic type checker, to provide useful information to the compiler
for optimizations and optional warnings to the programmer. Programs that do not have
a static type would be annotated (where possible) with static type information, instead
of rejected, by a soft-type system. Type safety is ultimately ensured by the dynamic

74

7.3. Static Analysis

type system. A soft-typing system addressing only sequential computation, has been
proposed for Erlang by Nyström [Nys03].

Even weaker guarantees are needed by testing frameworks. Although the scope
of testing might seem very far from the one of veri�cation, modern testing tools for
concurrent code usually are faced with similar challenges. Automatic tests generation and
exhaustive exploration of possible interleavings of concurrent tests require sophisticated
techniques that take in account static information about the behaviour of the system.

Although Soter’s notion of soundness is the over-approximating one, its CFA-like
phase could be reused for hybrid approaches. Its explicit support for concurrency, the
parametricity of the presentation and the fully formal de�nition makes it a good starting
point for extensions of previous work on Erlang tooling.

7.3 Static Analysis

Control-�ow analysis

As we mentioned, automated approaches to analysis of concurrent programs typically
rely on static analysis to reconstruct information about control-�ow that can be �nitely
representable.

CFA was originally proposed for pure λ-calculus [Jon81] and later for continuation
passing style Scheme with side-e�ects [Shi88]. Roughly speaking, the purpose of CFA
is to compute an over-approximation of the set of the possible expressions that can be
evaluated at each program point. There are many equivalent formulations of 0-CFA, the
simplest instance of CFA.

Jones and Andersen [JA07] give a grammar based formulation of 0-CFA in the context
of term rewriting. In [Hei92; Hei94], a set-based formulation of a similar analysis for ML
is presented; roughly speaking, the algorithm over-approximates the sets of values that
can be returned by each program point during execution by �rst collecting set constraints
induced by the structure of the program and then solving them; the constraint solver
is based on regular tree grammars and relies on the interpretation of inclusions as
production rules. Jagannathan and Weeks [JW95] uni�ed and extended previous work by
showing that the same analysis could be thought as an instance of Abstract Interpretation
and that Shiver’s 0-CFA is in fact equivalent to Heintze’s set-based formulation. Van
Horn and Might [VM10] recently proposed the general methodology, again based on
Abstract Interpretation of an operational semantics, by which one can derive a sound
CFA algorithm; as described in the introduction of Chapter 5, we apply this methodology
to Erlang’s semantics to extract key information to bootstrap the construction of an ACS
model.

Variants of CFA, with varying degrees of precision and speed, include the context
sensitive k-CFA [Shi91], Γ-CFA [MS06] where the abstract semantics implements some

75

7. Related Work

optimizations usually performed in the concrete one, as garbage collection, enabling im-
provements in the precision and performance of the analysis algorithm, and CFA2 [VS10]
where call-stacks are abstracted using more powerful abstract domains. For a thorough
and accurate survey of the history and variants of CFA see [Mid12].

Concurrency speci�c analyses

A number of static analyses for the sequential fragment of Erlang have been proposed
in the literature: examples include data-�ow [CSW06], control-�ow [Nys03; LS06] and
escape [CS10] analyses. Concurrency primitives are either not supported, or represented
very coarsely by non-deterministic choices (as for instance in [CS10; CS11]).

Might and Horn [MH11] derive a CFA for a multi-threaded extension of Scheme.
The concurrency model therein is thread-based, and uses a compare-and-swap primitive.
Our contribution, in addition to extending the methodology to Actor concurrency, is to
use the derived parametric abstract interpretation to bootstrap the construction of an
in�nite-state abstract model for automated veri�cation.

Colby [Col95] analyse the channel communication patterns of Concurrent ML (CML)
programs. CML is based on strongly typed channels and synchronous message passing,
unlike the Actor-based concurrency model of Erlang. The aim of the analysis is answering
the question ‘which occurrences of “send” can match which occurrences of “receive”?’ to
enable compiler optimisations. The identity of channels plays in CML the same role of
pids in Erlang. Notably, Colby’s analysis is non-uniform: it can distinguish unboundedly
many names in some CML-idiomatic patterns. In Part II we will analyse the problem of
removing the limitations imposed by using a �nite number of pid-classes.

Reppy and Xiao [RX07] consider the problem of categorising the use of channels
in CML with respect to �ve groups: one-shot, one-to-one, one-to-many, many-to-one,
many-to-many. Di�erent groups are better implemented with di�erent data structures.
The analysis has two phases: �rst, a type-informed modular CFA is used to extract an
‘extended control-�ow graph’ of a module, second, the graph is analysed to infer the
correct categorisation of channels (identi�ed with their creation points). Interestingly,
the modularity of the analysis is enabled by the encapsulation guarantees given by strong
typing. Unfortunately, module boundaries are not as strongly delimited in Erlang.

Venet [Ven98] proposed an abstract interpretation framework for the analysis of
π-calculus, later extended to other process algebras by Feret [Fer05] and applied to
CAP, a process calculus based on the Actor model, by Garoche [GPT06]. In particular,
Feret’s non-standard semantics can be seen as an alternative to Van Horn and Might’s
methodology, but tailored for process calculi.

76

7.4. Abstract Model Checking

7.4 Abstract Model Checking

In an ICFP’99 paper [Huc99], Huch presents an approach to verify Erlang programs that
combines abstract interpretation with model checking. He focuses on the following class
of programs:

a) rules have order at most one,

b) tail recursion is the only form of recursion (subsequently relaxed in a follow-up
paper [Huc02]),

c) mailboxes are bounded, and

d) programs spawn a �xed, statically determined, number of processes.

Given a user-supplied data abstraction function, the input program is then transformed
to an abstract �nite-state system; if a path property (e.g. LTL de�nable) can be proved
for the abstract system, then it holds for the input Erlang program. Though the approach
can verify rich correctness properties, the assumptions are rather restrictive. The bounds
of assumptions c) and d), which are not decidable in general and hard to derive, must
be established (manually) beforehand. More importantly, very often useful and correct
reactive programs do not have such bounds; on the converse, when such bounds exist,
they are usually a substantial part of the property one would like to prove automatically. In
contrast, our method can verify Erlang programs of every �nite order, with no restriction
on the size of mailboxes, or the number of processes that may be spawned. Since
our method of veri�cation is by transformation to a decidable in�nite-state system that
simulates the input program, it is capable of greater accuracy.

McErlang

McErlang is a model checker for Erlang programs developed by Fredlund and Svens-
son [FS07]. Given an input program, a correctness property in the form of a Büchi
automaton, and a user-supplied data abstraction, an abstract model of the program gener-
ated on-the-�y is explored. McErlang implements a fully-�edged Erlang runtime system
replacement with support for a substantial part of the language and OTP libraries. McEr-
lang’s runtime simulates the program exploring all relevant interleavings, abstracting
states and providing counterexamples when found.

An advantage of McErlang is that the speci�cation and abstraction provided by the
user is in the form of Erlang modules: the programmer does not need to learn a new
language for the speci�cations and can use all the features of Erlang to express them. The
approach is however not fully automatic: the burden of providing sound abstractions and
properties that entail the correctness and termination of the model checking is entirely on
the user. Soter’s aim is instead that of achieving a higher degree of automation providing

77

7. Related Work

a simple way to state properties and a fully automated method to verify them. While
McErlang can verify liveness properties in addition to safety ones, this can only be done
when the abstract model is �nite state.

7.5 Type Systems for Erlang

Erlang’s dynamic type system is one of the features that makes it so versatile and apt to
support a iterative re�nement development methodology. Many of the patterns used in
real-world applications heavily rely on features that are hard or impossible to support
in a statically typed language. Even if Erlang’s types are only checked at runtime, they
have been used in practice as a documentation tool. Many attempts at analysis of Erlang
rightfully tried to harness and build on this body of information in the form of type
annotations.

Marlow and Wadler [MW97] were the �rst to propose a static typing system for Erlang.
In their paper, they de�ne a type inference algorithm and a procedure for checking if an
inferred type conforms to a user-supplied type signature; it uses a sophisticated set of
subtyping constraints to minimise false positives. They choose a type language which is
expressive enough to give types to common programming patterns; it supports disjoint
unions, a limited form of complement, and recursive types. The type system however,
supports only the sequential purely functional �rst-order fragment. They propose an
extension that can handle higher-order but this causes the checking algorithm to be
incomplete. Although Marlow and Wadler’s proposal has signi�cantly raised the level of
type awareness in the Erlang community, their actual type system never caught on in
the Erlang community.

Nyström’s soft-type system [Nys03] also considers only the pure functional fragment
of Erlang; it de�nes a speci�cation language very similar to that of [MW97] including
parametric type and function speci�cations. The idea is that the programmer is encour-
aged to supply type annotations at module interfaces. A data �ow analysis (based on
0-CFA) is then used to compute over-approximations of the possible values of expres-
sions and other constructs. The analysis will report inconsistencies in these annotations
and warn about all program points where type clashes may occur. However because of
the inherently dynamically-typed programming style favoured by Erlang programmers,
an excessive amount of warnings are triggered, especially if no type annotations are
provided by the programmer [LS06].

Some years later, Lindahl and Sagonas [LS06] introduced a new kind of typing called
success types. Success typing “never disallows the use of a function that will not result in
a type clash during runtime”. They have the property that if a function is used in a way
not allowed by its success typing, then it will de�nitely fail. At the cost of missing some
bugs, success typing never generates false positives, positioning the approach in the
under-approximating category. An important feature of this algorithm is compositionality

78

7.6. Session Types

of inference: this allows the performance to scale up very well. On the other hand, success
typing cannot be used to establish correctness. The speci�cation language is closely
related to the one of [MW97]: it is a subtyping system with parametric types, unions,
function types. Recursive types are not supported a part from the built-in list type.

This system is at the heart of the TypEr tool [LS05] which automatically annotates
Erlang code with type information, and it is also used in the popular Dialyzer tool
(see Section 7.7).

Soter can be extended to exploit type information as follows. Since Soter’s analysis is
whole-program, it needs a closed program entry point. Soter could be used to analyse
a single module by closing inputs/free variables or unknown modules by stubs that
conform to the type annotations of these unknowns. Partial support for stubs and input
generation is already implemented.

7.6 Session Types

A rather di�erent approach to typing is presented in [IK01] where behavioural types for
the π-calculus are introduced generalising previous work. These type systems are based
on two key ideas: �rst, types should carry information about the sequence of actions
that can happen on a channel, and not just a static invariant; second, by decorating types
with capabilities and obligations, liveness properties could be checked automatically.
Roughly speaking, the type system can extract from a π-term P a type which is itself a
CCS-like term simulating P . Properties of the type (such as absence of locks) can then be
transferred back to P by virtue of this simulation. A vast literature explores this approach
further as a potential type-based foundation for structuring message-passing concurrency,
a line of work revolving around the notion of Session Types [THK94; HVK98].

Typically, analysis done using behavioural types involves a compositional type theor-
etic procedure checking or synthesising types for processes and channels, followed by a
non-compositional, global analysis on the types themselves, to check that the desired
properties are met by the system. The ACS generation procedure has the same goal as
the type-inference phase, but it is not compositional and thus potentially able to be more
precise with respect to control-�ow. The ACS model checking phase is also guided by
user-provided assertions, while Session Types generally aim at guaranteeing generic
global progress properties.

From a methodological point of view, ACS and Session Types are very di�erent:
Session Types are intended to be a speci�cation device, while ACS are merely, at this
stage, an internal abstract model; Session Types require the language using them to
include the concept of session as primitive so that the various dialogues between agents
can be structured in protocols; Soter’s approach instead tries to analyse Erlang programs
without assumptions on how the system is structured.

79

7. Related Work

7.7 Bug-�nding and Testing

Dialyzer

Dialyzer1 (DIscrepancy AnaLYZer for ERlang programs) [LS06; CS10; CS11] is a popular
bug �nding tool included in the standard Erlang/OTP distribution. It evolved from a
simple tool to discover typos to a more advanced analyzer capable to statically detect
runtime errors and, recently, communication errors such as orphan messages or unreach-
able receive patterns. Dialyzer uses success types as speci�cations to �nd bugs; these
speci�cations can be both given as code annotations or inferred by the TypEr module.
Dialyzer �rstly builds a control-�ow, data-�ow and escape [PG92] analysis of the program
generating a call graph [CSW06]; this step ignores the e�ects of concurrent primitives.
Then various kinds of analyses are performed using the information gained from the call
graph: success types are derived and checked for errors; patterns for common errors in
the use of primitives are looked for; these include race conditions in the use of certain
built-in functions [CS10] and some simple message passing errors [CS11].

Testing Erlang programs

Claessen et al. [Cla+09] study the problem of testing and debugging concurrent, distrib-
uted Erlang applications, focusing on �nding race conditions. They use a combination of
three tools, QuickCheck [CH00], pulse (a custom scheduler) and a visualizer, to enhance
the possibility of detection in unit testing. QuickCheck distinguishes between two kind
of property checks: sequential and parallel. The sequential ones work by testing API calls
in a single process and checking pre/post-conditions. The parallel checks are tailored to
test linearizability [HW87] of the API of a module, which amounts to require the API
calls to behave atomically: a parallel test is passed if the observed results are compatible
with a possible sequential execution of the calls. Conceptually, the parallel check works
by running all the (independent) calls in parallel and then checking if the result equals
the result of one of the possible sequential execution.

PropEr2 (PROPerty-based testing tool for ERlang) [PS11] is a QuickCheck-inspired
property based testing tool for Erlang but, unlike QuickCheck, it is open-source. One
advantage over QuickCheck is that PropEr exploits type speci�cations, when present, to
automatically generate test cases.

1see http://www.it.uu.se/research/group/hipe/dialyzer
2see http://proper.softlab.ntua.gr

80

http://www.it.uu.se/research/group/hipe/dialyzer
http://proper.softlab.ntua.gr

Part II

Typably Hierarchical Systems

Illustration: artistic view of a reachable con�guration of Example 9.2.

Chapter 8

Beyond Petri Nets

8.1 Motivation

In Part I we presented an algorithm to extract a VAS (equivalently, Petri net) model of
an Erlang program. As we have outlined in Section 5.5, the extracted Petri Net models
have several expressivity limitations. In this second part of the dissertation we address a
speci�c limitation by de�ning a model which is richer than Petri nets and could serve as
a new backend for Soter’s veri�cation pathway.

In the Petri net abstraction that Soter uses, the unboundedly many processes that
can be created at runtime are partitioned into a �nite number of classes. Each member
of a class shares its mailbox with the other members. In other words, the addresses of
unboundedly many processes may be abstracted to a single abstract address; once a
message is sent to the abstract address it becomes impossible to determine which process
was the intended recipient. The question motivating the work presented in this part of
the dissertation is:

Can we be more precise with respect to the identities of processes,

while retaining decidability of the analysis?

We answer this question positively by studying a model of computation which goes
beyond Petri nets but retains decidability of some key veri�cation problems.

Let us illustrate the issue we want to address with an example. Consider the following
Erlang de�nition:

1 distribute([], 0) → 0;
2 distribute([], N) →
3 receive
4 {ans, Y} → Y + distribute([], N-1)
5 end;
6 distribute([X | Xs], N) →

83

8. Beyond Petri Nets

7 C = spawn(worker),
8 C ! {task, self(), X},
9 distribute(Xs, N+1).

The de�nition of worker is left as a parameter, we only assume it never calls self.
When called on a list L of n items, distribute(L, 0) would spawn n processes running
the function worker and sending to each a message {task, X}. Then it will wait for
n answers {ans, Y} from the workers and return the sum of the answers. A simple
property of this system is that each worker process’ mailbox will hold at most one
message at all times. This property could be of interest for optimisation purposes or
could have implications on the absence of errors. Suppose the de�nition of worker is of
the form:

1 worker() →
2 receive {task, P, X} →
3 . . .,
4 receive
5 {task, P, Y} → error("too much work");
6 . . .
7 end
8 end.

then absence of error can only be proved by proving that there is never going to be a
message �ring the inner receive. Note that, without a bound on the length of L, the
number of distinct workers is unbounded.

Soter’s abstraction is not powerful enough to prove this property and indeed it reports
a false alarm in this case because in the generated Petri net all workers get assigned the
same abstract pid. A worker in the Petri net can then receive messages addressed to other
members of its class, and “steal” the second task from them. Figure 8.1 shows a view
of the system after 3 items of the list are consumed. Figure 8.1(a) presents the concrete
con�guration when the worker with pid W3 has just been created and the process with
pid D, running distribute, is about to send a task to it. Figure 8.1(b) is the abstract Petri
net view of the same con�guration.

The route we want to follow to solve this problem is to keep the identities of each
worker distinct in the abstraction: each of the workers will have its private mailbox. The
improved abstraction would still need data, mailbox and control-�ow abstractions but
will be able to represent pids more accurately.

From Petri nets to π-calculus

In their seminal work, Milner, Parrow and Walker [MPW92] proposed and studied
the π-calculus, a process calculus for mobile systems. The π-calculus is a concise yet

84

8.1. Motivation

D

W1 task

W2 task

W3
C

P

P

(a) Concrete

D W× 3 task× 2

C

P

(b) Abstract

Figure 8.1 – A scheme of the con�guration after three iterations of the distribute function.
Processes are represented by rounded rectangles split in two: the pid (in blue) and the contents of
the mailbox (in red). The arrows point to pids known by the process and are labelled with the
variable holding the pid.

expressive model of concurrent computation. Its view of a concurrent system is a set of
processes exchanging messages over channels, either private or public. Both processes
and private channels can be created dynamically. A key feature of the calculus is mobility:
a private channel name can be sent as a message over a public one and later used to
exchange messages with an initially disconnected party. The communication topology of
a π-calculus system, i.e., the graph linking processes that share channels, is therefore
dynamically evolving, in contrast to those of simpler process calculi such as CCS.

The distribute example above could be faithfully modelled by a π-calculus term by
encoding pids as channel names. Intuitively, spawning a new worker would correspond to
creating a new private name wi representing the pid of the new process; another private
name d is associated with the pid of the process running distribute. Asynchronously
sending a message to a worker is realised by creating a π-calculus process ready to output
the message d (that would be the result of self() in distribute) over wi, e�ectively
appending the message to the (unordered) mailbox of the worker. Figure 8.2 shows the
π-calculus representation of the con�guration of Figure 8.1(a).

The ability to send names over channels allows the communication topology to
change over time: after sending a task, distribute forgets the pid of the worker and
“connects” with a new one; similarly, once the worker consumes the message in its
mailbox, it acquires the pid of the distributor.

From a veri�cation point of view, proving properties of π-calculus terms is challenging:
the full π-calculus is Turing-complete. As a consequence, a lot of research e�ort has been
devoted to de�ning fragments of π-calculus that could be veri�ed automatically while
retaining as much expressivity as possible. To date, the most expressive fragment that
has decidable veri�cation problems is the depth-bounded π-calculus [Mey08]. Roughly

85

8. Beyond Petri Nets

d

w1

task

w2

task

w3

Figure 8.2 – A π-calculus view of Figure 8.1. The black circles represent private channels,the
rounded boxes represent processes.

speaking, the depth of a π-calculus term can be understood as the maximum length of
the simple (i.e non looping) paths in the communication topology of the term. A term is
depth-bounded if there exists a k ∈ N such that the maximal nested depth of restriction
of each reachable term is bounded by k. Notably, depth-bounded systems can have an
in�nite state-space and generate unboundedly many names.

The π-calculus abstraction of the distribute example we outlined is depth-bounded,
even when the length of the list L is unbounded. It would be possible then to automatically
prove that, for example, the number of tasks in each mailbox cannot exceed 1.

Unfortunately, depth boundedness is a semantic property of a Turing-powerful lan-
guage, so it is undecidable whether a given arbitrary π-calculus term is depth-bounded.
It has recently been proven that the problem becomes decidable if the bound k is
�xed [RM14] but the complexity is very high. The decision procedure needs coverability
of depth-bounded systems as a subroutine, which is more general than coverability of
name-bounded systems, which in turn has been shown to have a non-primitive recursive
lower bound [HMM13]. It is only safe to apply algorithms for the veri�cation of depth-
bounded systems on programs that can be proven depth-bounded. Since this check is
undecidable in general, two approaches are possible:

1. a subset of depth-bounded systems with decidable membership is de�ned so that
the check can be automated (even if it can reject some depth-bounded terms);

2. the abstraction is made capable of abstracting away sources of unboundedness in
depth so that the abstract model is guaranteed to have a depth bounded by some
measure.

In the rest of the thesis we show a possible attack to this problem following the �rst
approach, and hint at how one can realise the second.

86

8.2. Contributions and Outline

8.2 Contributions and Outline

The �rst contribution presented in this part is a novel fragment of π-calculus which we
call typably hierarchical, which is a proper subset of the depth-bounded π-calculus. This
fragment is de�ned by means of a type system with decidable checking and inference. The
typably hierarchical fragment is rather expressive: it includes terms that are unbounded
in the number of private channels and exhibit mobility, i.e. the communication topology
changes over time.

The type system itself is based on the novel notion of T-compatibility, where T is
a given �nite forest. We start from the observation that the communication topologies
of depth-bounded terms exhibit a hierarchical structure: channels are organisable into
layers with decreasing degree of sharing. Consider the example of an unbounded number
of clients communicating with their local server: a message from a client containing a
private channel is sent to the server’s channel, the server replies to the client’s request on
the client’s private channel. While the server’s channel is shared among all the clients, the
private channel of each client is shared only between itself and the server. As described in
Section 1.4, T-compatibility formalises and generalises this intuition. Roughly speaking,
we associate to each channel name a base type which is a node in a (�nite) forest T . The
forest T represents the hierarchical relationship between channels: it is the blueprint
according to which one can organise the relationship between channels in each reachable
term.

We believe that the notion of T-compatibility has potential as a speci�cation device:
it allows the user to specify the desired relationship between channels instead of just a
numeric bound on depth.

After presenting a primer on π-calculus, depth boundedness and some prelimin-
ary de�nitions in Chapter 9, we present the concept of typably hierarchical terms
in Chapter 10 and prove the main result stating the soundness of the type system char-
acterising them. Chapter 10 concludes with two fully worked out examples taken from
Chapter 1.

In Chapter 11 we study the relation between typably hierarchical systems and other
known models of computation. First we turn to the question: is there an automata-based

model that can represent the same set of systems? Since the typably hierarchical restriction
could be counterintuitive or too indirect, an automata-based presentation could help
shed light on the fragment. We answer this question by means of an encoding of typably
hierarchical terms into Nested Data Class Memory Automata (NDCMA) [CMO15], a class
of automata over data-words (i.e. �nite words over in�nite alphabets). The translation is
not 100% accurate: the coverability problem of the two models are equivalent, but for
other properties such as reachability the automaton model is less expressive. To highlight
the di�erence between the two models we also present an encoding from NDCMA to
typably hierarchical terms which clearly shows the limited way in which NDCMA can
simulate mobility. The two encodings are heavily based on the notion of T-compatibility

87

8. Beyond Petri Nets

and open an approach to fruitful interactions between process algebra and automata over
in�nite alphabets.

We then show how typably hierarchical terms can be seen as a proper extension of a
variant of CCS called CCS! studied in [He11]. Every CCS! term, seen as a π-term with
only 0-arity channels, can be typed by our type system but CCS! terms show no mobility,
unlike typably hierarchical ones.

After reviewing other related approaches, we sketch some directions for future work
in Chapter 12, including extensions of the type system and applications. In Section 12.2
we discuss a semantic notion of hierarchical system.

88

Chapter 9

The π-calculus and Depth

Boundedness

9.1 The π-calculus

We use a π-calculus with guarded replication to express recursion [Mil92]. Fix a universe
N of names representing channels and messages occurring in communications. The
syntax follows the grammar:

P 3 P,Q ::= 0 | νx.P | P1 ‖ P2 | M | !M process
M ::= M +M | π.P choice
π ::= a(x) | a〈b〉 | τ pre�x

Structural congruence is de�ned as the smallest congruence closed by α-conversion of
bound names commutativity and associativity of choice and parallel composition with
0 as the neutral element, and the following laws for restriction, replication and scope
extrusion:

νx.0 ≡ 0 νx.νy.P ≡ νy.νx.P !M ≡M ‖ !M

P ‖ νa.Q ≡ νa.(P ‖ Q) (if a 6∈ fn(P))

In P = π.Q, we call Q the continuation of P and will often omit Q altogether when
Q = 0. In a term νx.P we will occasionally refer to P as the scope of x. The name x is
bound in both νx.P , and in a(x).P . We will write fn(P), bn(P) and bnν(P) for the set
of free, bound and restriction-bound names in P , respectively. A sub-term is active if it is
not under a pre�x. A name is active when it is bound by an active restriction. The set
activeν(P) is the set of the active names of P . Terms of the form M and !M are called
sequential. We write S for the set of all sequential terms. seq(P) is the set of all active
sequential processes of P . We will occasionally write P i for the parallel composition of i
copies of P .

89

9. The π-calculus and Depth Boundedness

Intuitively, a sequential process acts like a thread running �nite-control sequential
code. A term as τ.(P ‖ Q) is the equivalent of spawning a process Q and continuing
as P—although in this context the roles of P and Q are interchangeable. Interaction is
done by synchronous communication over channels. A pre�x a(x) is a blocking receive
on the channel a binding the message to the variable x. A pre�x a〈b〉 is a blocking send
of the message b over the channel a. Here b is itself the name of a channel that can be
later used for further communication: an essential feature for mobility. A non-blocking
send, as the send primitive of Erlang, can be simulated by spawning a new process doing
a blocking send. Restrictions are used to make a channel name private; a restricted name
can be sent as a message. A replication !(π.P) can be understood as having a server that
can spawn a new copy of P every time some other process tries to communicate with it.
In other words it behaves like an in�nite parallel composition (π.P ‖ π.P ‖ · · ·). Note
that channels are unary; extending our work to the polyadic case is straightforward (see
Section 10.6) but we only consider the unary case for conciseness.
Remark 9.1. A remark about recursive behaviour. Unlike the case of process calculi
without mobility, in the π-calculus representing (tail) recursive processes using process
de�nitions or replication is equivalent [Mil93, Section 3.1]. Take for example the variant
of π-calculus presented in [Mey08]: the syntax does not include replication; a term can
contain process ‘calls’ Kbx1, . . . , xnc where K is a process name; a �nite set of process
de�nitions Kbx1, . . . , xnc := P gives meaning to the calls; the body of the de�nitions
can freely contain calls to process names. Unfolding of a de�nition is implemented with a
reduction step Kba1, . . . , anc → P [ai/xi]. We can accurately simulate this mechanism
by introducing a globally free name callK for each process name K and replacing every
instance of Kbx1, . . . , xnc with an output pre�x callK〈x1, . . . , xn〉 and each de�nition
Kbx1, . . . , xnc := P with !

(
callK(x1, . . . , xn).P

)
.

We will often rely on the following mild assumption, that the choice of names is
unambiguous, especially when selecting a representative for a congruence class.

Name Uniqueness. Each name in P is bound at most once and fn(P) ∩ bn(P) = ∅.

As we will see in the rest of the chapter, the notions of depth and of hierarchy between
names rely heavily on structural congruence. In particular, given a certain structure
on names, there will be a speci�c representative of the structural congruence class that
exhibits the desired properties. Nevertheless, we cannot assume the input term is always
presented as that speci�c representative; worse yet, when the structure on names is not
�xed, as in the case of type inference, we cannot �x any particular representative and be
sure it will witness the desired properties. So, instead, in the semantics and in the type
system, we manipulate a neutral representative called normal form, which is a variant of
the standard form [Mil99]. In this way we are not distracted by the particular syntactic
representation we are presented with.

90

9.1. The π-calculus

nf(0) := 0 nf(π.P) := π. nf(P) nf(νx.P) := νx. nf(P)

nf(M +M ′) := nf(M) + nf(M ′) nf(!M) := !(nf(M))

nf(P ‖ Q) :=

nf(P) if nf(Q) = 0 6= nf(P)

nf(Q) if nf(P) = 0

νXPXQ.(NP ‖ NQ) if nf(Q) = νXQ.NQ, nf(P) = νXP .NP

and activeν(NP) = activeν(NQ) = ∅

Figure 9.1 – De�nition of the nf : P → Pnf function.

We say that a term P is in normal form (P ∈ Pnf) if it is in standard form and each
of its inactive subterms is also in normal form. Formally, each process in normal form
follows the grammar

Pnf 3 N ::= νx1. · · · νxn.(A1 ‖ · · · ‖ Am)

A ::= π1.N1 + · · ·+ πn.Nn

| !(π1.N1 + · · ·+ πn.Nn)

where the sequences x1 . . . xn and A1 . . . Am may be empty; when they are both empty
the normal form is the term 0. We further assume w.l.o.g. that a normal form satis�es
Name Uniqueness.

Since the order of appearance of the restrictions, sequential terms or choices in
a normal form is irrelevant in the technical development of our results, we use the
following abbreviations. Given a �nite set of indexes I = {i1, . . . , in} we write

∏
i∈IAi

for (Ai1 ‖ · · · ‖ Ain), which is 0 when I is empty; and
∑

i∈Iπi.Ni for (πi1 .Ni1 + · · · +
πin .Nin). This notation is justi�ed by commutativity and associativity of the parallel
and choice operators. We also write νX.P or νx1 x2 · · ·xn.P for νx1. · · · νxn.P when
X = {x1, . . . , xn}, or just P when X is empty; this is justi�ed by the structural laws of
restrictions. When X and Y are disjoint sets of names, we use juxtaposition for union.

Every process P ∈ P is structurally congruent to a process in normal form. The func-
tion nf : P → Pnf , de�ned in Figure 9.1, extracts, from a term, a structurally equivalent
normal form.

91

9. The π-calculus and Depth Boundedness

We are interested in the reduction semantics of a π-term, which can be described
using the following rule.

De�nition 9.1 (Reduction Semantics of π-calculus). The reduction semantics of π-
calculus is de�ned by the transition system on π-terms, with transitions satisfying
P → Q if

(i) P ≡ νW.(S ‖ R ‖ C) ∈ Pnf ,

(ii) S = (a〈b〉.νYs.S ′) +Ms,

(iii) R = (a(x).νYr.R
′) +Mr,

(iv) Q ≡ νWYsYr.(S
′ ‖ R′[b/x] ‖ C),

or if

(i) P ≡ νW.(τ.νY.P ′ ‖ C) ∈ Pnf ,

(ii) Q ≡ νWY.(P ′ ‖ C).

We de�ne the set of reachable con�gurations as Reach(P) := {Q | P →∗ Q }, writ-
ing→∗ to mean the re�exive, transitive closure of→.

Note that the use of structural congruence takes care of unfolding replications, if
necessary.

Y Example 9.2 (Server/Client system). Consider the term νs c.P where:

P = !S ‖ !C ‖ !M S = s(x).νd.x〈d〉
C = c(m).(s〈m〉 ‖ m(y).c〈m〉) M = τ.νm.c〈m〉

The term !S, which is presented in normal form, represents a server listening to a port
s for a client’s requests. A request is a channel x that the client sends to the server
for exchanging the response. After receiving x the server creates a new name d and
sends it over x. The term !M creates unboundedly many clients, each with its own
private mailbox m. A client on a mailbox m repeatedly sends requests to the server and
concurrently waits for the answer on the mailbox before recursing. An example run of
the system:

νs c.P → νs c m.(P ‖ c〈m〉)
→ νs c m.(P ‖ s〈m〉 ‖ m(y).c〈m〉)
→ νs c m d.(P ‖ m〈d〉 ‖ m(y).c〈m〉)
→ νs c m d.(P ‖ c〈m〉) ≡ νs c m.(P ‖ c〈m〉)

92

9.2. Forest Representation of Terms

Y Example 9.3 (Stack-like system). Consider the normal form νX.(!S ‖ s〈a〉) where X =
{s, n, v, a} and

S = s(x).νb.
(
(v〈b〉.n〈x〉) ‖ s〈b〉

)
The term s〈a〉 represents a stack with top element a; a term v〈b〉.n〈a〉 ‖ s〈b〉 indicates
that the top value is b, the next is a and the stack now starts from b. The stack is in an
in�nite loop that pushes new names (copies of b). An example run:

νX.(!S ‖ s〈a〉)
→ νX.(!S ‖ νb.((v〈b〉.n〈a〉) ‖ s〈b〉))
→ νX.(!S ‖ νb b′.((v〈b〉.n〈a〉) ‖ (v〈b′〉.n〈b〉) ‖ s〈b′〉))

The π-calculus is a Turing-powerful model of computation. A �nite-control machine
with two stacks is a well-known Turing-powerful model, and Example 9.3 shows the key
construction to simulate it in the π-calculus: the (unbounded) nesting of restrictions is
key in enabling the representation of an unbounded stack (or counter). The example can
be extended to support the pop, push and emptyness operations (see [Mil93]). The same
expressivity result is also demonstrated by several encodings of the λ-calculus [MPW92;
Mil92].

9.2 Forest Representation of Terms

In the technical developement of our ideas, we will manipulate the structure of terms
in non-trivial ways. To make these manipulations easier we view a term as a forest
representing (part of) its abstract syntax tree. We only aim to capture the active portion of
the term, so the active sequential processes will be the leaves of its forest view. Unordered
branches represent parallel composition and inner nodes correspond to restrictions.

A forest is a simple, acyclic, directed graph f = (Nf ,�f) such that the edge relation,
�−1f : Nf ⇀ Nf , is the parent map where n1 � n2 means that “n1 is the parent of n2”,
which is de�ned on every node of the forest except the root(s). We write ≤f and <f for
the re�exive transitive and the transitive closure of �f respectively. A path is a sequence
of nodes, n1 . . . nk, such that for each i < k, ni �f ni+1. Henceforth we assume that all
forests are �nite. Thus every node of a forest has a unique path to a root (and it follows
that that root is unique).

An L-labelled forest is a pair ϕ = (fϕ, `ϕ) where fϕ is a forest and `ϕ : Nϕ → L is a
labelling function on nodes. Given a path n1 . . . nk of fϕ, its trace is the induced sequence
`ϕ(n1) . . . `ϕ(nk). By abuse of language, a trace is an element of L∗ which is the trace of
some path in the forest. We write traces(ϕ) for the set of traces of the labelled forest.

We de�neL-labelled forests inductively from the empty forest (∅, ∅). We writeϕ1]ϕ2

for the disjoint union of forests ϕ1 and ϕ2, and l[ϕ] for the forest with a single root which
is labelled with l ∈ L, and has the respective roots of the forest ϕ as children. Since the

93

9. The π-calculus and Depth Boundedness

choice of the set of nodes is irrelevant, we will always interpret equality between forests
up to isomorphism (i.e. a bijection on nodes respecting parent and labeling).

De�nition 9.2 (Forest representation). We represent the structural congruence class of
a term P ∈ P with the set of labelled forests FJP K := {forest(Q) | Q ≡ P} with labels
in activeν(P)] seq(P) where forest(Q) is de�ned as

forest(Q) :=

(∅, ∅) if Q = 0

Q[(∅, ∅)] if Q is sequential
x[forest(Q′)] if Q = νx.Q′

forest(Q1)] forest(Q2) if Q = Q1 ‖ Q2

Note that only leaves are labelled with sequential processes.
The restriction height, heightν(forest(P)), is the length of the longest path formed of

nodes labelled with names in forest(P).

Clearly, for any P ∈ P , depth(P) = min {heightν(ϕ) | ϕ ∈ FJP K}.

Lemma 9.1. Let ϕ be a forest with labels in N] S . Then ϕ = forest(Q) with Q ≡ Qϕ

where

Qϕ := νXϕ.
∏

(n,A)∈IA

Xϕ := {`ϕ(n) ∈ N | n ∈ Nϕ}
I := {(n,A) | `ϕ(n) = A ∈ S}

provided

i) ∀n ∈ Nϕ, if `ϕ(n) ∈ S then n has no children in ϕ, and

ii) ∀n, n′ ∈ Nϕ, if `ϕ(n) = `ϕ(n′) ∈ N then n = n′, and

iii) ∀n ∈ Nϕ, if `ϕ(n) = A ∈ S then for each x ∈ Xϕ ∩ fn(A) there exists n′ <ϕ n such

that `ϕ(n′) = x.

Proof. We proceed by induction on the structure of ϕ. The base case is when ϕ = (∅, ∅),
for which we have Qϕ = 0 and ϕ = forest(0).

When ϕ = ϕ0] ϕ1 we have that if conditions 9.1.i, 9.1.ii and 9.1.iii hold for ϕ, they
must hold for ϕ0 and ϕ1 as well, hence we can apply the induction hypothesis to them
obtaining ϕi forest(Qi) with Qi ≡ Qϕi (i ∈ {0, 1}). We have ϕ = forest(Q0 ‖ Q1) by
de�nition of forest, and we want to prove that Q0 ‖ Q1 ≡ Qϕ. By condition 9.1.ii on
ϕ, Xϕ0 and Xϕ1 must be disjoint; furthermore, by condition 9.1.iii on both ϕ0 and ϕ1

we can conclude that fn(Qϕi) ∩ Xϕ1−i = ∅. We can therefore apply scope extrusion:
Q0 ‖ Q1 ≡ Qϕ0 ‖ Qϕ1 ≡ νXϕ0Xϕ1 .(Pϕ0 ‖ Pϕ1) = Qϕ.

94

9.3. Communication Topology

The last case is when ϕ = l[ϕ′]. Suppose conditions 9.1.i, 9.1.ii and 9.1.iii hold for ϕ.
We distinguish two cases. If l = A ∈ S , by 9.1.i we have ϕ′ = (∅, ∅), ϕ = forest(A) and
A = Qϕ. If l = x ∈ N then we observe that conditions 9.1.i, 9.1.ii and 9.1.iii hold for ϕ′
under the assumption that they hold for ϕ. Therefore ϕ′ = forest(Q′) with Q′ ≡ Qϕ′ ,
and, by de�nition of forest, ϕ = forest(νx.Q′). By condition 9.1.ii we have x 6∈ Xϕ′ so
νx.Q′ ≡ νx.Qϕ′ ≡ ν(X ∪ {x}).Pϕ′ = Qϕ.

9.3 Communication Topology

We now brie�y present the standard notion of communication topology of a term [MPW92;
Mil99]. We will not use it as a technical tool but just as an aid to intuition.

While the forest representation of a term re�ects its syntactic structure, the commu-
nication topology abstracts away from it by focussing on normal forms and re�ects the
underlying communication network of a term. Two sequential terms are only able to
communicate directly by using a channel they both know. The underlying network we
are referring to is the graph connecting sequential terms that share channels.

To give formal meaning to this intuition we use hypergraphs. An L-labelled hyper-
graph is a tuple (V,E, link, λ) where V is a �nite set of vertices, E is a �nite set of
hyper-edges, link : E →P(V) is the map de�ning the set of nodes linked by each edge,
and λ : V → L is the vertex labelling function. Two vertices v, v′ ∈ V are linked by
a hyper-edge e just if link(e) ⊇ {v, v′}. A path of length n in a hypergraph is a �nite
sequence v1e1v2 . . . vnenvn+1 with ei ⊇ {vi, vi+1}.

De�nition 9.3 (Communication Topology). The communication topology of a normal
form νX.

∏
i∈IAi is the hypergraph

GJνX.
∏

i∈IAiK = (I,X, link, λ)

with labels in L = {Ai | i ∈ I}, where link(x) = {i | x ∈ fn(Ai)} and λ(i) = Ai. The
communication topology of an arbitrary π-term P is GJnf(P)K.

Y Example 9.4. Recall the de�nitions of Example 9.2: P = !S ‖ !C ‖ !M where

S = s(x).νd.x〈d〉 C = c(m).(s〈m〉 ‖ m(y).c〈m〉) M = τ.νm.c〈m〉

Starting from νs c.P after some steps we can reach the following term:

Q = νs c m1 m2 d1.
(
P ‖ m1(y).c〈m1〉 ‖ s〈m1〉 ‖ m2(y).c〈m2〉 ‖ m2〈d1〉

)
The communication topology of this normal form is shown in Figure 9.2.

95

9. The π-calculus and Depth Boundedness

s c
!S !M!C

m1(y).c〈m1〉s〈m1〉

m1

m2(y).c〈m2〉

m2
m2〈d1〉

d1

Figure 9.2 – Example of communication topology. Black dots represent hyper-edges, rounded
rectangles sequential processes.

9.4 The ‘tied to’ relation

In this section we present a number of basic relations that help understanding the forest
structure of a term. They will have an important role in the de�nition of the type system
described in Chapter 10.

De�nition 9.4 (Linked to, tied to, migratable). Given a normal form P = νX.
∏

i∈IAi
we say that Ai is linked to Aj in P , written i ↔P j, if fn(Ai) ∩ fn(Aj) ∩ X 6= ∅. We
de�ne the tied-to relation as the transitive closure of↔P . I.e. Ai is tied to Aj , written
i aP j, if ∃k ∈ I. i ↔P k ∧ k aP j. Furthermore, we say that a name y is tied to Ai
in P , written y /P i, if ∃j ∈ I. y ∈ fn(Aj) ∧ j aP i. Given an input-pre�xed normal
form a(y).P where P = νX.

∏
i∈IAi, we say that Ai is migratable in a(y).P , written

Miga(y).P (i), if y /P i.

These de�nitions have an intuitive meaning with respect to the communication
topology of a normal form P : two sequential subterms are linked if they are connected
by an edge in GJP K, and are tied to each other if there exist a path between them.

The following lemma indicates how the tied-to relation fundamentally constrains the
possible shape of the forest of a term.

Lemma 9.2. Let P = νX.
∏

i∈IAi ∈ Pnf , if i aP j then any forest ϕ ∈ FJP K containing
two leaves labelled with Ai and Aj respectively, will be such that these leaves belong to the

same tree (i.e. have a common ancestor in ϕ).

Proof. We show that the claim holds in the case where Ai is linked to Aj in P . From this,
a simple induction over the length of linked-to steps required to prove i aP j, can prove
the lemma.

Suppose i↔P j. Let Y = fn(Ai) ∩ fn(Aj) ∩X , we have Y 6= ∅. Both Ai and Aj are
in the scope of each of the restrictions bounding names y ∈ Y in any of the processes
Q in the congruence class of P , hence, by de�nition of forest, the nodes labelled with
Ai and Aj generated by forest(Q) will have a node labelled with y as common ancestor.

96

9.5. Depth-bounded Systems

a

b

c

A1 A2 A3 A4

c

a

A1 b

A2 A4

A3

a

A1 b

A2 c

A3

A4

a

A1 b

A2 A4

c

A3

b

A2 a

A1 A4

c

A3

1 2 3

4 5

Figure 9.3 – Examples of forests in FJP K of Example 9.5: P = νa b c.(A1 ‖ A2 ‖ A3 ‖ A4)
where A1 = a(x), A2 = b(x), A3 = c(x) and A4 = a〈b〉.

The migratable predicate may seem obscure at �rst. Intuitively, it partitions the
continuation of an input in two: the part of the continuation that is tied to the message
and the part that is not. After the input action has been executed, only the migratable
terms will need to be put under the scope of the name in the message.

Y Example 9.5. Take the normal form P = νa b c.(A1 ‖ A2 ‖ A3 ‖ A4) where A1 = a(x),
A2 = b(x), A3 = c(x) and A4 = a〈b〉. We have 1↔P 4, 2↔P 4, therefore 1 aP 2 aP 4
and a /P 2. In Figure 9.3 we show some of the forests in FJP K. Forest 1 represents
forest(P). The fact that A1, A2 and A4 are tied is re�ected by the fact that none of the
forests place them in disjoint trees. Now suppose we select only the forests in FJP K that
have a as an ancestor of b: in all the forests in this set, the nodes labelled with A1, A2

and A4 have a as common ancestor (as in forests 1, 2, 3 and 4). In particular, in these
forests A2 is necessarily a descendent of a even if a is not one of its free names.

9.5 Depth-bounded Systems

We now review some of the notions introduced in [Mey08]. The main concept we are
going to use is the one of depth.

De�nition 9.5 (nestν, depth, depth-bounded term [Mey08]). The nesting of restrictions

of a term is given by the function

nestν(M) := nestν(!M) := nestν(0) := 0

nestν(νx.P) := 1 + nestν(P)

nestν(P ‖ Q) := max(nestν(P), nestν(Q)).

97

9. The π-calculus and Depth Boundedness

The depth of a term is de�ned as the minimal nesting of restrictions in its congruence
class:

depth(P) := min {nestν(Q) | P ≡ Q}.

A term P ∈ P is depth-bounded if there exists a k ∈ N such that for each Q ∈ Reach(P),
depth(Q) ≤ k.

Remark 9.6. In [Mey08] these de�nitions are given on terms in a special form called frag-

ments. It is easy to prove that our de�nition of nestν coincides with the one in [Mey08] on
fragments and that for any fragment F and non-fragment P , if F ≡ P then nestν(P) ≥
nestν(F). As a consequence our de�nition of depth coincides with the one in [Mey08].

The intuition behind the notion of depth is as follows. Consider a term P =
νa.νb.νc.

(
a(x) ‖ b〈c〉 ‖ c(y)

)
. We have nestν(P) = 3 but this does not re�ect the

inherent nesting of scopes induced by where names are used. In fact one can use scope
extrusion to rearrange the structure of the term so that scopes are minimised. In our
example we can note that although a(x) is in the scope of b and c, since it does not use
them it can be extruded; we obtain P ≡ Q = νa.a(x) ‖ νb.νc.

(
b〈c〉 ‖ c(y)

)
which gives

nestν(Q) = 2. We can apply the same reasoning with c(y) and by using exchange and
scope extrusion we can obtain P ≡ Q′ = νa.a(x) ‖ νc.

(
(νb.b〈c〉) ‖ c(y)

)
in which the

scopes cannot be shrunk further. We still have nestν(Q′) = 2, which happens to be also
the depth of P .

In terms of forest representation, the nesting of restrictions becomes the height of
the forest.

Lemma 9.3. For every P ∈ P , nestν(P) = heightν(forest(P)).

Proof. Straightforward from the de�nition of forest.

The concept of depth boundedness is less intuitive. In the communication topology
interpretation, the concept of depth has a tight relationship with the maximum length
of the simple paths. A path v1e1v2 . . . vnenvn+1 in GJP K is simple if it does not repeat
hyper-edges, i.e. ei 6= ej for all i 6= j. A term is depth-bounded if and only if there
exists a bound on the length of the simple paths of the communication topology of each
reachable term [Mey08]. This allows terms to grow unboundedly in breadth, i.e. the
degree |link(e)| of hyper-edges in the communication topology.

When the depth is 0, no restrictions can ever become active. Terms of depth bounded
by 0 are expressive enough to represent Petri nets (see Section 11.5). Roughly speaking,
a depth-bounded system is allowed to grow unboundedly in the number of parallel
components and in the number of fresh used names. Indeed its state-space can be in�nite.
The restriction on the depth limits however the information that is accessible to each
process at any given time. A sequential process in any given state can manipulate only a
�xed number of names (through its free variables). Thus the only way for a sequential

98

9.5. Depth-bounded Systems

process to maintain a general “data structure” of unbounded size is to nest scopes so
that each name in the structure is available to it after some interaction. The interaction
needed to access a particular name forms the interface of the data structure. This is
the kind of structure exploited by Example 9.3 to represent an unbounded stack. Other
less powerful unbounded data structures as bags (multisets) do not require unbounded
nesting of scopes.

Y Example 9.7 (Term with unbounded depth). Recall the de�nition of the term S in Ex-
ample 9.3:

S = s(x).νb.
(
(v〈b〉.n〈x〉)︸ ︷︷ ︸

Nbx

‖ s〈b〉
)

The term νs a.(!S ‖ s〈a〉) is unbounded in depth: the number of nested copies of b grows
every time a push is performed; it is not possible to extrude their scope to reduce the
number of nested levels.

The communication topology after an arbitrary number of reductions looks like the
one in Figure 9.4: the longest simple path keeps growing in length.

!S
s

s〈bn〉
bn

Nbnbn−1

bn−1 . . . b1
Nb1a

a

Figure 9.4 – The simple paths of a term with unbounded depth keep growing longer.

Y Example 9.8 (Depth-bounded term). The term in Example 9.2 is depth-bounded: all the
reachable terms are congruent to terms of the form

Qijk = νs c.
(
P ‖ N i ‖ Req j ‖ Ansk

)
for some i, j, k ∈ N where N = νm.c〈m〉, Req = νm.(s〈m〉 ‖ m(y).c〈m〉), Ans =
νm.(νd.m〈d〉 ‖ m(y).c〈m〉) and by Qn we mean the parallel composition of n copies
of the term Q. For any i, j, k, nestν(Qijk) ≤ 4: the longest chain of nested restrictions
is s, c,m, d. The length of simple paths in the communication topology of Qijk never
exceeds 5.

Note that the terms of both Examples 9.7 and 9.8 are not name bounded (in the sense
of [HMM13]): the number of active restrictions in the reachable terms is not bounded.

As we noted in the previous section, the π-calculus is Turing-powerful. Its power
derives largely from unbounded nesting of restrictions. The depth-bounded fragment
is still pretty expressive: reachability, i.e. given P and Q determining if P →∗ Q, is
undecidable for depth-bounded systems, already at depth 1 [Mey09b]. This sets this
fragment apart from Petri nets, which have a decidable reachability problem. However,
Meyer [Mey08] proved that the depth-bounded fragment is in fact not Turing-powerful:

99

9. The π-calculus and Depth Boundedness

termination becomes decidable. To prove this result, Meyer shows that when P is depth-
bounded, the term embedding order is a well quasi ordering (wqo) on the reachable
terms.

De�nition 9.6 (Term embedding). A forest embedding from a forest ϕ1 to a forest ϕ2 is
an injective function f : Nϕ1 → Nϕ2 preserving parent and labels, i.e. `ϕ1(n) = `ϕ2(f(n))
and n �ϕ1 n

′ =⇒ f(n) �ϕ2 f(n′). A forest embedding is rooted if it maps roots to roots.
The term embedding order is the relation � on π-terms where for two π-terms P and

Q, P � Q if there exist P ′, Q′ such that P ′ ≡ P , Q′ ≡ P , and a rooted forest embedding
f from forest(P ′) to forest(Q′).

In terms of communication topologies, term embeddings corresponds to label pre-
serving sub-hypergraph isomorphisms. That is, P � Q if and only if there exists a
subset of nodes and edges of GJP K that form an hypergraph isomorphic to GJQK. Term
embedding can be thought as the formalisation of the intuitive notion of sub-system in
the π-calculus.

Recall from Chapter 2 that the pred-basis of a state s is the (�nite) set of minimal
elements of the set of predecessors of states greater than s. When a WSTS has decidable
wqo and pred-basis, the coverability problem becomes decidable.

Theorem 9.4 (Depth-bounded systems are well structured [Mey08]). If P is a depth-

bounded π-term then (Reach(P),→) ordered by � is a WSTS with decidable pred-basis.

Theorem 9.4 enables a host of results: decidability of termination and (backwards)
coverability of system of depth-bounded by a known k are direct consequences. Cover-
ability is a particularly useful notion in this context. The term embedding order is a very
informative relation: proving that a term is uncoverable proves that it cannot occur in
any reachable term. This generalises control-state reachability and many other safety
properties.

In [WZH10] it is further proved that (forward) coverability is decidable even when
the depth bound k is not known a priori. The proof is based on the Expand, Enlarge

and Check (EEC) algorithm [GRV06]. To instantiate the EEC coverability procedure
on depth-bounded systems, Wies, Zu�erey and Henzinger extend the representation
of terms with an operator similar to replication, obtaining a language able to �nitely
represent every downward-closed set (with respect to term embedding).

The cover set is the downward closure of the reachable terms or, equivalently, the
set of all coverable terms. While it always has a �nite representation for depth-bounded
systems, it is, somewhat counterintuitively, not computable, even when the bound of
depth is known. Building on [WZH10], in [ZWH12] an approximate algorithm for
computing the cover set of a system of depth-bounded by k is presented.

100

9.5. Depth-bounded Systems

Y Example 9.9. A possible coverability query for the depth-bounded term of Example 9.2 is
the term

νs c m d.(P ‖ m〈d〉 ‖ m〈d〉 ‖ m(y).c〈m〉)

If proven uncoverable, we could be certain that the mailbox of clients, here represented
by the name m, will never hold more than one message m〈d〉. In fact the query can be
algorithmically shown to be uncoverable.

A tool like Picasso [ZWH12] could even compute the set of coverable terms in the
symbolic form (using the abbreviations of Example 9.8)

νs c.
(
P ‖ N∗ ‖ Req∗ ‖ Ans∗

)
which symbolically represents the set {νs c.

(
P ‖ N i ‖ Req j ‖ Ansk

)
| i, j, k ∈ N}.

Besides enabling the design of procedures for deciding such important veri�cation
problems, depth boundedness can be useful as a correctness property of a system in
itself. Consider, for example, a system modelling an unbounded number of processes,
each maintaining a private queue of tasks and communicating via message-passing. In
the π-calculus, structures such as lists and queues are typically modelled using private
channels to represent the “next” pointers. Proving a bound in depth k for such a system
would guarantee that none of the queues grows unboundedly, which is an oft-desired
resource-usage property.

Unfortunately, given an arbitrary π-term, it is undecidable to determine if it is depth-
bounded.

Theorem 9.5 ([Mey09b]). Determining whether a π-term P is depth-bounded or not is

undecidable.

The theorem is proved by showing that the folklore encoding of 2-counters machines
into π-calculus (which uses a variation of the stack process of Example 9.3 to implement
counters with zero-tests) preserves termination. Then, if checking whether a term is
depth-bounded were decidable, one could decide termination of a 2-counters machine M
by

1. taking the π-calculus encoding P of M

2. deciding if P is depth-bounded:

- if it is, then termination can be decided;
- if it is not, then it does not terminate.

This is clearly a contradiction since termination for 2-counters machines is undecidable.
All the analyses mentioned above rely on the assumption of depth-boundedness and

may even require a known bound on the depth to terminate. Theorem 9.5 makes it hard

101

9. The π-calculus and Depth Boundedness

to apply this machinery on arbitrary terms. In [RM14], among other classi�cation results,
the problem of determining whether a term P is bounded in depth by a given natural
number k is proved to be decidable. The algorithm however involves solving several
coverability problems as sub-steps, implying a prohibitively high complexity, with a
non-primitive recursive lower bound. The results presented in the rest of the chapter try
to compensate this problem by devising an expressive, yet computationally cheap, static
check for depth-boundedness.

102

Chapter 10

Typably Hierarchical Topologies

10.1 Proving Depth-Boundedness Using

T-compatibility

In this section we will introduce the concept of T-compatibility, which is a central tool in
our constructions. In Section 9.5 we presented the notion of depth-boundedness. The
main reason why depth-boundedness is an undecidable property is that it is a property of
the set of reachable terms, which can be arbitrarily di�cult to capture using �nite means.
Another di�culty in proving a bound in depth comes from the de�nition of depth itself:
for each reachable term P , one may need to consider every term structurally congruent
to P to determine its depth. In this section we show how the notion of T-compatibility
can give more structure to a proof of depth-boundedness of a term. This structure is the
principle behind the type system presented in the rest of the chapter.

Suppose we want to show that a (unannotated) term P is bounded in depth by k. We
can �rst try to characterise Reach(P), as we did for instance in Example 9.8 obtaining
that every reachable term is congruent to

Qijk = νs c.
(
P ‖

(
νm.c〈m〉

)i ‖ Req j ‖ Ansk)
for some i, j, k ∈ N. Then usually one can see patterns in how the restrictions are used:
in the example, it is easy to see that if we choose to represent Qijk by nesting c under
the restrictions νm we would end up with unbounded chains of restrictions of the form
νm1.νm2. · · · νmi.νc.Q

′, for any choice of i. This equivalent view of the terms Qijk is
clearly inadequate to prove depth-boundedness of P . The reason why nesting instances
of m under c looks intuitively more promising is that c has a higher degree of sharing
than m: if you group all the components that share the same c, they will not all share the
same m. By contrast, if you group all the components that share the same m, they will
all share the same c. This would be true even if we replicated the whole initial term.

103

10. Typably Hierarchical Topologies

We propose to capture this intuition by using a forest T that places c higher in the
hierarchy of names than m. More precisely, in our example we could map the restriction
νc to a node nc ∈ NT and the restrictions νm to a node nm ∈ NT such that nc is an
ancestor of nm. But then, what does it mean for a term to respect the hierarchy? Given
a map µ : N → T from names to nodes in T and a forest ϕ = (Nϕ,�ϕ, `ϕ) with labels
in N] S , we write ϕµ for the forest (Nϕ,�ϕ, `) with labels in (N × T)] S where
`(n) = (`ϕ(n), µ(`ϕ(n))) if `ϕ(n) ∈ N and `(n) = `ϕ(n) otherwise. We say a forest ϕ is
(µ, T)-compatible if every trace ((x1, t1) . . . (xk, tk) A) of ϕµ satis�es t1 <T t2 . . . <T tk.
If we can show that every reachable term can be represented by a (µ, T)-compatible
forest, then the term is depth-bounded.

Proposition 10.1. A term P ∈ P is depth-bounded if and only if there exists a �nite forest

T and a function µ : N → T such that for each Q ∈ Reach(P), FJQK contains a (µ, T)-
compatible forest.

Proof. The⇐-direction is straightforward. For the⇒-direction, let P be bounded in
depth by k and T be the forest 1 � 2 � · · · � k. By hypothesis every reachable term Q is
congruent to a term Q′ with nestν(Q′) ≤ k. Because of this bound, we can α-rename Q′
to a term Q′′ where every restriction with nesting level i is renamed to xi [Mey08]. By
construction forest(Q′′) is (µ, T)-compatible for µ(xi) = i.

The existential quanti�cation on µ and ϕ ∈ FJP K makes this notion as expressive as
depth-boundedness itself: our aim is to weaken it so that it still implies boundedness in
depth but can be automated. To make the proposition e�ective we restrict the power of
µ so that the choice of ϕ becomes trivial.

T-compatibility

Henceforth we will �x a �nite forest of base types (T ,�). We write ≤ and < for the
re�exive transitive and the transitive closure of �, respectively.

Types are of the form
τ ::= t | t[τ]

where t ∈ T is a base type. A name with type t cannot be used as a channel but can be
used as a message; a name with type t[τ] can be used to transmit a name of type τ . We
will write base(τ) for t when τ = t[τ ′] or τ = t. By abuse of notation we write, for a
set of types X , base(X) for the set of base types of the types in X . The structure of our
types is closely related to the notion of sorts of [Mil93] where no particular signi�cance
is attached to base types, which instead are central in our work. For more details on the
relation with other type systems see Section 11.5. An environment Γ is a partial map
from names to types, which we will write as a set of type assignments, x : τ . Given a set of
names X and an environment Γ, we write Γ(X) for the set {Γ(x) | x ∈ X ∩ dom(Γ)}.

104

10.1. Proving Depth-Boundedness Using T-compatibility

Given two environments Γ and Γ′ with dom(Γ) ∩ dom(Γ′) = ∅, we write ΓΓ′ for their
union. For a type environment Γ we de�ne

minT (Γ) := {(x : τ) ∈ Γ | ∀(y : τ ′) ∈ Γ. base(τ ′) 6< base(τ)}.

De�nition 10.1 (Annotated term). A T-annotated π-term (or simply annotated π-term)
P ∈ PT has the same syntax as regular π-terms except restrictions take the form νx : τ .
In the abbreviated form νX , X is a set of type assignments. The semantics is the same,
except type annotations get copied when a name is duplicated or renamed by structural
congruence. The de�nition of forest representation is also extended to annotated π-terms
by changing the case when Q = νx : τ.Q′ to (x, t)[forest(Q′)], where base(τ) = t. The
forests in FJP K will thus have labels in (activeν(P)×T)] seq(P). We write FT for the
set of forests with labels in (N ×T)] S . The set PTnf contains all the annotated π-terms
in normal form.

Now we give the formal de�nition of T-compatibility on annotated terms. It coincides
with the notion of (µ, T)-compatibility of a term, when µ(x) = base(τ) where τ is the
type annotation of x in the term.

De�nition 10.2 (T-compatibility). Let P ∈ PT be an annotated π-term. A forest
ϕ ∈ FJP K is said to be T-compatible if for every trace ((x1, t1) . . . (xk, tk)A) in ϕ it holds
that t1 < t2 . . . < tk. P is said to be T-compatible if FJP K contains a T-compatible forest.
A term is T-shaped if each of its subterms is T-compatible.

In this way, the mapping from names to types is determined statically, even when
one considers reachable terms: the reduction relation (and α-renaming) does not alter
annotations.

Y Example 10.1. Let us �x T to be the forest s � c �m � d. The normal form in Example 9.2
is T-compatible when s and c are annotated with types τs and τc respectively, with
base(τs) = s and base(τc) = c; indeed we have

forest(ν(s : τs) (c : τc).P) = (s, s)
[
(c, c)[!S[(∅, ∅)]] !C[(∅, ∅)]] !M [(∅, ∅)]]

]
.

By annotating m and d with types with base type m and d respectively, the term is also
T-shaped.
Since T-compatibility is a condition on types, α-renaming does not interfere with it.

Lemma 10.2. If forest(P) is T-compatible then for any term Q which is an α-renaming

of P , forest(Q) is T-compatible.

Lemma 10.3. Let P = νX.
∏

i∈IAi be a T-compatible normal form, Y ⊆ X and J ⊆ I .
Then P ′ = νY.

∏
j∈JAj is T-compatible.

105

10. Typably Hierarchical Topologies

Proof. Take a T-compatible forest ϕ ∈ FJP K. By Lemma 10.2 we can assume without
loss of generality that ϕ = forest(Q) where provingQ ≡ P does not require α-renaming.
Clearly, removing the leaves that do not correspond to sequential terms indexed by Y
does not a�ect the T-compatibility of ϕ. Similarly, if a restriction (x : τ) ∈ X is not in
Y , we can remove the node of ϕ labelled with (x, base(τ)) by making its parent the
new parent of its children. This operation is unambiguous under Name Uniqueness and
does not a�ect T-compatibility, by transitivity of <. We then obtain a forest ϕ′ which is
T-compatible and that, by Lemma 9.1, is the forest of a term congruent to the desired
normal form P ′.

It is clear from the de�nition that if a π-term P is T-compatible then depth(P) is
bounded by the length of the longest strictly increasing chain in T ; since T is assumed
to be �nite, the bound on the depth is �nite.

Proposition 10.4. Let T be a forest and P an annotated π-term. If every Q ∈ Reach(P)
is T-compatible, then P is depth-bounded.

Y Example 10.2. Fix T to be the forest n � v � s � a and take the term of Example 9.3
annotating it with types such that the base types of the names n, v, s, a and b are n, v, s, a
and a respectively. The term νn v s a.(!S ‖ s〈a〉) is T-compatible, but the term

Q = νn v s a b b′.(!S ‖ (v〈b〉.n〈a〉) ‖ (v〈b′〉.n〈b〉) ‖ s〈b′〉),

reachable from it, is not: b and b′ have the same base type a but need to be in the same
trace in any forest of FJQK. As we have shown in Example 9.7, this term is not bounded
in depth, so there cannot be any �nite T such that every reachable term is T-compatible.

10.2 A canonical representative

While many forests in FJP K can be witnesses of the T-compatibility of P , we want to
characterise the shape of a witness that must exist if P is T-compatible. Such forest is
identi�ed by ΦT (nf(P)). Before showing the de�nition, let us brie�y explain the intent
of Φ. The type system we are going to de�ne in Section 10.3 aims to guarantee that
T-compatibility is invariant under reduction for typable terms. We will need to show
that starting from a typable T-compatible term P , any step will reduce it to a (typable)
T-compatible term. The hypothesis of T-compatibility of P can be used to extract a T-
compatible forest ϕ from FJP K. It is very important to select the shallowest such ϕ so
to minimise the chances to unnecessarily increase the depth of the term it represents.
As Lemma 10.6 underlines, the forest extracted by Φ is the shallowest among all the T-
compatible forests in FJP K.

106

10.2. A canonical representative

De�nition 10.3 (ΦT). The function ΦT : PTnf → FT is de�ned inductively as

ΦT (
∏

i∈IAi) :=
⊎
i∈I

{Ai[]}

ΦT (νX.
∏

i∈IAi) :=
(⊎{

(x, base(τ))[ΦT (νYx.
∏

j∈IxAj)]
∣∣∣ (x : τ) ∈ minT (X)

})
] ΦT (νZ.

∏
r∈RAr)

where X 6= ∅, P = νX.
∏

i∈IAi and

Ix = {i ∈ I | x /P i}
R = I\

(⋃
(x : τ)∈minT (X) Ix

)
Yx = {(y : τ) ∈ X | ∃i ∈ Ix. y ∈ fn(Ai)} \minT (X)

Z = X\
(⋃

(x : τ)∈minT (X) Yx ∪ {x : τ}
)

We omit the subscript from ΦT when irrelevant or clear from the context.

Y Example 10.3. In the run shown in Example 9.2, after three steps we reach

Q = νs c m d.(P ‖ m〈d〉 ‖ m(y).c〈m〉).

The forest ΦT (Q), when T and types annotations are as in Example 10.1, is
s

c

m

m(y).c〈m〉 d

m〈d〉

!S !C !M

where the nodes show only the name components of their labels for conciseness. Note
how the scope of names is minimised while respecting T-compatibility.

Consider the term P in Example 9.5, with annotations a : a[b[t]], b : b[t] and c : c[t′].
Forests 4 and 5 of Figure 9.3 represent ΦT (P) when T is a � b and b � a respectively.
The following lemma establishes the formal link between Φ and T-compatibility.

Lemma 10.5. Let P ∈ PTnf . Then:

a) ΦT (P) is a T-compatible forest;

b) ΦT (P) ∈ FJP K if and only if P is T-compatible;

c) if P ≡ Q ∈ PT then ΦT (P) ∈ FJQK if and only if Q is T-compatible.

107

10. Typably Hierarchical Topologies

Proof. Item a) is an easy induction on the cardinality of X .
Item b) requires more work. By item a) Φ(P) is T-compatible so Φ(P) ∈ FJP K

proves that P is T-compatible.
To prove the⇐-direction we assume that P = νX.

∏
i∈IAi is T-compatible and pro-

ceed by induction on the cardinality of X to show that Φ(P) ∈ FJP K. The base case is
when X = ∅: Φ(P) = Φ(

∏
i∈IAi) =

⊎
i∈I {Ai[]} = forest(

∏
i∈IAi) = forest(P) ∈

FJP K. For the induction step, we observe that X 6= ∅ implies minT (X) 6= ∅ so,
Z ⊂ X and for each (x : τ) ∈ minT (X), Yx ⊂ X since x 6∈ Yx. This, together with
Lemma 10.3, allows us to apply the induction hypotesis on the terms Px = νYx.

∏
j∈IxAj

and PR = νZ.
∏

r∈RAr, obtaining that there exist terms Qx ≡ Px and QR ≡ PR such
that forest(Qx) = Φ(Px) and forest(QR) = Φ(PR) where all the forests forest(Qx)
and forest(QR) are T-compatible. Let Q =

∏
{ν(x : τ).Qx | (x : τ) ∈ minT (X)} ‖ QR,

then forest(Q) = Φ(P). To prove the claim we only need to show that Q ≡ P . We
have Q ≡

∏
{ν(x : τ).νYx.

∏
j∈IxAj | (x : τ) ∈ minT (X)} ‖ PR and we want to apply

extrusion to get Q ≡ νYmin.
(∏

i∈Imin
Ai
)
‖ PR for Imin =

⊎
{Ix | (x : τ) ∈ minT (X)},

Ymin = minT (X)]
⊎
{Yx | (x : τ) ∈ minT (X)} which adds an obligation to prove that

i) Ix are all pairwise disjoint so that Imin is well-de�ned,

ii) Yx are all pairwise disjoint and all disjoint from minT (X) so that Ymin is well-
de�ned,

iii) Yx ∩ fn(Aj) = ∅ for every j ∈ Iz with z 6= x so that we can apply the extrusion
rule.

To prove condition i), assume by contradiction that there exists an i ∈ I and names
x, y ∈ minT (X) with x 6= y, such that both x and y are tied to Ai in P . By transitivity
of the tied-to relation, we have Ix = Iy. By Lemma 9.2 all the Aj with j ∈ Ix need to
be in the same tree in any forest ϕ ∈ FJP K. Since P is T-compatible there exist such
a ϕ which is T-compatible and has every Aj as label of leaves of the same tree. This
tree will include a node nx labelled with (x, base(X(x))) and a node ny labelled with
(y, base(X(y))). By T-compatible of ϕ and the existence of a path between nx and ny
we infer base(X(x)) < base(X(y)) or base(X(y)) < base(X(x)) which contradicts the
assumption that x, y ∈ minT (X).

Condition ii) follows from condition i): suppose there exists a (z : τ) ∈ X ∩ Yx ∩ Yy
for x 6= y, then we would have that z ∈ fn(Ai) ∩ fn(Aj) for some i ∈ Ix and j ∈ Iy,
but then i aP j, meaning that i ∈ Iy and j ∈ Ix violating condition i). The fact
that Yx ∩minT (X) = ∅ follows from the de�nition of Yx. The same reasoning proves
condition iii).

Now we haveQ ≡ νYmin.
(∏

i∈Imin
Ai
)
‖ νZ.

∏
r∈RAr and we want to apply extrusion

again to get Q ≡ νYminZ.
∏
{Ai | i ∈ (Imin]R)} which is sound under the following

conditions:

108

10.3. A Type System for Hierarchical Topologies

iv) Ymin ∩ Z = ∅,

v) Imin ∩R = ∅,

vi) Z ∩ fn(Ai) = ∅ for all i 6∈ R

of which the �rst two hold trivially by construction, while the last follows from condi-
tion viii) below, as a name in the intersection of Z and a fn(Ai) would need to be in X
but not in Ymin. To be able to conclude that Q ≡ P it remains to prove that

vii) I = Imin]R and

viii) X = Ymin] Z

which are also trivially valid by inspection of their de�nitions. This concludes the proof
for item b).

Finally, for every Q ∈ PT such that Q ≡ P , Φ(P) ∈ FJQK if and only if Φ(P) ∈
FJP K by de�nition of FJ−K; since Φ(P) is T-compatible we can infer that Q is T-
compatible if and only if Φ(P) ∈ FJQK, which proves item c).

In light of Lemma 10.5, we can turn the computation of ΦT (P) into an algorithm to
check T-compatibility of P : it is su�cient to compute ΦT (P) and check at each step
that the sets Ix, R form a partition of I and the sets Yx, Z form a partition of X . If the
checks fail ΦT (P) 6∈ FJP K and P is not T-compatible, otherwise the obtained forest is a
witness of T-compatibility.

Lemma 10.6. Let P = νX.
∏

i∈IAi ∈ PTnf be a T-compatible normal form. Then for every

trace ((x1, t1) . . . (xk, tk)Aj) in the forest Φ(P), for every i ∈ {1, . . . , k}, we have xi /P j
(i.e. xi is tied to Aj in P).

Proof. Straightforward from the de�nition of Ix in Φ: when a node labelled by (x, t) is
introduced, its subtree is extracted from a recursive call on a term that contains all and
only the sequential terms that are tied to x.

Remark 10.4. Φ(P) satis�es conditions 9.1.i, 9.1.ii and 9.1.iii of Lemma 9.1.

10.3 A Type System for Hierarchical Topologies

We now de�ne a type system to prove depth boundedness. Our goal is to use Proposi-
tion 10.4 by devising a type system, parametrised over T , such that typability implies
invariance of T-compatibility under reduction. Typability of a T-compatible term P
would then imply that every term reachable from it is T-compatible, entailing depth
boundedness of P .

109

10. Typably Hierarchical Topologies

∀i ∈ I. Γ, X `T Ai
∀i ∈ I. ∀x : τx ∈ X. x /P i =⇒ base(Γ(fn(Ai))) < base(τx)

Γ `T νX.
∏

i∈IAi
Par

∀i ∈ I. Γ `T πi.Pi
Γ `T

∑
i∈Iπi.Pi

Choice
Γ `T A
Γ `T !A

Repl
Γ `T P

Γ `T τ.P
Tau

a : ta[τb] ∈ Γ b : τb ∈ Γ Γ `T Q
Γ `T a〈b〉.Q

Out

a : ta[τx] ∈ Γ Γ, x : τx `T νX.
∏

i∈IAi
base(τx) < ta ∨

(
∀i ∈ I. Miga(x).P (i) =⇒ base(Γ(fn(Ai) \ {a})) < ta

)
Γ `T a(x).νX.

∏
i∈IAi

In

Figure 10.1 – A type system for proving depth boundedness. The term P stands for νX.
∏
i∈IAi.

A judgement Γ `T P means that P ∈ PTnf can be typed under assumptions Γ, over
the tree T ; we say that P is typable if Γ `T P is provable for some Γ and T . An arbitrary
term P ∈ PT is said to be typable if its normal form is. The typing rules are presented in
Figure 10.1.

The type system presents several non-standard features. First, it is de�ned on normal
forms as opposed to general π-terms. This choice is motivated by the fact that di�erent
syntactic presentations of the same term may be misleading when trying to analyse the
relation between the structure of the term and T . The rules need to guarantee that a
reduction will not break T-compatibility, which is a property of the congruence class
of the term. As justi�ed by Lemma 9.2, the scope of names in a congruence class may
vary, but the tied-to relation puts constraints on the structure that must be obeyed by all
members of the class. Therefore the type system is designed around this basic concept,
rather than the speci�c scoping of any representative of the structural congruence class.
Second, no type information is associated with the typed term, only restricted names
hold type annotations. Third, while the rules are compositional, the constraints on base
types have a global �avour due to the fact that they involve the structure of T which is a
global parameter of typing proofs.

Let us illustrate intuitively how the constraints enforced by the rules guarantee
preservation of T-compatibility. Consider the term

P = νe a.
(

νb.
(
a〈b〉.A0

)
‖ νd.

(
a(x).Q

))
110

10.3. A Type System for Hierarchical Topologies

with Q = νc.(A1 ‖ A2 ‖ A3), A0 = b(y), A1 = x〈c〉, A2 = c(z).a〈e〉 and A3 = a〈d〉.
Let T be the forest with te � ta � tb � tc and ta � td, where tx is the base type of the
(omitted) annotation of the restriction νx, for x ∈ {a, b, c, d, e}. The reader can check
that forest(P) is T-compatible.

In the traditional understanding of mobility, we would interpret the communication
of b over x as an application of scope extrusion to include νd.

(
a(x).Q

)
in the scope of b

and then syncronisation over a with the application of the substitution [b/x] to Q; note
that the substitution is only valid because the scope of b has been extended to include
the receiver.

Our key observation is that we can instead interpret this communication as a migra-
tion of the subcomponents of Q that do get their scopes changed by the reduction, from
the scope of the receiver to the scope of the sender. For this operation to be sound, the
subcomponents of Q migrating to the sender’s scope cannot use the names that are in
the scope of the receiver but not of the sender.

In our speci�c example, after the synchronisation between the pre�xes a〈b〉 and a(x),
b is substituted to x in A1 resulting in the term A′1 = b〈c〉 and A0, A

′
1, A2 and A3 become

active. The scope of A0 can remain unchanged as it cannot know more names than
before as a result of the communication. By contrast, A1 now knows b as a result of the
substitution [b/x]: A1 needs to migrate under the scope of b. Since A1 uses c as well, the
scope of c needs to be moved under b; however A2 uses c so it needs to migrate under b
with the scope of c. A3 instead does not use neither b nor c so it can avoid migration and
its scope remains unaltered.

This information can be formalised using the tied-to relation: on one hand, A1 andA2

need to be moved together because 1 aQ 2 and they need to be moved because x /Q 1, 2.
On the other hand, A3 is not tied to neither A1 nor A2 in Q and does not know x, thus it
is not migratable. After reduction, our view of the reactum is the term

νa.
(

νb.
(
A0 ‖ νc.(A′1 ‖ A2)

)
‖ νd.A3

)
the forest of which is T-compatible. Rule Par, applied to A1 and A2, ensures that c has
a base type that can be nested under the one of b. Rule In does not impose constraints
on the base types of A3 because A3 is not migratable. It does however check that the
base type of e is an ancestor of the one of a, thus ensuring that both receiver and sender
are already in the scope of e. The base type of a does not need to be further constrained
since the fact that the synchronisation happened on it implies that both the receiver and
the sender were already under its scope; this implies, by T-compatibility of P , that c can
be nested under a.

We now describe the purpose of the rules of the type system in more detail. Most
of the rules just drive the derivation through the structure of the term. The crucial
constraints are checked by Par, In and Out.

111

10. Typably Hierarchical Topologies

TheOut rule The main purpose of rule Out is enforcing types to be consistent with the
data�ow of the process: the type of the argument of a channel amust agree with the types
of all the names that may be sent over a. This is a very coarse sound over-approximation
of the data�ow; if necessary it could be re�ned using well-known techniques from the
literature but a simple approach is su�cient here to type interesting processes.
The Par rule Rule Par is best understood imagining the normal form to be typed, P ,
as the continuation of a pre�x π.P . In this context a reduction exposes each of the active
sequential subterms of P which need to have a place in a T-compatible forest for the
reactum. The constraint in Par can be read as follows. A ‘new’ leaf Ai may refer to
names already present in the forests of the reaction context; these names are the ones
mentioned in both fn(Ai) and Γ. Then we must be able to insert Ai so that we can �nd
these names in its path. However, Ai must belong to a tree containing all the names in X
that are tied to it in P . So by requiring every name tied to Ai to have a base type greater
than any name in the context that Ai may refer to, we make sure that we can insert the
continuation in the forest of the context without violating T-compatibility. Note that
Γ(fn(Ai)) contains only types that annotate names both in Γ and fn(Ai), that is, names
which are not restricted by X and are referenced by Ai (and therefore come from the
context).
The In rule Rule In serves two purposes: on the one hand it requires the type of the
messages that can be sent through a to be consistent with the use of the variable x which
will be bound to the messages; on the other hand, it constrains the base types of a and x
so that synchronisation can be performed without breaking T-compatibility.

The second purpose is achieved by distinguishing two cases, represented by the two
disjuncts of the condition on base types of the rule. In the �rst case, the base type of the
message is an ancestor of the base type of a in T . This implies that in any T-compatible
forest representing a(x).P , the name b sent as message over a is already in the scope of
P . Under this circumstance, there is no real mobility, P does not know new names by
the e�ect of the substitution [b/x], and the T-compatibility constraints to be satis�ed
are in essence unaltered.

The second case is more complicated as it involves genuine mobility. This case also
requires a slightly non-standard feature: not only do the premises predicate on the direct
subcomponents of an input pre�xed term, but also on the direct subcomponents of the
continuation. This is needed to be able to separate the continuation in two parts: the
one requiring migration and the one that does not. The situation during execution is
depicted in Figure 10.2. The non migratable sequential terms behave exactly as the case
of the �rst disjunct: their scope is unaltered. The migratable ones instead are intended
to be inserted as descendent of the node representing the message b in the forest of the
reaction context.

For this to be valid without rearrangement of the forest of the context, we need all
the names in the context that are referenced in the migratable terms, to be also in the

112

10.3. A Type System for Hierarchical Topologies

b

a(x).Pa〈b〉

a

b

P
¬mig

P
mig

a

→

Figure 10.2 – Explanation of constraints imposed by rule In. The dashed lines represent references
to names restricted in the reduction context. When adding the migratable continuation of P
under b, there cannot be references to names not already in the path to b. Assuming the forests
are T-compatible, this can be enforced by requiring the names referred by the migratable portion
of P to be smaller than a, which is surely a common ancestor of receiver and sender.

scope at b; we make sure this is the case by requiring the free names of any migratable
Ai that are from the context (i.e. in Γ) to have base types smaller than the base type
of a. The set base(Γ(fn(Ai) \ {a})) indeed represents the base types of the names in
the reaction context referenced in a migratable continuation Ai. In fact a is a name that
needs to be in the scope of both the sender and the receiver at the same time, so it needs
to be a common ancestor of sender and receiver in any T-compatible forest. Any name
in the reaction context and in the continuation of the receiver, with a base type smaller
than the one of a, will be an ancestor of a—and hence of the sender, the receiver and the
node representing the message—in any T-compatible forest. Clearly, remembering a is
not harmful as it must be already in the scope of receiver and sender, so we exclude it
from the constraint.

Y Example 10.5. Take the normal form in Example 9.2. Let us �x T to be the forest s�c�m�d
and annotate the normal form with the following types:

s : τs = s[τm] c : τc = c[τm] m : τm = m[d] d : d

We want to prove ∅ `T νsc.P . We can apply rule Par: in this case there are no conditions
on types because, being the environment empty, we have base(∅(fn(A))) = ∅ for every
active sequential term A of P . Let Γ = {(s : τs), (c : τc)}. The rule requires Γ `T !S,
Γ `T !C and Γ `T !M , which can be proved by proving typability of S, C and M under
Γ by rule Repl.

To prove Γ `T S we apply rule In; we have s : s[τm] ∈ Γ and we need to prove that
Γ, x : τm `T νd.x〈d〉. No constraints on base types are generated at this step since the
migratable sequential term νd.x〈d〉 does not contain free variables typed by Γ making
Γ(fn(νd.x〈d〉) \ {a}) = Γ({x}) empty. Next, Γ, x : τm `T νd.x〈d〉 can be proved by
applying rule Par which amounts to checking Γ, x : τm, d : d `T x〈d〉.0 (by a simple

113

10. Typably Hierarchical Topologies

application of Out and the axiom Γ, x : τm, d : d `T 0) and verifying the condition—true
in T —base(τm) < base(τd): in fact d is tied to x〈d〉 and, for Γ′ = Γ ∪ {x : τm},

base(Γ′(fn(x〈d〉))) = base(Γ′({x, d})) = base({τm}).

The proof for Γ `T M is similar and requires c < m which is true in T .
Finally, we can prove Γ `T C using rule In; both the two continuation A1 = s〈m〉

and A2 = m(y).c〈m〉 are migratable in C and since base(τm) < base(τc) is false we
need the other disjunct of the condition to be true. This amounts to checking that

base(Γ(fn(A1) \ {c})) = base(Γ({s,m})) = base({τs}) = s < c

(note m 6∈ dom(Γ)) and base(Γ(fn(Aa) \ {c})) = base(Γ(∅)) < c (that holds trivially).
To complete the typing we need to show Γ,m : τm `T A1 and Γ,m : τm `T A2. The

former can be proved by a simple application of Out which does not impose further
constraints on T . The latter is proved by applying In which requires base(τc) < m,
which holds in T .

Note how, at every step, there is only one rule that applies to each subproof.
Y Example 10.6. There is no choice for (a �nite) T that would make the normal form in

Example 9.3 typeable. To see why, one can build the proof tree without assumptions on
T obtaining that:

1. the restrictions must be annotated with types consistent with the type assignments

s : ts[t] v : tv[t] n : tn[t] a : t b : t

2. T must satisfy the constraint that the base type assigned to b must be strictly
greater than the one assigned to x, which is inconsistent with s : ts[t], b : t.

10.4 Soundness

In this section we show how the type system can be used to prove depth-boundedness.
Theorem 10.9 will show how typability is preserved by reduction. Theorem 10.10 es-
tablishes the main property of the type system: if a term is typable then T-shapedness
is invariant under reduction. This allows us to conclude that if a term is T-shaped
and typable, then every term reachable from it will be T-shaped and, therefore, it is
depth-bounded.

We start with some simple properties of the type system.

Lemma 10.7. Let P ∈ PTnf and Γ, Γ′ be type environments.

a) if Γ `T P then fn(P) ⊆ dom(Γ);

114

10.4. Soundness

b) if dom(Γ′) ∩ bn(P) = ∅ and fn(P) ⊆ dom(Γ),
then Γ `T P if and only if ΓΓ′ `T P ;

c) if P ≡ P ′ ∈ PTnf then, Γ `T P if and only if Γ `T P ′.

The subtitution lemma states that substituting names without altering the types
preserves typability.

Lemma 10.8 (Substitution). Let P ∈ PTnf and Γ be a typing environment such that

Γ(a) = Γ(b). Then it holds that if Γ `T P then Γ `T P [b/a].

Proof. We prove the lemma by induction on the structure of P . The base case is when
P ≡ 0, where the claim trivially holds.

For the induction step, let P ≡ νX.
∏

i∈IAi with Ai =
∑

j∈Jπij.Pij , for some �nite
sets of indexes I and J . Since the presence of replication does not a�ect the typing proof,
we can safely ignore that case as it follows the same argument. Let us assume Γ `T P
and prove that Γ `T P [b/a].

From Γ `T P , for each i ∈ I and x : τx ∈ X we have

Γ, X `T Ai (10.1)
x /P i =⇒ base(Γ(fn(Ai))) < base(τx) (10.2)

To extract from this assumptions a proof for Γ `T P [b/a], we need to prove that (10.1)
and (10.2) hold after the substitution.

Since the substitution does not apply to names in X and the ‘tied to’ relation is only
concerned with names in X , the only relevant e�ect of the substitution is modifying the
set fn(Ai) to fn(Ai[b/a]) = fn(Ai) \ {a} ∪ {b} when a ∈ fn(Ai); But since Γ(a) = Γ(b)
by hypothesis, we have base(Γ(fn(Ai[b/a]))) < base(τx).

It remains to prove (10.1) holds after the substitution as well. This amounts to prove
for each j ∈ J that Γ′ `T πij.Pij =⇒ Γ′ `T πij.Pij[b/a], where Γ′ = Γ∪X ; we prove
this by cases.

Suppose πij = α〈β〉 for two names α and β, then from Γ′ `T πij.Pij we know the
following

α : tα[τβ] ∈ Γ′ β : τβ ∈ Γ′ (10.3)
Γ′ `T Pij (10.4)

Condition (10.3) is preserved after the substitution because it involves only types so, even
if α or β are a, their types will be left untouched after they get substituted with b from
the hypothesis that Γ(a) = Γ(b). Condition (10.4) implies Γ′ `T Pij[b/a] by inductive
hypothesis.

115

10. Typably Hierarchical Topologies

Suppose now that πij = α(x) and Pij ≡ νY.
∏

k∈KA
′
k for some �nite set of indexes

K ; by hypothesis we have:

α : tα[τx] ∈ Γ′ (10.5)
Γ′, x : τx `T Pij (10.6)

base(τx) < tα ∨ ∀k ∈ K. Migπij .Pij(k) =⇒ base(Γ′(fn(A′k) \ {α})) < tα (10.7)

Now x and Y are bound names so they are not altered by substitutions. The substitution
[b/a] can therefore only be a�ecting the truth of these conditions when α = a or when
a ∈ fn(A′k) \ (Y ∪ {x}). Since we know a and b are assigned the same type by Γ and
Γ ⊆ Γ′, condition (10.5) still holds when substituting a for b. Condition (10.6) holds by
inductive hypotesis. The �rst disjunct of condition (10.7) depends only on types, which
are not changed by the substitution, so it holds after applying it if and only if it holds
before the application. To see that the second disjunct also holds after the substitution
we observe that the ‘migratable’ condition depends on x and fn(A′k) ∩ Y which are
preserved by the substitution; moreover, if a ∈ fn(A′k) \ {α} then Γ′(fn(A′k) \ {α}) =
Γ′(fn(A′k[b/a]) \ {α}).

This shows that the premises needed to derive Γ′, x : τ ′x `T πij.Pij[b/a] are implied
by our hypothesis, which completes the proof.

Before we state the main theorem, we de�ne the notion of P -safe type environment,
which is a simple restriction on the types that can be assigned to names that are free at
the top-level of a term.

De�nition 10.4 (P -safe environment). A type environment Γ is said to be P -safe if for
each x ∈ fn(P) and (y : τ) ∈ bnν(P), base(Γ(x)) < base(τ).

Theorem 10.9 (Subject Reduction). Let P and Q be two terms in PTnf and Γ be a P -safe
type environment. If Γ `T P and P → Q, then Γ `T Q.

Proof. We will only prove the result for the case when P → Q is caused by a syn-
chronising send and receive action since the τ action case is similar and simpler. From
P → Q we know that P ≡ νW.(S ‖ R ‖ C) ∈ PTnf with S ≡ (a〈b〉.νYs.S ′) + Ms

and R ≡ (a(x).νYr.R
′) + Mr the synchronising sender and receiver respectively;

Q ≡ νWYsYr.(S
′ ‖ R′[b/x] ‖ C). In what follows, let W ′ = WYsYr, C =

∏
h∈HCh,

S ′ =
∏

i∈IS
′
i and R′ =

∏
j∈JR

′
j , all normal forms.

For annotated terms, the type system is syntax directed: there can be only one proof
derivation for each typable term. By item 10.7.c, from the hypothesis Γ `T P we can
deduce Γ `T νW.(S ‖ R ‖ C). The proof derivation for this typing judgment can only
be of the following shape:

ΓW `T S ΓW `T R ∀h ∈ H. ΓW `T Ch Ψ

Γ `T νW.(S ‖ R ‖ C)
(10.8)

116

10.4. Soundness

where Ψ represents the rest of the conditions of the Par rule.1 The fact that P is typable
implies that each of these premises must be provable. The derivation proving Γ,W `T S
must be of the form

a : ta[τb] ∈ ΓW b : τb ∈ ΓW ΓW `T νYs.S
′

ΓW `T a〈b〉.νYs.S ′ ΨMs

Γ `T a〈b〉.νYs.S ′ +Ms

(10.9)

where ΓW `T νYs.S
′ is proved by an inference of the shape
∀i ∈ I. ΓWYs `T S ′i ∀i ∈ I.ΨS′i

ΓW `T νYs.S
′ (10.10)

Analogously, ΓW `T R must be proved by an inference with the following shape
a : ta[τx] ∈ ΓW ΓW,x : τx `T νYr.R

′ ΨR′

ΓW `T a(x).νYr.R
′ ΨMr

ΓW `T a(x).νYr.R
′ +Mr

(10.11)

and to prove ΓW,x : τx `T νYr.R
′

∀j ∈ J. ΓW,x : τx, Yr `T R′j ∀j ∈ J.ΨR′j

ΓW,x : τx `T νYr.R
′ (10.12)

We have to show that from this hypothesis we can infer that Γ `T Q or, equivalently
(by item 10.7.c), that Γ `T Q′ where Q′ = νWYsYr.(S

′ ‖ R′[b/x] ‖ C). The derivation
of this judgment can only end with an application of Par:

∀i ∈ I. ΓW ′ `T S ′i ∀j ∈ J. ΓW ′ `T R′j[b/x] ∀h ∈ H. ΓW ′ `T Ch Ψ′

Γ `T νW ′.(S ′ ‖ R′[b/x] ‖ C)

In what follows we show how we can infer these premises are provable as a consequence
of the provability of the premises of the proof of Γ `T νW.(S ‖ R ‖ C).

From item 10.7.b and Name Uniqueness, ΓWYs `T S ′i from (10.10) implies ΓW ′ `T S ′i
for each i ∈ I .

Let Γr = ΓW,x : τx. We observe that by (10.9) and (10.11), τx = τb. From (10.11)
we know that ΓrYr `T R′j which, by Lemma 10.8, implies ΓrYr `T R′j[b/x]. By
item 10.7.b we can infer ΓrYrYs `T R′j[b/x] and by applying the same lemma again using
fn(R′j[b/x]) ⊆ dom(ΓWYrYs) and Name Uniqueness we obtain ΓW ′ `T R′j[b/x].

Again applying item 10.7.b and Name Uniqueness, we have that ΓW `T Ch implies
ΓW ′ `T Ch for each h ∈ H .

To complete the proof we only need to prove that for each A ∈ {S ′i | i ∈ I} ∪ {R′j |
j ∈ J} ∪ {Ch | h ∈ H}, Ψ′ = ∀(x : τx) ∈ W ′. x tied to A in Q′ =⇒ base(Γ(fn(A))) <
base(τx) holds. This is trivially true by the hypothesis that Γ is P -safe.

1Note that Ψ is trivially true by P -safety of Γ.

117

10. Typably Hierarchical Topologies

Theorem 10.10 (Invariance of T-shapedness). Let P and Q be terms in PTnf such that

P → Q and Γ be a P -safe environment such that Γ `T P . Then, if P is T-shaped then Q
is T-shaped.

Proof. We will consider the input output synchronisation case as the τ action one is
similar and simpler. We will further assume that the sending action a〈b〉 is such that
ν(a : τa) and ν(b : τb) are both active restrictions of P , i.e. (a : τa) ∈ W , (b : τb) ∈ W with
P ≡ νW.(S ‖ R ‖ C). The case when any of these two names is a free name of P can
be easily handled with the aid of the assumption that Γ is P -safe.

As in the proof of Theorem 10.9, the derivation of Γ `T P must follow the shape
of (10.8).

From T-shapedness of P we can conclude that both νYs.S
′ and νYr.R

′ are T-shaped.
We note that substitutions do not a�ect T-compatibility since they do not alter the set
of bound names and their type annotations. Therefore, we can infer that νYr.R

′[b/a]
is T-shaped. By Lemma 10.5 we know that ϕ = Φ(νW.(S ‖ R ‖ C)) ∈ FJP K, ϕr =
Φ(νYr.R

′[b/a]) ∈ FJνYr.R′[b/x]K and ϕs = Φ(νYs.S
′) ∈ FJνYs.S ′K. Let ϕr = ϕmig]

ϕ¬mig where only ϕmig contains a leaf labelled with a term with b as a free name. These
leaves will correspond to the continuations R′j that migrate in a(x).νYr.R

′, after the
application of the substitution [b/x]. By assumption, inside P both S and R are in the
scope of the restriction bounding a and S must also be in the scope of the restriction
bounding b. Let ta = base(τa) and tb = base(τb), ϕ will contain two leaves nS and nR
labelled with S and R respectively, having a common ancestor na labelled with (a, ta);
nS will have an ancestor nb labelled with (b, tb). Let pa, pS and pR be the paths in ϕ
leading from a root to na, nS and nR respectively. By T-compatibility of ϕ, we are left
with only two possible cases: either 1) ta < tb or 2) tb < ta.

Let us consider case 1) �rst. The tree in ϕ to which the nodes nS and nR belong,
would have the following shape:

nb

nRnS

na

Now, we want to transform ϕ, by manipulating this tree, into a forest ϕ′ that is T-
compatible by construction and such that there exists a termQ′ ≡ Qwith forest(Q′) = ϕ′,
so that we can conclude Q is T-shaped.

To do so, we introduce the following function, taking a labelled forest ϕ, a path p in
ϕ and a labelled forest ρ and returning a labelled forest:

ins(ϕ, p, ρ) := (Nϕ]Nρ,�ϕ] �ρ] �ins, `ϕ] `ρ)

118

10.4. Soundness

where n �ins n
′ if n′ ∈ min�ρ(Nρ) and

`ρ(n
′) = (y, ty) =⇒ n ∈ max�ϕ {m ∈ p | `ϕ(m) = (x, tx), tx < ty}

`ρ(n
′) = A =⇒ n ∈ max�ϕ {m ∈ p | `ϕ(m) = (x, tx), x ∈ fn(A)}

Note that for each n′, since p is a path, there can be at most one n such that n �ins n
′.

To obtain the desired ϕ′, we �rst need to remove the leaves nS and nR from ϕ, as
they represent the sequential processes which reacted, obtaining a forest ϕC . We argue
that the ϕ′ we need is indeed

ϕ′ = ins(ϕ1, pS, ϕmig)

ϕ1 = ins(ϕ2, pR, ϕ¬mig)

ϕ2 = ins(ϕC , pS, ϕs)

It is easy to see that, by de�nition of ins, ϕ′ is T-compatible: ϕC , ϕs, ϕ¬mig and ϕmig

are T-compatible by hypothesis, ins adds parent-edges only when they do not break T-
compatibility.

To prove the claim we need to show that ϕ′ is the forest of a term congruent to
νWYsYr.(S

′ ‖ R′[b/x] ‖ C). Let R′ =
∏

j∈JR
′
j , Jmig = {j ∈ J | x /νYr.R′ j},

J¬mig = J \ Jmig and Y ′r = {(x : τ) ∈ Yr | x ∈ fn(R′j), j ∈ J¬mig}. We know that no R′j
with j ∈ J¬mig can contain x as a free name so R′j[b/x] = R′j . Now suppose we are able
to prove that conditions 9.1.i, 9.1.ii and 9.1.iii of Lemma 9.1 hold for ϕC , ϕ1, ϕ2 and ϕ′.
Then we could use Lemma 9.1 to prove

a) ϕC = forest(QC), QC ≡ QϕC = νW.C ,

b) ϕ2 = forest(Q2), Q2 ≡ Qϕ2 = νWYs.(S
′ ‖ C),

c) ϕ1 = forest(Q1), Q1 ≡ Qϕ1 = νWYsY
′
r .(S

′ ‖
∏

j∈J¬mig
R′j ‖ C),

d) ϕ′ = forest(Q′), Q′ ≡ Qϕ′ = νWYsYr.(S
′ ‖ R′[b/x] ‖ C) ≡ Q

(it is straightforward to check that ϕC , ϕ2, ϕ1 and ϕ′ have the right sets of nodes and
labels to give rise to the right terms). We then proceed to check for each of the forests
above that they satisfy conditions 9.1.i, 9.1.ii and 9.1.iii, thus proving the theorem.

Condition 9.1.i requires that only leafs are labelled with sequential processes, con-
dition that is easily satis�ed by all of the above forests since none of the operations
involved in their de�nition alters this property and the forests ϕ, ϕs and ϕr satisfy it by
construction.

Similarly, since νW.(S ‖ R ‖ C) is a normal form it satis�es Name Uniqueness,
condition 9.1.ii is satis�ed as we never use the same name more than once.

Condition 9.1.iii holds on ϕ and hence it holds on ϕC since the latter contains all the
nodes of ϕ labelled with names.

119

10. Typably Hierarchical Topologies

Now consider ϕs: in the proof of Theorem 10.9 we established that Γ `T P implies
that the premises ΨS′i

from (10.10) hold, that is base(ΓW (fn(S ′i))) < base(τx) holds for
all S ′i for i ∈ I and all (x : τx) ∈ Ys such that x /νYs.S′ i. Since fn(S ′i) ∩W ⊆ fn(S ′)
we know that every name (w : τw) ∈ W such that w ∈ fn(S ′i) will appear as a label
(w, base(τw)) of a node nw in pS . Therefore, by de�nition of ins, we have that for each
n ∈ NϕC , nw <ϕ2 n; in other words, in ϕ2, every leaf in Nϕs labelled with S ′i is a
descendent of a node labelled with (w, base(τw)) for each (w : τw) ∈ W with w ∈ fn(S ′i).
This veri�es condition 9.1.iii on ϕ2.

Similarly, by (10.12) the following premise must hold: base(ΓW (fn(R′j))) < base(τx)
for all R′j for j ∈ J and all (y : τy) ∈ Yr such that y /νYr.R′ j. We can then apply the same
argument we applied to ϕ2 to show that condition 9.1.iii holds on ϕ1.

From (10.11) and the assumption ta < tb, we can conclude that the following premise
must hold: base(ΓW (fn(R′j) \ {a})) < ta for each j ∈ J such that R′j is migratable in
a(x).νYr.R

′, i.e j ∈ Jmig. From this we can conclude that for every name (w : τw) ∈ W
such that w ∈ fn(R′j[b/x]) with j ∈ Jmig there must be a node in pa (and hence in
pS) labelled with (w, base(τw)). Now, some of the leaves in ϕmig will be labelled with
terms having b as a free name; we show that in fact every node in ϕmig labelled with
a (y, ty) is indeed such that ty < tb. From the proof of Theorem 10.9 and Lemma 10.8
we know that from the hypothesis we can infer that ΓW `T νYr.R

′[b/x] and hence
that for each j ∈ Jmig and each (y : τy) ∈ Yr, if y is tied to R′j[b/x] in νYr.R

′[b/x] then
base(ΓW (R′j[b/x])) < base(τy). By Lemma 10.6 we know that every root of ϕmig is
labelled with a name (y, ty) which is tied to each of the leaves in its tree. Therefore each
such ty satis�es base(ΓW (R′j[b/x])) < ty. By construction, there exists at least one
j ∈ Jmig such that x ∈ fn(R′j) and consequently such that b ∈ fn(R′j[b/x]). From this
and b ∈ W we can conclude tb < ty for ty labelling a root in ϕmig. We can then conclude
that {nb} = max�ϕ2 {m ∈ pS | `ϕ(m) = (z, tz), tz < ty} for each ty labelling a root of
ϕmig, which means that each tree of ϕmig is placed as a subtree of nb in ϕ′. This veri�es
condition 9.1.iii for ϕ′ completing the proof.

Pictorially, the tree containing nS and nR in ϕ is now transformed in the following
tree in ϕ′:

nb

pRpS

na ∈ ϕs
∈ ϕmig

∈ ϕ¬mig

Case 2) — where tb < ta — is simpler as the migrating continuations can be treated
just as the non-migrating ones.

120

10.5. Type Inference

To illustrate the role of ϕmig, ϕ¬mig and the ins operation in the above proof, we show
an example that would not be typable if we choose a simpler “migration” transformation.

Y Example 10.7. Consider the normal form P = νa b c.(!A ‖ a〈c〉) where

A = a(x).νd.
(
a〈d〉 ‖ b〈x〉

)
.

To make types consistent we need annotations satisfying a : ta[t], b : tb[t], c : t and d : t.
Any T satisfying the constraints tb < ta < t would allow us to prove ∅ `T P ; let then T
be the forest with b�a�twith ta = a, tb = b and t = t. LetP ′ = νabcd.(!A ‖ a〈d〉 ‖ b〈c〉)
be the (only) successor of P . The following picture shows Φ(P) in the middle, on the
left a forest in FJP ′K extracted by just putting the continuation of A under the message,
on the right the forest obtained by using ins on the non-migrating continuations of A:

b

a

!A c

a〈c〉

b

a

!A c

b〈c〉

d

a〈d〉

b

a

!A c

d

b〈c〉 a〈d〉

→←

Clearly, the tree on the left is not T-compatible since c and d have the same base type
t. Instead, the tree on the right can be obtained because ins inserts the non-migrating
continuation as close to the root as possible.

De�nition 10.5 (Typably Hierarchical term). A normal form P is typably hierarchical if
P is T-shaped and Γ `T P for some �nite forest T and P -safe environment Γ. A general
π-term P is typably hierarchical if its normal form nf(P) is.

Theorem 10.11 (Depth-boundedness). Every typably hierarchical term is depth-bounded.

Proof. By Theorem 10.9 and Theorem 10.10 every term reachable from a typably hier-
archical term P is T-shaped. Then by Proposition 10.4 P is depth-bounded.

10.5 Type Inference

In this section we will show that it is possible to take any non-annotated normal form P
and derive a forest T and an annotated version of P that can be typed under T .

Inference for simple types has already been proved decidable in [Gay93; VH93]. In
our case, since our types are not recursive, the algorithm concerned purely with the
constraints imposed by the type system of the form τx = t[τy] is even simpler. The main
di�culty is in inferring the structure of T .

121

10. Typably Hierarchical Topologies

Let us �rst be more speci�c on assigning simple types. The number of ways a term
P can be annotated with types are in�nite, simply from the fact that types allow an
arbitrary nesting as in t, t[t], t[t[t]] and so on. We observe that, however, there is no use
annotating a restriction with a type with nesting deeper than the size of the program:
the type system cannot inspect more deeply nested types. Thanks to this observation we
can restrict ourselves to annotations with bounded nesting in the types structure. This
also gives a bound on the number of base types that need to appear in the annotated
term. Therefore, there are only �nitely many possible annotations and possible forests
under which P can be proved typably hierarchical. A naïve inference algorithm can then
enumerate all of them and type check each.

Theorem 10.12 (Decidability of Inference). Given a normal formP ∈ Pnf , it is decidable if
there exists a �nite forest T , a T-annotated version P ′ ∈ PT of P and a P ′-safe environment

Γ such that P ′ is T-shaped and Γ `T P ′.

While enumerating all the relevant forests, annotations and environments is imprac-
tical, more clever strategies for inference exist.

We start by annotating the term with type variables: each name x gets typed with
a type variable τx. Then we start the type derivation, collecting all the constraints on
types along the way. If we can �nd a T and type expressions to associate to each type
variable, so that these constraints are satis�ed, the process can be typed under T .

By inspecting rules Par and In we observe that all the “tied-to” and “migratable”
predicates do not depend on T so for any given P , the type constraints can be expressed
simply by conjuctions and disjuctions of two kinds of basic predicates:

1. data-�ow constraints of the form τx = tx[τy] where tx is a base type variable;

2. base type constraints of the form base(τx) < base(τy) which correspond to con-
straints over the corresponding base type variables, e.g. tx < ty.

Note that the P -safety condition on Γ translates to constraints of the second kind. The
�rst kind of constraints can be solved using uni�cation in linear time. If no solution
exists, the process cannot be typed. This is the case of processes that cannot be simply

typed. If uni�cation is successful we get a set of equations over base type variables. Any
assignment of those variables to nodes in a suitable forest that satis�es the constraints of
the second kind would be a witness of typability.

Y Example 10.8. Take the term νs c.P of Example 9.2 recalling the de�nition (renaming
some variables to disambiguate)

P = !S ‖ !C ‖ !M S = s(z).νd.z〈d〉
C = c(x).(s〈x〉 ‖ x(y).c〈x〉) M = τ.νm.c〈m〉

122

10.5. Type Inference

We start by annotating each restriction νa with a fresh type variable ν(a : τa). Then
we perform a type derivation as in Example 10.5, obtaining the following data-�ow
constraints:

τs = ts[τz] τc = tc[τx] τx = tx[τy] τz = τx = τm = tz[τd]

from which we learn that:

- τd is unconstrained; we use the base type variable td for base(τd);

- τy = τd;

- tx = tz and base(τm) = tx.

We can therefore completely specify the types just by associating ts, tc, tx and td to
nodes in a forest: all the types would be determined as a consequence of the data-�ow
constraints, apart from τd to which we can safely assign the type td.

During the type derivation we also collected the following base type constraints:

base(τz) < base(τd)

base(τc) < base(τm)

base(τc) < base(τx)

base(τx) < base(τc) ∨ base(τs) < base(τc)

These can be simpli�ed and normalised using the equations on types seen above obtaining
the set

Cνs c.P = {tx < tc ∨ ts < tc, tc < tx, tx < td}

Hence any choice of T ⊇ {tx, tc, ts, td} such that ts <T tc <T tx <T td would make the
typing succeed.

Henceforth we refer to CP as the set of base types constraints of the type derivation
for P , modulo the equalities extracted from the data-�ow equations.

We sketch a few approaches that can be followed to solve the base type constraints.

A Direct algorithm

Suppose we are presented with a set C of constraints of the form t < t′ (no disjuctions). If
the constraints are acyclic, i.e. it is not possible to derive t < t by transitivity, then there
exists a �nite forest satisfying the constraints, having as nodes the base type variables.
To construct such forest, we can �rst represent the constraints as a graph with the base
type variables as vertices and an edge between t and t′ just when t < t′ ∈ C. Then
we can check the graph for acyclicity. If the test fails, the constraints are unsatis�able.
Otherwise, any topological sort of the graph will represent a forest satisfying C.

123

10. Typably Hierarchical Topologies

We can modify this simple procedure to support constraints including disjuctions by
using backtracking on the disjuncts. Every time we arrive at an acyclic assigment, we
can check for T-shapedness (which takes linear time) and in case the check fails we can
backtrack again.

Reduction to CLP(FD)

As we noted, if there exists a solution, there exists a solution where T is a linear chain
of nodes. We can exploit this fact to give an encoding of the problem as a Constraint

Satisfaction Problem over a �nite domain, or CLP(FD).
Suppose CP has n variables. We can assign to each variable tx the �nite domain of

integers {1, . . . , n}, and interpret the tx < ty constraints in CP as integer constraints.
A consistent assignment of integers to the variables would correspond to letting T =
{1, . . . , n} and annotating P so that all the constraints are satis�ed.

To complete the procedure, each valid assignment can be checked for T-shapedness.

Reduction to SAT

A third strategy to solve the constraints in CP is to encode the problem as a SAT instance.
We have at most n base type variables where n is the number of names occurring in P .
There are at most n(n−1)

2
distinct independent constraints of the form tx < ty , which can

be treated as uninterpreted propositions.
The encoding can be organised in several ways. One possibility is to encode the

full problem, satis�ability of CP and T-shapedness of P . To ensure that the constraints
encode a tree, one needs to add transitivity of < and acyclicity can be expressed by
asserting ¬(tx < tx).

Another option is to solve only a sub-problem using SAT techniques and deal with
the rest directly. For example, one can observe that the constraints in CP forms a 2-
CNF formula with O(n2) boolean variables. Since 2-CNF satis�ability is linear in the
number of variables [APT79], we obtain a O(n2) bound on satis�ability of these base
type constraints. Once we prove satis�ability of these constraints, to prove P is typably
hierarchical, it remains to prove that there exists a model T of the constraints so that P
is T-shaped. If a precise bound on the depth is needed, one can perform a search for the
shallowest forest which is a model of the base type constraints such that P is T-shaped.
Otherwise, the search can be restricted to total orders. The solutions to a 2-SAT problem
with c constraints can be enumerated using O(c) preprocessing time, O(d) time per
solution (where d is the degree of the problem, i.e. the maximum number of constraints
involving the same proposition) and O(c) space [Fed94]. Additional 2-CNF constraints
that can be added to the problem instance to prune the search space are the ones stating
that tx < ty ∨ ty < tx when x, y ∈ fn(A) for any sequential subterm A of P , which are
necessary conditions for T-shapedness.

124

10.6. Polyadic and Global Channels

In addition to the decision problem ‘is P typably hierarchical?’, there is an associated
optimisation problem asking for the smallest height of the forests T which witness that
P is typably hierarchical. The precise complexity bounds of both problems are open.

10.6 Polyadic and Global Channels

The type system of Section 10.3 is de�ned for unary channels but extending it for the
more general case of polyadic channels is very natural. A polyadic channel is a name
on which one can send a tuple of names instead of a single one as a message. Input and
output actions become a(x1, . . . , xn) and a〈b1, . . . , bn〉 respectively, in which case we say
that they have arity n. In the special case when n = 0, there is no exchange of messages
but just a CCS-style synchronisation.

Types take the generalised form

τ ::= t[τ1, . . . , τn]

where base(t[τ1, . . . , τn]) = t. The rules of the type system a�ected by the change are
Out and In. The conditions on types become the expected ones, checking that the number
of arguments of actions match the type of the channel. The constraints on base types in
rule In are simply checked for each of the input’s arguments and the notion of migratable
is changed so that a sequential subterm is migratable if it is tied to any of the input’s
arguments.

Since in the rest of the dissertation we will make occasional use of zero-arity channels,
let us specify formally how these can be handled. A zero-arity channel can be encoded
using unary channels by communicating a dummy message that is discarded by the
receiver: assuming x 6∈ fn(P), a.P = a(x).P and a.P = νx.(a〈x〉.P). In Figure 10.3
we give a specialisation of rules In and Out on zero-arity channel pre�xes. Since no
message is exchanged, none of the continuations of the receiver is migratable which is
why rule In-0 becomes trivial.

a : τ ∈ Γ Γ `T Q
Γ `T a.Q

Out-0
a : τ ∈ Γ Γ `T νX.

∏
i∈IAi

Γ `T a.νX.
∏

i∈IAi
In-0

Figure 10.3 – Zero-arity specialisation of pre�x rules.

Theorems 10.9 and 10.10 make the assumption that Γ is P -safe, assumption that is
exploited in Lemma 10.8. It is important to note that only the environment giving types
to globally free names is required to be P -safe: the environments used inside a typability

125

10. Typably Hierarchical Topologies

proof need not be safe for the subterms involved in each step. The P -safe assumption is
a mainly technical device used to side-step the fact that an important part of the check
for consistency of types is done in the Par rule, which would not apply to names that
are free at the top-level. The solution o�ered by P -safety conceptually coincides with
performing type-checking/inference on ν fn(P).P .

A more expressive, but more �ddly, solution is to include a ‘global’ base type gl ∈ T
(with no parent nor children). The rules of the type system are changed to only require
a condition t < t′ if t and t′ are both not equal to gl- Naturally, no restricted name can
have gl as base type, so the Par rule needs to include the condition gl 6∈ base(X). The
rationale behind this solution is that the <T relation is mainly used to make sure certain
names are in the scope when migrating terms during a reaction; globally free names are
however always available and, crucially, cannot be replicated, therefore whenever a term
is migrated, any reference to a global name is unambiguous.

To see why using gl is a better solution than P -safety, consider the term

P = a(x).b(y).(a〈y〉 ‖ b〈x〉) ‖ ν(c : t).a〈c〉

and the proof for Γ `T P , with Γ = [a 7→ ta[t], b 7→ tb[t]]. P -safety of Γ requires
ta < t and tb < t since c is a bound name and a and b are gloablly free names. Rule In
would require tb < ta because the only continuation is migratable and has b as free name.
However, in discharging the sub-proof for b(y).(a〈y〉 ‖ b〈x〉), rule In would also require
ta < tb since a〈y〉 is migratable. Therefore the typing fails for any T , unless we assing
ta = tb = gl, obtaining that the term can be safely typed.

Special handling for global names is expecially useful when used in conjunction with
Remark 9.1: process names can be seen as global names and typing them with gl would
avoid putting unnecessary constraints on the de�nition of recursive behaviour.

Despite its bene�ts, we avoided introducing this complication in the presentation of
the type system, in favour of the P -safe solution, to unclutter the proofs of Section 10.3.
For a generalisation of the ‘global’ base type idea, using multiplicities, see Section 12.1.

10.7 Some examples

A server with workers

We illustrate the use of the type system using the example Erlang program of Section 1.1.
Below, we give a simple π-term modelling the essential features of the program. We
abstract away aspects like the data stored by the database and focus on the communication
protocol between the server, the workers, the client and the database. The main function,

126

10.7. Some examples

which bootstraps the system, is represented by the term M :

M = νDB .νvisit .νping .(D ‖ !L ‖ !S ‖ !(τ.νc.νreply .(c ‖ !C)))

S = ping(pong).pong + visit(reply ′).(νready .νval .W)

C = c.(visit〈reply〉 ‖ reply .c)
W = lock〈ready〉 ‖ ready .

(
read〈val〉 ‖ val .write.unlock .reply ′

)
D = lock(ready ′).(ready ′ ‖ db)

L = db.(read(val ′).(val ′ ‖ db) + write.db + unlock .D)

where DB = {db, lock, read, write, unlock}. The terms S, C , W and D represent the
server, client, worker and database processes respectively, whileL represents the database
in the locked state. A single instance of a database is identi�ed by the names in DB
which encode the di�erent kinds of messages handled by that instance of the database.
An output action db (resp. c) stands for a call to the tail-recursive database (resp. client)
function. Similarly, ready and val express the identity of a worker process, visit and
ping the one of the server process.

The term M is in normal form and has no free names. Some names are primed to
satisfy Name Uniqueness but they will be bound, during execution, to instances of the
corresponding un-primed restricted names. To perform type inference, we assume each
name x is annotated with a type variable τx with base(τx) = tx.

By setting Γ = {(x : τx) | x ∈ DB} ∪ {(visit : τvisit), (ping : τping)}

Γ `T D
Γ `T L
Γ `T !L

Γ `T S
Γ `T !S

Γ `T νc.νreply .(c ‖ !C)

Γ `T τ.νc.νreply .(c ‖ !C)
Tau

Γ `T !(τ.νc.νreply .(c ‖ !C))

∅ `T M
Par

Note that since the environment is empty, the constraint on base types becomes trivial.
To prove Γ `T D we have

τlock = tlock [τready ′]

τready ′ = tready ′ Γ1 `T 0

Γ1 `T ready ′.0

τdb = tdb Γ1 `T 0

Γ1 `T db.0

Γ1 `T ready ′ ‖ db
Γ `T lock(ready ′).(ready ′ ‖ db)

In

where Γ1 = Γ∪ {(ready ′ : τready ′)}. Again, the conditions on base types are trivially true
since only ready ′ is migratable and it contains no name from the environment Γ.

127

10. Typably Hierarchical Topologies

The proof for Γ `T L starts with an application of rule In-0:

τdb = tdb

Γ `T read(val ′).(val ′ ‖ db) Γ `T write.db Γ `T unlock .D

Γ `T read(val ′).(val ′ ‖ db) + write.db + unlock .D

Γ `T db.(read(val ′).(val ′ ‖ db) + write.db + unlock .D)

which can be completed with the following proofs

τunlock = tunlock Γ `T D
Γ `T unlock .D

τwrite = twrite

τdb = tdb Γ `T 0

Γ `T db

Γ `T write.db

where Γ `T D has the same proof as above, and

τread = tread [τval ′]

τval ′ = tval ′ Γ2 `T 0

Γ2 `T val ′
τdb = tdb Γ2 `T 0

Γ2 `T db

Γ2 `T val ′ ‖ db
Γ `T read(val ′).(val ′ ‖ db)

In

where Γ2 = Γ ∪ {(val′ : τval ′)}. As in the previous application of rule In, the base
constraints are trivial because the only migrating process is val ′; this re�ects the fact
that the simple pattern of asynchronously acknowledging receipt of a message is not a
threat for depth boundedness.

Let us turn to the proof for Γ `T S:

τping = tping [τpong]

τpong = tpong Γ3 `T 0

Γ3 `T pong .0

Γ `T ping(pong).pong .0 Γ `T visit(reply ′).(νready .νval .W)

Γ `T S

where Γ3 = Γ∪{(pong : τpong)}. The second part of the premises concerns the de�nition
of a worker which gets spawned by the server in reaction to a ‘visit’ message. We
let W1 = lock〈ready〉 and W2 = ready .

(
read〈val〉 ‖ val .write.unlock .reply ′

)
so that

W = W1 ‖ W2, and Γ4 = Γ ∪ {(ready : τready), (val : τval)}. Then, we apply rule In:

τvisit = tvisit [τreply ′] Γ4 `T νready .νval .(W1 ‖ W2)
treply ′ < tvisit ∨ ({tlock} < tvisit ∧ {tread , twrite , tunlock} < tvisit)

Γ `T visit(reply ′).νready .νval .(W1 ‖ W2)

128

10.7. Some examples

This time the constraints on base types are not trivial. Note that the base types of the
names reply ′, ready and val are not constrained by this rule as they do not appear in Γ.

We now have to show Γ4 `T νready .νval .W by

τlock = tlock [τready] Γ4 `T 0

Γ4 `T lock〈ready〉.0 Γ4 `T W2 CW
Γ4 `T νready .νval .(W1 ‖ W2)

where

CW = tlock < tready ∧ tlock < tval

∧ {tread , twrite , tunlock , treply ′} < tready

∧ {tread , twrite , tunlock , treply ′} < tval

Note how, since fn(W1)∩ fn(W2)∩ {ready , val} = {ready}, W1 and W2 are linked, and
hence tied so both the names ready and val are tied to both the processes.

The proof of Γ4 `T W2 takes the shape

τready = tready

τread = tread [τval] Γ4 `T 0

Γ4 `T read〈val〉.0 Γ4 `T val .write.unlock .reply ′

Γ4 `T ready .
(
read〈val〉 ‖ val .write.unlock .reply ′

)
which can be completed as the other similar cases using rules In-0 and Out-0, imposing
the unsurprising type constraints τx = tx for x ∈ {val ,write, unlock , reply ′}. This
completes the proof of Γ `T S; we now conclude the derivation with the proof for the
client:

Γ5 `T c
Γ5 `T c.(visit〈reply〉 ‖ reply .c)

Γ5 `T !
(
c.(visit〈reply〉 ‖ reply .c)

)
tvisit < tc ∧ tvisit < treply

Γ `T νc.νreply .
(
c ‖ !

(
c.(visit〈reply〉 ‖ reply .c)

))
where Γ5 = Γ∪{(c : τc), (reply : τreply)}. This derivation again can be completed as before
using rules In-0 and Out-0, obtaining the type constraints τc = tc, τvisit = tvisit [τreply] and
τreply = treply .

We can now put all the constraints together obtaining that:

τdb = tdb τping = tping [tpong] τc = tc

τlock = tlock [tready] τpong = tpong τreply = τreply ′ = treply

τread = tread [tval] τvisit = tvisit [treply]

τwrite = twrite τready = τready ′ = tready

τunlock = tunlock τval = τval ′ = tval

129

10. Typably Hierarchical Topologies

and
tvisit < tc ∧ tvisit < treply

tlock < tready ∧ tlock < tval

{tread , twrite , tunlock , treply} < tready ∧ {tread , twrite , tunlock , treply} < tval

treply < tvisit ∨ ({tlock} < tvisit ∧ {tread , twrite , tunlock} < tvisit)

which can be simpli�ed to
tvisit < tc tvisit < treply tlock < tready tlock < tval

tread < tready twrite < tready tunlock < tready treply < tready

tread < tval twrite < tval tunlock < tval treply < tval

tlock < tvisit tread < tvisit twrite < tvisit tunlock < tvisit

which are acyclic.
Now, acyclicity ensures that there is a forest T such that M is typable. To prove

that M is typably hierarchical we need to show that it is T-shaped for a T satisfying the
constraints.

A necessary condition for T-shapedness is that, for every sequential subterm A of
M , the names of fn(A) label a path in T . Using this information to prune the obviously
wrong choices, we end up with the tree

T = tdb � tlock � tread � twrite � tunlock � tvisit � tping � tc � treply � tready � tval .

The reader can check that M is indeed T-shaped using this tree, con�rming that M is
typably hierarchical.

An expanding ring

In Section 1.3 we presented an example of depth-unbounded system, the ring program.
Since it has no bound in depth the type system ought to reject it. Let us show this is the
case by analysing a π-calculus version of the same program.

The π-term R initialises the ring with a single ‘master’ node pointing at itself as the
next in the ring. The term M represents the master function: it waits on self and reacts
to a signal by creating a new slave connected with the previous next slave. A slave S
simply propagates the signals on its channel to the next in the ring.

R = νmaster .νself .(M ‖ master〈self 〉 ‖ self)

M = !
(
master(next).self .νslave.(S ‖ master〈slave〉 ‖ slave)

)
S = !(slave.next)

The impossibility of typing R can already be seen from M : from master〈slave〉 we
deduce that tslave = tnext , which is in contradiction with the constraint that tnext < tslave
required by rule Par when typing νslave.(S ‖ master〈slave〉 ‖ slave).

130

10.7. Some examples

Abstraction and relevance to Soter

One of the possible applications of typably hierarchical systems to program analysis is
as a cheap check to know if the program’s abstraction, in the form of a π-term, can be
analysed with depth-bounded systems model checking. The ring example leaves us with
a question: suppose a π-term is extracted from an Erlang program and fails to type check,
what can we do to analyse it?

A �rst option is to fallback to Soter’s abstraction. In fact, Soter’s counting abstraction
is powerful enough in the ring example, to prove properties as ‘all the mailboxes are
bounded by 1’, (i.e. there is at most one token going around the ring at all times).

A second, more re�ned, option is to devise an hybrid abstract model which uses ACS
counters for problematic names as slave , but keeps the π-calculus’ precision for other
restrictions. To formalise this hybrid approach one can observe that:

1. the ACS’ counter abstraction corresponds to making a restriction a globally free
name in a π-term;

2. the detection of ‘problematic names’, can be done using heuristics analysing the
names involved in the con�icting constraints in the type inference.

As future work, we intend to study a generalisation of Soter’s abstraction targeting
the π-calculus and using our type system to gracefully degrade the precision on names,
until a typably hierarchical abstraction of the input program can be found.

131

Chapter 11

Relation with Other Models

In this chapter we explore connections between the typably hierarchical π-calculus and
other known models of concurrent computation.

We �rst examine Nested Data Class Memory Automata and study the semantic
correspondence with typably hierarchical terms in some depth. Then we consider,
inspired by this correspondence, a variant of CCS that forms a proper subset of the
typably hierarchical fragment. We conclude with a discussion on the vast literature on
type systems and fragments of π-calculus.

11.1 Nested Data Class Memory Automata

After isolating a fragment of a process calculus, an interesting question is can we �nd

an automata based presentation of the same fragment? In this section we give an answer
to this question by relating the typably hierarchical fragment to a class of automata on
data-words recently de�ned in [CMO15]: Nested Data Class Memory Automata (NDCMA).

The original presentation of NDCMAs sees them as language recognition devices:
they can recognise sets of data-words, that is sequences of symbols in Σ×D where Σ is a
�nite alphabet and D is an in�nite set of data values. Notably, (weak) NDCMAs are more
expressive than Petri nets, while enjoying decidability of some veri�cation problems.
While Class Memory Automata [BS07] do not postulate any structure on D, NDCMAs
assume that it is equipped with an in�nitely branching, �nite height forest structure,
a new notion of nesting for data languages. Without the local acceptance condition,
NDCMAs have decidable emptiness, and in the deterministic case are closed under all
Boolean operations. NDCMAs have found applications in algorithmic game semantics,
speci�cally in the design of algorithms for deciding observational equivalence of several
low-order fragments of Reduced ML [CHMO15], with the nested dataset re�ecting the
tree-structure of the threads in the game-semantic plays. We will make use of this forest
structure to represent T-compatible π-term forests.

133

11. Relation with Other Models

We are primarily interested in establishing a tight relation between the transition
systems of NDCMAs and typably hierarchical terms. Therefore we do not regard ND-
CMAs as language recognisation devices but simply as computational models. For this
reason, our de�nition ignores the language-related components of the original de�nition
of [CMO15]: there is no �nite alphabet Σ, no accepting control states, no accepting run.
While in the language-theoretic formulation at each step in a run a letter and a data value
must be read from the input string, here a transition can �re simply if there exists a data
value satisfying the transition’s precondition.

De�nition 11.1 (NDCMA [CMO15]). We de�ne a nested dataset (D, predD) to be a forest
of in�nitely many trees of level ` which is full in the sense that for each data value d of
level less than `, there are in�nitely many data values d′ whose parent is d.

A class memory function (over a set A) is a function f : D → A] {f} such that
f(d) = f for all but �nitely many d ∈ D; f is a special symbol indicating a data value is
fresh, i.e. has never been used before.

Fix a nested data set of level `. A Nested Data CMA of level ` is a tuple (Q, δ, q0, f0)
where Q is a �nite set of states, q0 ∈ Q is the initial control state, f0 : D → Qf is the
initial class memory function satisfying f0(pred(d)) = f =⇒ f0(d) = f, and δ is
the transition relation. δ is given by a union δ =

⋃`
i=1 δi where each δi is a relation:

δi ⊆ Q× (Qf)
i ×Q×Qi and Qf is de�ned as Q ∪ {f}. A con�guration is a pair (q, f)

where q ∈ Q, and f : D → Qf is a class memory function. The initial con�guration
is (q0, f0). The automaton can transition from con�guration (q, f) to con�guration
(q′, f ′), written (q, f) →A (q′, f ′), just if there exists a level-i data value d such that
(q, q1, . . . , qi, q

′, q′1, . . . , q
′
i) ∈ δ, for all j ∈ {1, . . . , i}, f(predi−j(d)) = qj and

f ′ = f
[

predi−1(d) 7→ q′1, . . . , pred(d) 7→ q′i−1, d 7→ q′i
]
.

Given a nested dataset D we write CMF(D,Q) for the set of all class memory func-
tions from D to Qf.

Theorem 11.1 (Decidability of reachability for NDCMA). The problem of determining,

given an NDCMA (Q, δ, q0, f0) and a con�guration (q, f), if (q0, f0)→∗A (q, f), is decidable.

Proof. Consider the function ‖_‖ : CMF(D,Q)→P(D) de�ned as

‖f‖ := {d | f(d) 6= f}.

By de�nition of class memory function, ‖f‖ is always a �nite set. Once a control state
has been assigned to a data value d, no transition rule can assign f to it again; so we have

(q1, f1)→A (q2, f2) =⇒ ‖f1‖ ⊆ ‖f2‖

Therefore, in a reduction (q0, f0)→A (q1, f1)→A · · · →A (qn, fn) for all 0 ≤ i < n we
have ‖fi‖ ⊆ ‖fn‖. Then, to check for reachability of (q, f) we only need to check every
reduction sequence between con�gurations in the �nite set Q× {f ′ | ‖f ′‖ ⊆ ‖f‖}.

134

11.2. Encoding Typably Hierarchical Terms into NDCMA

While reachability for NDCMA had not been considered before as it does not have
applications in the language theoretic interpretation, coverability was showed to be
decidable in [CMO15] by using techniques very similar to the ones used for proving
decidability of coverability for depth-bounded systems (see Section 9.5). More precisely,
both arguments crucially rely on the rooted tree embedding well quasi ordering.

In the following sections, we want to show that NDCMAs and typably hierarchical
π-terms have a quite similar semantics. To highlight similarities and di�erences and
support reductions of veri�cation problems from one model to the other, in the next two
sections we present two encodings.

In Section 11.2 we show an encoding from typeable π-terms, and we prove that a
transition system generated from the NDCMA encoding is bisimilar to the transition
system generated by the reduction semantics of the π-term. This encoding shows how
NDCMA transitions can simulate π-calculus’ synchronisation mechanism, when mobility
is restricted to the hierarchical case.

Then in Section 11.3, we describe an encoding from NDCMA to a subset of typably
hierarchical terms, with a similar semantic correspondence. This encoding highlights
the mismatch between the expressivity of typably hierarchical terms and NDCMA: the
image of the encoding is a fragment of π-calculus showing no mobility. In Section 11.4
we will compare the image of this encoding with variants of CCS.

11.2 Encoding Typably Hierarchical Terms into

NDCMA

We make a few simplifying assumptions on the term to be encoded as an NDCMA. First,
we assume P is a closed normal form, i.e. fn(P) = ∅, second we assume P contains no τ
action. It would be easy to support the general case but we only focus on the core case
for conciseness. Fix a closed T-shaped π-term P such that ∅ `T P , with ` = height(T).
We will construct a level-` automaton AJP K from P so that their transition systems are
essentially bisimilar.

The intuition behind the encoding is as follows. A con�guration (q, f) represents a π-
term P by using f to label a �nite portion of D so that it is isomorphic to a T-compatible
forest inFJP K. Our encoding proceeds in rounds. A single synchronisation step between
two processes will be simulated by a predictable number of steps of the automaton. Since
π-terms exhibit non-determinism, the automata in the image of the encoding need to be
non-deterministic as well. We make use of the non-determinism of the automata model
in a second way: in a reduction, the two synchronising processes are not in the same
path in the syntax tree (they are both leaves by construction) but the automaton can
only examine one path in D at a time; we then �rst guess the sender, mark the channel
carrying its message, then select a receiver waiting on that channel (which will be in the

135

11. Relation with Other Models

path of both processes) and then spawn their continuations in the relevant places. This
requires separate steps and could lead to spurious deadlocks when no process is listening
over the selected channel. These deadlocked states can be pruned from the bisimulation
by restricting the relevant transition system to those con�gurations where the control
state is a distinguished state that signals that the intermediate steps of a synchronisation
have been completed. A successful round follows very closely the operations used in the
proof of Theorem 10.10.

A round starts from a con�guration with control state qready, then goes through a
number of intermediate steps until it either deadlocks or reaches another con�guration
with control state qready. Only reachable con�gurations ofAJP Kwith qready as control state
will correspond to reachable terms of P . Thus, given an automaton A = (Q, δ, qready, f0),
we de�ne the transition relation (⇒ready) ⊆ CMF(D,Q)2 as the minimal relation such
that f ⇒ready f

′ if (qready, f) →A (q1, f1) →A · · · →A (qn, fn) →A (qready, f
′) where in

the possibly empty sequence of (qi, fi), qi 6= qready.
To encode a reachable term Q in a con�guration (qready, f) we use f to represent

the forest Φ(Q): roughly speaking we represent a node n of Φ(Q) labelled with l with
a data value d mapped to a ql by f . In general, due to the generation of unboundedly
many names, there might be in�nitely many such labels l. We therefore need to show
that we can indeed use only a �nite number of distinct labels to represent names and
reachable sequential subterms with control states. This is achieved by using the concept
of derivatives. The set of derivatives of a term P is the set of sequential subterms of P ,
both active or not active. More formally, it is the set de�ned by the following function

der(0) := ∅
der(νx.P) := der(P)

der(P ‖ Q) := der(P) ∪ der(Q)

der(!M) := {!M} ∪ der(M)

der(M +M ′) := {M +M ′} ∪ der(M) ∪ der(M ′)

der(π.P) := {π.P} ∪ der(P)

Clearly, der(P) is a �nite set. Every active sequential subterm of a term P ′ reachable
from P is congruent to a Qσ for some substitution σ. When P is depth-bounded, we
know from [Mey08] that, there is a �nite set of substitutions such that the substitution σ
above can always be drawn from this set. The assumption that P is T-shaped and typable
allows us to be even more speci�c. Let XT = {χt | t ∈ T } be a �nite set of names, we
de�ne ∆P := {Qσ | Q ∈ der(P), σ : fn(Q)→ (XT ∪ fn(P))}.

Lemma 11.2. Let P be a term such that forest(P) is T-compatible. Then there exists a

term Q such that forest(Q) is T-compatible, Q is an α-renaming of P , bnν(Q) ⊆ XT and

each active sequential subterm of Q is in ∆P .

136

11.2. Encoding Typably Hierarchical Terms into NDCMA

Proof. By de�nition of T-compatible forest we have that in any path of forest(P) no two
distinct nodes will have labels (x, t) (x′, t) so α-renaming each restriction (x : τ) of P ′ to
(χbase(τ) : τ) will yield the desired Q.

Henceforth, we will write Φ′(P) for a relabelling of the forest Φ(P) such that its
labels use only names in XT , as justi�ed by Lemma 11.2.

Corollary 11.3. If a termP is typably hierarchical, then everyP ′ ∈ Reach(P) is congruent
to a term Q such that bnν(Q) ⊆ XT and each active sequential subterm of Q is in ∆P .

Proof. By Theorem 10.10 and Lemma 11.2.

The transition relation of the automaton encoding of a term P is then derived from
the set ∆P .

Before we show how to construct the transitions of the automaton from the term, we
de�ne a relation ∼ between terms and class memory functions. This relation formalises
how we encode the term as a labelling of data values, and will have a crucial role in
proving the soundness of the encoding. Let Q be a term reachable from P and (qready, f)
be a con�guration of an automaton A. Let ϕ = Φ′(Q), the relation Q ∼ f holds if and
only if there exists an injective function ι : nodes(ϕ)→ D such that for all n ∈ nodes(ϕ):

i) if ι(n) = d, n′ �ϕ n and ι(n′) = d′ then d′ = pred(d);

ii) if n is labelled with (χi, t) then f(ι(n)) = χi;

iii) if n is labelled with a sequential process Q′ then f(ι(n)) = Q′;

iv) for each d such that f(d) 6= f either there is an n such that ι(n) = d or f(d) = q†.

Let us now describe how we can simulate reduction steps of a π-term with transitions
in a NDCMA. In encoding a π-term’s semantics into the transition relation of a NDCMA,
we need to overcome the di�erences in the primitive steps allowed in the two models.
Simulating a π-calculus synchronisation requires matching two paths, leading to the two
reacting sequential terms, in D at the same time. A step in the automata semantics can
only manipulate a single path, so we will need to split the detection of a redex in two
phases: �nding the sender, then �nding a matching receiver. Moreover, �nding a redex
requires detecting that the path under consideration contains a node labelled with the
synchronising channel and one with the appropriate sequential term, ignoring how many
and which other nodes are in between them. To succinctly represent this operation, we
introduce the following notation. Fix a set Q including q, q′, l1, . . . , ln, l′1, . . . , l′n, l. We
associate to the expression [q, l1 . . . ln]→ [q′, l′1 . . . l

′
n] the set of transitions

tranQ
(
[q, l1 . . . ln]→ [q′, l′1 . . . l

′
n]
)

:={
(q, q1, . . . , qm, q

′, q′1, . . . , q
′
m) ∈ Q2m+2 |

∃ i1 . . . im. 1 ≤ i1 < · · · < in ≤ m, qij = lj, q
′
ij

= l′j
}
.

137

11. Relation with Other Models

qready

S

−−−→
q′S

Cwait
S

syn

msg
−−−→
Spawn

∗

qsend

q† !R

syn

msg
−−−→

−−−→

qrec

q† Crec
!R

msg
−−−→
Spawn

∗

q′R

¬mig

¬mig
q† !R

msg
−−−→
Spawn

∗

qready

mig

q† !R

Figure 11.1 –A schema of the transitions simulating a synchronisation in the automaton encoding
of a term. The trees represent the class memory functions associated with con�gurations in the
run of the automaton. The run simulates a sender synchronising with a replicated receiver. The
two displayed nodes in the path leading to S are the ones labelled with the names of, from top to
bottom, the synchronisation channel and the exchanged message.

When the sequence l1, . . . , ln is empty, the expression simply means that the automaton
may go from a con�guration (q, f) to (q′, f) with no condition (nor e�ect) on f . Similarly,
we associate to the expression [q, l1 . . . ln; f]→ [q′, l′1 . . . l

′
n; l] the set of transitions

tranQ
(
[q, l1 . . . ln; f]→ [q′, l′1 . . . l

′
n; l]
)

:={
(q, q1, . . . , qm, f, q

′, q′1, . . . , q
′
m, l) ∈ Q2m+4 |

∃ i1 . . . im. 1 ≤ i1 < · · · < in = m, qij = lj, q
′
ij

= l′j
}
.

Note that the sequence l1, . . . , ln may be empty, in which case the data value labelled
with f is selected among the level-1 ones. The set of states mentioned in an expression is

states
(
[q, l1 . . . ln]→ [q′, l′1 . . . l

′
n]
)

:= {q, q′, l1, . . . , ln, l′1, . . . , l′n}
states

(
[q, l1 . . . ln; f]→ [q′, l′1 . . . l

′
n; l]
)

:= {q, q′, l, l1, . . . , ln, l′1, . . . , l′n} .

To de�ne the transitions of the encoding of a term, we make use of some auxiliary
de�nitions generating sets of transition expressions.

Setup(q, q′, l, l′, ϕ) adds to the path leading to a data value labelled with l, the nodes
corresponding to a forest ϕ ∈ FJQK for some Q. These transitions are deterministic in

138

11.2. Encoding Typably Hierarchical Terms into NDCMA

the sense that a con�guration (q, f) with only one data value labelled with lwill transition
through all the transitions dictated by Setup(q, q′, l, l′, ϕ) reaching (q′, f ′). Formally,
suppose, for some j and k, ϕ = {(x1, τ1)[ϕ1], . . . , (xj, τj)[ϕj]} ∪ {Q1[], . . . , Qk[]} where
all xi are in XT and all Qi ∈ ∆P . Then Setup is de�ned as follows:

Setup(q, q′, l, l′, ϕ) := {[q, l; f]→ [q1, l;Q
ready
1]}

∪ {[qi, l; f]→ [qi+1, l;Q
ready
i+1] | 1 ≤ i ≤ j}

∪ {[qj, l; f]→ [q′1, l;Q
ready
j]}

∪ {[q′i, l; f]→ [q′′i , l;x
set
i] | 1 ≤ i ≤ k}

∪
k⋃
i=1

Setup(q′′i , q′i+1, x
set
i , xi, ϕi)

∪ {[q′k+1, l]→ [q′, l′]}

where for all 1 ≤ i ≤ j and all 1 ≤ i′ ≤ k, qi, q′i′ , q′′i′ , q′k+1 are fresh intermediate control
states. in the sense that they are only mentioned in the transitions generated by that
speci�c application of Setup. We allow l to be the empty sequence, in which case l′ needs
to be the empty sequence as well.

Similarly, we de�ne Spawn(q, q′, l, l′, ϕ) to be the set of transitions needed to append
each tree in ϕ to nodes in the path leading to a data value d labelled with l; the operation
starts at control state q and ends at control state q′ with the label for d updated to l′.
Each tree is appended to the node with the lowest level such that every name mentioned
in its leaves is an ancestor of such node. Since a single transition can add only one
node of ϕ, we need a number of transitions to complete the operation; these transitions
will however be deterministic in the same sense as the ones required to complete a
Setup operation. Formally, let the forest ϕ = Φ′(D) consist of trees θ1, . . . , θk, for
a term D ∈ ∆P . We can precompute, for each θi, the base type ti := min�T {t |
χt ∈ fn(A), n ∈ Nθi , `θi(n) = A} when de�ned. For each label χt ∈ XT we also have
a label χsp

t we write χ(θi) (resp. χsp(θi)) for χti (resp. χsp
ti) when ti is de�ned, or the

empty sequence when ti is unde�ned (e.g. when θi does not have free variables). Then
Spawn(q, q′, l, l′, ϕ) is the set of transition expressions de�ned as follows:

Spawn(q0, q
′, l, l′, ϕ) :=

{[qi−1, χ(θi) l]→ [q′i−1, χ
sp(θi) l] | 1 ≤ i ≤ k}

∪
k⋃
i=1

Setup(q′i−1, qi, χsp(θi), χ(θi), θi)

where for all 1 < h ≤ k, qh, q′h are fresh.

139

11. Relation with Other Models

We de�ne for each D ∈ ∆P the set of transition expressions React(D) representing
the steps needed to simulate in the automaton the potential reactions of D.

React(M) := ReactMq† (M)

React(!M) := React!M!M(M)

The set of transition expressions ReactDq (M) collects all the potential reactions of M
as a choice of D; the label q is the one that should be associated with the “consumed”
term D after a reaction has been completed. The transitions simulating a replicated
component will not mark, as the ones for non replicated terms, the reacted term with q†,
which will represent “garbage” inert nodes in f . The term 0 cannot initiate any step and
a choice may do any action that one of its choices can:

ReactDq (0) := ∅
ReactDq (M +M ′) := ReactDq (M) ∪ ReactDq (M ′)

Any sender can initiate a synchronisation from the ready state:

ReactDq (χt〈χt′〉.C) :=

{[qready, χtχt′D]→ [q′, χsyn
t χ

msg
t′ C

wait] | t < t′}
∪ {[qready, χt′χtD]→ [q′, χ

msg
t′ χ

syn
t Cwait] | t > t′}

∪ Spawn(q′, qsend, C
wait, q,Φ′(C)).

where q′ is fresh. Here, the state qsend signals that we are in the middle of a synchronisation,
where the sender is committed but a receiver has yet to be selected.

For the case of an input pre�x M = χt(x).C we distinguish two cases: when the
base type of χt is greater than the base type of x no migration occurs, otherwise part of
the continuation needs to be spawned in the sender’s path. In the case when the base
type of χt is greater than the base type of x, we set

ReactDq (χt(x).C) :=

{[qsend, χ
syn
t χ

msg
t′ D]→ [qrec, χtχt′C

rec] | t < t′ ∈ T }
{[qsend, χ

msg
t′ χ

syn
t D]→ [qrec, χt′χtC

rec] | t > t′ ∈ T }
∪ Spawn(qrec, qready, C

rec, q,Φ′(C)).

In the case when the base type of χt is greater than the base type of x, more transitions are
required. First, we precompute for each M = χt(x).C as above and t < t′ ∈ T , the two
forests ϕmig(C, t

′) and ϕ¬mig(C) such that Φ′(C[χt′/x]) = ϕmig(C, t
′)] ϕ¬mig(C) and

ϕmig(C, t
′) contains all the nodes labelled with sequential terms tied to χt′ in C[χt′/x].

140

11.2. Encoding Typably Hierarchical Terms into NDCMA

As we have shown in the proof of Theorem 10.10, by virtue of Lemma 9.2, ϕmig(C, t
′) and

ϕ¬mig(C) are indeed disjoint. Then we set:

ReactDq (χt(x).C) :=

{[qsend, χ
syn
t D]→ [qrec, χtC

rec]}
∪ Spawn(qrec, q

′, Crec, q, ϕ¬mig(C))

∪
⋃
t′∈T

Setup(q′, qready, χ
msg
t′ , χt′ , ϕmig(C, t

′))

where q′ is a fresh intermediate control state. Figure 11.1 illustrates the steps the auto-
maton performs when simulating a synchronisation.

De�nition 11.2 (Automaton encoding). The automaton encoding of a typably hier-
archical term P is the NDCMA AJP K = (Q, δ, qready, f) where Tr =

⋃
{React(D) |

D ∈ ∆P}, Q = states(Tr), δ = tranQ(Tr) and f is an arbitrary class memory function
such that P ∼ f .

We will now show that the transition system of the semantics of P is bisimilar to the
one of A when restricting it to con�gurations with control state equal to qready.

Establishing that two transition systems are bisimilar implies that a wide class of
properties are preserved across bisimilar states. For our purposes, proving that the
automaton encoding of a term gives rise to a bisimilar transition system has the important
consequence that reachability can be reduced from one model to the other.

Theorem 11.4. The transition system (CMF(D,Q),⇒ready, f0) induced by the automaton

AJP K = (Q, δ, qready, f0) obtained from a closed typably hierarchical term P , is bisimilar

to the transition system of the reduction semantics of P , (Reach(P),→, P).

The result is proved by showing that the relation ∼ de�ned above, is a bisimulation
that relates the initial states of the two transition systems. By de�nition of AJP K we
have P ∼ f0. Showing that∼ is indeed a bisimulation amounts to showing that if Q ∼ f
then:

(A) for each Q′ such that Q→ Q′ there is a f ′ such that f ⇒ready f
′ and Q′ ∼ f ′;

(B) for each f ′ such that f ⇒ready f
′ there is a Q′ such that Q→ Q′ and Q′ ∼ f ′.

To show this holds we rely on the hypothesis that Q ∼ f to get a ι relating Φ′(Q) and
f . The proof then closely follows the constructions in the proof of Theorem 10.10. If
Q→ Q′ we can �nd two nodes nS and nR in Φ′(Q) labelled with the sender and receiver
processes responsible for the reduction; they will share an ancestor na labelled (χt, t)
corresponding to the channel on which they are synchronising. On the automaton side,
we have that (qready, f) matches the rule generated from the sender by selecting the data

141

11. Relation with Other Models

value dS = ι(nS), a data value db corresponding to the name being sent and da = ι(na).
This leads to (q′, f) where f ′(da) = χsyn

t , f ′(db) = χ
msg
t′ , f ′(dS) = S ′wait. From here

only one of the transitions generated from Spawn of the continuation is enabled as
there is only one node marked with ‘wait’. The transitions are deterministic from here
until a con�guration (qsend, f

′) is reached with f ′ representing the initial forest with the
continuation of the sender added and with the node of the sender updated with either
q† or the sender itself if it is a replicated component. At this point there is only one
data value marked with ‘syn’ and the only transitions from qsend are the ones generated
from a process that can receive from the marked channel. We can pick the rule that
has been generated from the receiver involved in the reduction from Q to Q′ and go
to a con�guration with control state qrec. From this con�guration the transitions are
deterministic. The next con�guration reached with control state qready is bisimilar to
Q′ by tracing the e�ects these transitions have on the class memory function. Fresh
data values get assigned labels compatible with the non migrating continuations of the
receiver �rst, and then the migrating ones as children of db; data values with meaningless
labels get assigned the label q†.

To prove (B) we proceed similarly. Every reduction sequence from (qready, f) to
(qready, f

′) must start with a transition to a con�guration with control state qsend, which
is generated by rules extracted from a sender S labelling a data value dS ; since Q ∼ f
we know that nS = ι−1(dS) is labelled with S in Φ′(Q), hence S is an active sequential
process of Q. To complete this part of the proof we only need to follow the transitions of
the automaton in the same way as done for the previous point, and note that the only
way the automaton can reach a con�guration with control state qready from (qready, f) is
by selecting a receiver that can synchronise with the selected sender. This is important
because there may be transitions from (qready, f) corresponding to selecting a sender
trying to synchronise on a channel on which no receiver is listening. This transition
would lead to a deadlocked con�guration (one with no successors) but never going
through a con�guration with control state qready.

Let us know see in more detail which properties are preserved by the encoding thanks
to Theorem 11.4. For reachability, the bisimulation result allows us to infer the following
corollary.

Corollary 11.5. For each class memory function f ∈ CMF(D,Q) with P ∼ f , a π-term
Q is reachable from P if and only if there exists a f ′ ∼ Q such that (qready, f)→∗A (qready, f

′)

The existential quanti�cation of f ′ makes the previous result not strong enough
to inter-reduce reachability of NDCMA and reachability of typably hierarchical terms.
While NDCMA reachability is decidable, as we prove in Theorem 11.1, decidability of
reachability of typably hierarchical terms is open.

Corollary 11.5 does however imply that the coverability problems on the two models
are equivalent.

142

11.3. Encoding NDCMA into Typably Hierarchical Terms

11.3 Encoding NDCMA into Typably Hierarchical

Terms

In this section we sketch how an NDCMA can be encoded into a bisimilar typably
hierarchical π-term.

Similarly as the encoding in the opposite direction, the π-calculus encoding of an
automatonAwill represent a reachable con�guration (q, f) using the forest of a reachable
term P . A term representing a reachable con�guration may need to execute several steps
before reaching another term representing a successor con�guration.

Fix an automaton (Q, δ, q0, f0). For simplicity we show the case where ∀d. f0(d) = f,
the general case follows the same scheme. First we note that every transition in δi is of
the form

(q0, q1 . . . qj, f, . . . , f︸ ︷︷ ︸
i−j

, q′0, q
′
1 . . . q

′
i)

for some 1 ≤ j ≤ i, where qk ∈ Q for all 0 ≤ k ≤ j. Instead of using the partition
δ =

⋃`
i=1 δi we re-partition the transition relation as δ =

⋃`
j=0 θj where

θj :=
⋃̀
i=j

{(q0, q1 . . . qj, f, . . . , f︸ ︷︷ ︸
i−j

, q′0, q
′
1 . . . q

′
i) ∈ δi}

(�xing δ0 = ∅ for uniformity). We introduce a channel name ciq for each q ∈ Q and each
level of the automaton i. Our encoding will show no mobility, so each such channel c
will have type tc, hence no message will be exchanged on synchronisation; we abbreviate
this kind of synchronisation with c.P and c.Q.1 Let Ci := {(ciq : tciq) | q ∈ Q}. Given a
transition tr ∈ θj where tr = (q0, q1 . . . qj, f, . . . , f, q

′
0, q
′
1 . . . q

′
i) we de�ne the term Atr

to be

Atr := c0q0 . · · · .c
j
qj
.νCj+1. · · · νCi.

(
i∏

k=0

ckq′k ‖
i∏

k=j+1

Pθk

)

where Pθj :=
∏

tr∈θj !(Atr) and
∏i

k=i+1 Pθk = 0. Note that these de�nitions are well-
de�ned since they are not recursive. The π-term encoding of the NDCMAA = (Q, δ, q0, f0)
is then de�ned as PJAK := νC0.(Pθ0 ‖ c0q0).

Similarly to our previous result, the encoding needs more than one step to simulate
a single transition of the automaton. Hence, to state the result on the correspondence
between the semantics of the automaton and its encoding, we de�ne a derived transition
system on π-terms as follows. Let P and Q be two π-terms such that P →+ Q, if
P ≡ νC0.(c ‖ P ′) and Q ≡ νC0.(c′ ‖ Q′) with c, c′ ∈ C0, and none of the intermediate
processes in the reduction from P to Q is in that form, then P ⇒C0 Q. Note that even

1see Section 10.6 for details on how to handle zero-arity channels.

143

11. Relation with Other Models

after α-renaming a term in the encoding, we would be able to pinpoint names from each
Ci by looking at their types, as α-renaming does not a�ect type annotations.

Theorem 11.6. The transition system generated by the semantics of a level-` NDCMA A
and the transition system⇒C0 with PJAK as initial state, are bisimilar.

Proof. Fix an NDCMA A = (Q, δ, q0, f0) with δ =
⋃

0≤j≤` θj as before. We prove the
theorem by exhibiting a bisimulation relation (v) ⊆ (Q× (D⇀ Qf))× Reach(PJAK)
between the two transition systems. For a class memory function f : D→ Qf, let f(D)
be the Q-labelled forest with the set N = {d ∈ D | f(d) 6= f} as nodes, each labelled
with f(d) and with predD restricted to N as parent relation. We �rst de�ne a hierarchy
of relations vi between Q-labelled forests and π-terms, for 0 ≤ i ≤ `, as follows:
q[{ϕ1, . . . , ϕn}] vi νCi.(Pθi ‖ ciq ‖

∏
1≤j≤nPj) if, for all 1 ≤ j ≤ n, ϕj vi+1 Pj . Since

n must be 0 for i = `, the relation is well-de�ned. Let P ∈ Reach(PJAK) and (q, f)
be a reachable con�guration of A. Then (q, f) v P if there exists a P ′ ≡ P such that
q0[f(D)] v0 P

′. To show that v is indeed a bisimulation, we have to prove that if
(q, f) v P then:

(A) for each (q′, f ′) such that (q, f)→A (q′, f ′) there is a P ′ such that P ⇒C0 P ′ and
(q′, f ′) v P ′;

(B) for each P ′ such that P ⇒C0 P ′ there is a (q′, f ′) such that (q, f)→A (q′, f ′) and
P ′ v (q′, f ′).

To prove (A) we proceed as follows; suppose (q, f) →A (q′, f ′) is an application of a
transition t = (q, q1 . . . qj, f, . . . , f, q

′, q′1 . . . q
′
i) ∈ θj then the forest q[f(D)] has a path

from the root to a leaf labelled with q, q1, . . . , qj , which, by de�nition of v, implies that
P is congruent to a term with the following shape:

νC0.(R0 ‖ c0q ‖ νC1.(R1 ‖ c1q1 ‖ · · · νC
j.(Rj ‖ cjqj ‖ Pθj) · · ·).

By construction, Pθj ≡ !(Atr) ‖ R and Atr is a process inputting once from c0q then
once from each ckqk in sequence. From the shape of P we can conclude all of these input
pre�xes can synchronise with the dual ckqk processes in parallel with them, activating, in
j + 1 steps, the continuation C = νCj+1. · · · νCi.

(
c0q′ ‖

∏`
k=1c

k
q′k
‖ Pθj+1

)
, yielding the

process
P ′ ≡ νC0.(R0 ‖ c0q′ ‖ νC1.(R1 ‖ c1q′1 ‖ · · · νC

i.(Ri ‖ cjq′j) · · ·)

where for k between j+1 and i,Rk = Pθk . Now consider the forest q′[f ′(D)]: it coincides
with q[f(D)] except on the path we singled out, now labelled with q′, q′0, . . . , q

′
j and

continuing to a leaf with nodes labelled q′j+1, . . . , q
′
i. It is easy to see that q′[f ′(D)] v P ′.

To prove (B) one can proceed similarly, by observing that even if PJAK can perform
some reductions which deadlock that do not correspond to reductions of the automaton,

144

11.4. CCS!

these steps cannot lead to a state with c0q′ as one of the active sequential processes. This
claim is supported by the following easy to verify invariant: in any term P reachable
from PJAK, for each bound name c in P there is at most one active sequential subterm
of P outputting on c. This is satis�ed by PJAK and preserved by reduction.

Theorem 11.7. PJAK is typably hierarchical.

Proof. Assume an arbitrary strict total order <Q on the automaton’s control states; let
then (T ,�) be the forest with nodes T = {tciq | 0 ≤ i ≤ `, q ∈ Q} and tciq �tciq′ if q <Q q

′,
and tciq � tci+1

q′
if q and q′ are respectively the maximum and minimum states with respect

to <Q. It can be proved that ∅ `T nf(PJAK): since no messages are exchanged over
channels, the constraints on types are trivially satis�ed; for the same reason, no sequential
term under an input pre�x is migratable, making all the base type constraints in rule In
trivially valid. The base type inequalities of rule Par are also satis�ed since in Atr for
tr ∈ θj , every Pθk might be tied to any channel c in Cj+1 ∪ . . . ∪ Ci but can only have as
free names channels in Ch with h ≤ j, which all have base types smaller than c.

11.4 CCS
!

The Calculus of Communicating Systems (CCS) introduced in the seminal work by
Milner [Mil89] is one of the �rst process calculi. The π-calculus was conceived as a
systematisation and generalisation of CCS capturing mobility, a feature which is missing
from pure CCS. Since its introduction, many variants of CCS have been studied [FL10].
The syntax of CCS can be seen as the one of π-calculus where all the actions have arity
zero, i.e. sends a.P and receives a.P do not carry any message and simply represent
synchronisation between two parallel components knowing the same name. Due to
the absence of name-passing, representing recursive behaviour is a more subtle issue
than it is in π-calculus [BGZ09]. The most general way is by allowing recursive process
de�nitions. This is implemented by using process identi�ers, to which a �nite set of
de�nitions associates processes, and relabelling, which corresponds to substitution of free
names. In this general form, recursive de�nitions in conjunction with name restrictions
lead to a Turing-powerful language.

However, other less general—but practically relevant—constructs for specifying in�n-
ite behaviour have been proposed. Removing relabelling and introducing replication, the
same we used in the π-calculus, makes the calculus less expressive but more amenable to
automated analysis. This variant of CCS is often called CCS!. In [He11] reachability is
proved to be decidable for CCS! by reducing it to Petri net reachability.

To explore the relation between CCS! and typably hierarchical terms we need to
relate their syntaxes. As we noted in Section 10.6, adding synchronisation on channels
of arity zero in the π-calculus we consider is rather easy and all the results of Chapter 10

145

11. Relation with Other Models

can be straightforwardly adapted to support this simpler form of communication. In this
way, we can see CCS! as a syntactic subset of π-calculus where only zero-arity channels
can be used in pre�xes.2 The semantics of CCS! can be seen as a special case of the one
given in De�nition 9.1, where no substitution is necessary. Refer to Figure 10.3 for the
specialisation of rules In and Out on zero-arity channel pre�xes.

AllCCS! terms are typably hierarchical. To see this is true, we extract from aCCS! term
P , a forest TP , and annotations for the restrictions of P , that guarantee TP -shapedness
and typability of P . We can assume, w.l.o.g., that P is a closed normal form. Since all the
names have arity zero, all the type annotations can be of the form ν(x : tx). We construct
a forest of base types TP = (NP ,�P) from P as follows. The the set of base types is
NP := {tx | x ∈ bnν(P)}. The parent function �P is de�ned inductively on the structure
of P : let P = νX.

∏
i∈IAi, X = {(x1 : tx1), . . . , (xn : txn)} and Ai =

∑
j∈Jiπij.Pij , the

parent function �P is the smallest relation such that

1. if t �Pij t′ then t �P t′ (the relation �Pij is the inductive case of the de�nition),

2. tx1 �P tx2 �P · · · �P txn (the types in X form an arbitrary linear order),

3. txn �P t for all t that are minimal elements of N with respect to any of the rela-
tions �Pij , i.e. t ∈ min�(N) where � =

⋃
{�Pij | i ∈ I, j ∈ Ji} (the roots of the

inductive cases are the children of txn).

In the base case P = 0, none of the items apply and �0 is the empty relation. When
X = ∅ only item 1 applies.

Intuitively the forest of base types TP is simply a forest that re�ects the static nesting
structure of P : a restriction νx which is nested under νy in P is mirrored by the base
type tx being a descendent of ty in TP . By construction—as enforced by item 2—P is TP -
shaped.

To see that P is typable, we can run the inference algorithm of Section 10.5. There
are no constraints on types as there are no arguments in pre�xes. Rules In-0 and Out-0
do not impose any constraints on base types. The only rule that constraints base types
is Par: item 3 above guarantees that, in any application of the rule, any free name in a
subterm Ai has a base type which is an ancestor of the base type of any restriction in X .

This shows that every CCS! term is typably hierarchical. Our type system, however,
becomes trivial when mobility is absent and adds little insight on the term.

Y Example 11.1 (Adapted from [He11]). The normal form

ν(b : b).
(
!
(
b.ν(a : a).(!a.b ‖ !a.b)

)
‖ b
)

is a CCS! term. It can be typed using base types T with b �T a.
2Technically [He11] uses unguarded replication and a labelled semantics. Both di�erences do not

impact on the presented results.

146

11.5. Other Related Work

11.5 Other Related Work

Type Systems for π-calculus

Simple types for (polyadic) π-calculus channels were introduced by Milner with the name
of ‘sorts’ [Mil93]. Their main motivation was to rule out terms which used channels
inconsistently with respect to their arity. For instance, the term

P = a(x, y).x〈y〉 ‖
(
νb c.a〈b, c〉.b(z, w)

)
can reduce, by correctly synchronising on a, to νb c.

(
b〈c〉 ‖ b(z, w)

)
which cannot

proceed with a synchronisation on b since it is used with di�erent arities by the two
sequential processes. This is considered a programming error. Simple types can statically
detect this issue. The term in P inputing on a is assuming a simple type a : ch[ch[ch], ch],
that is a is a channel on which one can exchange messages composed of couples of
channels (ch[_, _]); the �rst channel of such a message must be a channel on which one
can exchange messages consisting of a channel name. Since the type of b, as used by the
second component, is b : ch[ch, ch] the process outputting on a is typing this channel as
a : ch[ch[ch, ch], ch]. This clash of assumptions means that the two sequential components
of P cannot be safely composed. Note that in order to �nd the problem, it is necessary
to realise that b can �ow to x and this is done by using the nested structure of channel
types.

In [Gay93] inference of simple types is proved decidable and a practical procedure is
presented. A similar result for recursive simple types is shown in [VH93].

Our type system is based on (non-recursive) simple types annotated with nodes in T .
This structure is mainly used to represent data-�ow information so we can reason about
the use of names locally in the typing rules.

Milner’s sorts were later re�ned into I/O types [PS93] and their variants [PS00],
which allow �ner constraints on the use of channels. Based on these types is a system for
termination of π-terms [DS06] that uses a notion of levels, enabling the de�nition of a
lexicographical ordering. Our type system can also be used to determine termination of π-
terms in an approximate but conservative way, by composing it with a procedure for de-
ciding termination of depth-bounded systems. Because the respective orderings between
types of the two approaches are di�erent in conception, we expect the terminating
fragments isolated by the respective systems to be incomparable.

A rather di�erent approach to typing π-terms is presented in the literature on Beha-
vioural and Session Types [IK01; THK94; HVK98], as already mentioned in Section 7.6.
These type systems are based on types that carry information about the sequence of
actions that can happen on a channel. By contrast, our types do not carry information
about the evolution of the system; if a system is proved depth-bounded by the type
system, its evolution can be analysed quite accurately using the decision procedures for
depth-bounded systems in a second stage.

147

11. Relation with Other Models

Other Fragments of π-calculus

Since its conception, there have been many studies about the relative expressivity of the
primitives of CCS and π-calculus [BGZ09; FL10; Pal03]. Syntactically restricting the use
of primitives results in fragments with decidable properties in some cases. As we have
seen in Section 11.4 restricting channels to have arity zero and using replication makes
reachability decidable. Another common fragment restricts the use of replication and
parallel: �nite-control terms are π-terms where parallel is never used under replication.
The �nite-control fragment is the syntactic restriction enforcing that the term is �nitary,
that is, the number of parallel active sequential subterms of any reachable term is bounded
by a constant.

Several other interesting fragments of the π-calculus have been proposed in the
literature, such as name bounded [HMM13], mixed bounded [MG09], and structur-
ally stationary [Mey09a]. Typically de�ned by a non-trivial condition on the set of
reachable terms—a semantic property, membership becomes undecidable. Links with
Petri nets via encodings of proper subsets of depth-bounded systems have been ex-
plored in [MG09]. Our type system can prove depth-boundedness for processes that are
breadth and name unbounded, and which cannot be simulated by Petri nets. Amadio
and Meyssonnier [AM02] consider fragments of the asynchronous π-calculus and show
that coverability is decidable for the fragment with no mobility and bounded number of
active sequential processes, via an encoding to Petri nets. Typably hierarchical systems
can be seen as an extension of the result for a synchronous π-calculus with unbounded
sequential processes and a restricted form of mobility.

Recently Hüchting et al. [RM14] proved several relative classi�cation results between
fragments of π-calculus. Using an acceleration technique based on Karp-Miller trees,
they presented an algorithm to decide if an arbitrary π-term is bounded in depth by a
given k. The construction is based on an (accelerated) exploration of the state space of
the π-term which can be computationally expensive. By contrast, our type system uses
a very di�erent technique leading to a quicker algorithm, at the expense of precision.
Our forest-structured types can also act as speci�cations, o�ering more intensional
information to the user than just a bound k.

Automata on in�nite alphabets

Automata that support name reasoning have been used to model the π-calculus, going
back to the pioneering work of History-Dependent Automata [MP97]. More recently,
Tzevelekos [Tze11] introduced Fresh-Register Automata (FRA), which operate on an
in�nite alphabet of names and use a �nite number of registers to process fresh names;
crucially it can compare incoming names with previously stored ones. He showed that
�nitary π-terms (i.e. processes that do not grow unboundedly in parallelism) are �nitely
representable in FRA.

148

11.5. Other Related Work

Static analysis

Static analyses reasoning about the communication topologies of concurrent programs
based on message passing have been studied both in the context of the π-calculus and of
practical programming languages. Colby [Col95] considers the Concurrent ML (CML)
programming language [Rep93] and presents a static analysis based on abstract interpret-
ation answering the question: which occurrences of ‘send’ can match which occurrences of

‘receive’? CML is a programming language featuring higher-order functional computa-
tions and synchronous message-passing concurrency primitives. It is therefore impossible
to answer the question accurately and automatically. Colby proposes a polynomial non-
uniform analysis able to distinguish between channel names created in di�erent iterations
of a recursive de�nition. The abstract representations of pids exploits the structure of the
call-stack at the point of creation to distinguish unboundedly many pids. The obtained
precision is very good when the structure of the recursive calls creating new names is
closely related to the communication topology. Although mobility is supported, when
the communication topology of the system evolves during time in non trivial ways,
the analysis becomes very imprecise. Despite this limitation, the analysis can be very
useful in practice for compiler optimisations if common patterns of functional concurrent
programming.

Venet [Ven98] proposed an advanced analysis of communication topologies speci�c-
ally designed for the π-calculus. Structured as an abstract interpretation of a non-standard
semantics, the analysis can be instantiated with several domains abstracting relations
between (dynamic) channel names. Interestingly, the kinds of topologies that can be
accurately captured with these algorithms are incomparable with those captured by
depth boundedness: the analysis may be imprecise for depth-bounded systems but has
the ability of representing accurately some depth-unbounded systems.

149

Chapter 12

Extensions and Future Directions

12.1 More Expressive Types

The type system we presented in Section 10.3 is very conservative: the use of simple
types, for example, renders the analysis context-insensitive. Although we have kept
the system simple so as to focus on the novel aspects, a number of improvements are
possible. First, the extension to the polyadic case is straightforward. Second, the type
system can be made more precise by using subtyping and polymorphism to re�ne the
analysis of control and data �ow. Third, the typing rule for replication introduces a very
heavy approximation: when typing a subterm, we have no information about which
other parts of the term (crucially, which restrictions) may be replicated.

Handling replication

Let us explain the issue through an example. Consider the two terms P1 = νa.A and
P2 = νa.(!A) where

A = τ.νb.τ.νc. !
(
a〈c〉+ a(x).b〈x〉

)
The typing derivations for ∅ `T P1 and ∅ `T P2 are almost identical and the set of
constraints they impose on T is the same. However, while P1 is depth-bounded, P2 is
not, and therefore the type system must reject both.

We brie�y sketch a possible enhancement that is sensitive to replication. Take the
depth-bounded term

ν(b : tb[t]).ν(l : tl[t]).ν(r : tr[t]). !
(
b(x).l(y).(r〈x〉 ‖ b〈y〉)

)
which acts as a 1 cell bu�er between l and r. This term cannot be typed by the current
type system because l(y).(r〈x〉 ‖ b〈x〉) is migratable for the input b(x) thus requiring
tl < tb, but at the same time b〈y〉 is migratable for l(y) requiring tb < tl, leading to
contradiction.

151

12. Extensions and Future Directions

We propose to add to the structure of T a notion of multiplicities of base types; a
base type can be marked with either 1 or ω. Suppose the forest of a term has a path p
from a node n to a node n′ where the trace of p consists only of base types marked with
1. This situation will represent the fact that no branching will ever occur between the
two replications corresponding to n and n′ and having one of the two names in the scope
guarantees that the other one is in the scope too. In other words, all the restrictions
represented by nodes in p can be though as a indivisible unit; when typing an input term
on a name with base type t, the constraints of rule In can be relaxed to require the free
variables of migratable terms to have base types smaller than the lowest t′ such that the
path between t and t′ in T is formed only of base types with multiplicity 1.

In the case of bu�er example, we observe that b, l and r could all be assigned base
types of multiplicity 1 thus replacing the two con�icting constraints with the constraints
tl ≤ t′ and tb ≤ t′ where t′ is the greatest among tl, tr and tb. The formalisation and
validation of this extension is a topic of ongoing research.

More liberal migration

Another limitation of the current type system derives from the migration scheme suppor-
ted by the proof of Theorem 10.10. This migration scheme purposely avoids rearranging
the scope of restrictions which are already active and mobility is realised by activating
restrictions under the appropriate scopes so that they do not need to be moved to other
scopes from then on.

Relaxing this mechanism is not easy when the goal is to guarantee depth boundedness.
A certain degree of replication sensitivity, as outlined above, seems necessary to determine
conditions for the safe ‘transplant’ of subtrees on reduction.

12.2 Semantic Notion of Hierarchical System

In Section 10.1 we have structured the proofs of depth boundedness in a way that
highlighted the semantic phenomenon we were trying to capture with the type system
in Section 10.3. The use of (µ, T)-compatibility leads to a notion which coincides with
depth boundedness. A natural question then is: is there an intermediate (semantic) notion

of hierarchical system between depth-bounded and typably hierarchical? In this section we
give a positive answer and mention open problems stemming from it.

One of the key features of how reductions are treated in the proof of soundness of the
type system, is that the already active restrictions do not get rearranged. In contrast, the
use of α-renaming in conjunction with µ can reassign nodes to active names at will in
order to prove compatibility of a reachable term, as shown in the proof of Proposition 10.1.

Consider the following variant of the semantics. In this section we will only consider
type annotations of the form ν(x : t) with t ∈ T : the nested version used in the type

152

12.2. Semantic Notion of Hierarchical System

system is only used to statically approximate the data-�ow, but in the de�nition of a
semantic property we have access to the full dynamic information of a name.

We parametrise the semantics with an annotating oracle Ann which is a function
from the already assigned types and the newly created names to the annotations for the
new names:

Ann(W,Y) = Y ′

where W and Y are the (base) type environments of existing and to be activated restric-
tions respectively, and dom(Y) = dom(Y ′). In other words, Ann is used to associate a
base type to restrictions when they become active.

De�nition 12.1 (Annotated Semantics of π-calculus). The Ann-annotated operational
semantics of π-calculus is de�ned by the transition system on annotated terms, with
transitions satisfying P →Ann Q if

(i) P ≡ νW.(S ‖ R ‖ C) ∈ PTnf ,

(ii) S = (a〈b〉.νYs.S ′) +Ms,

(iii) R = (a(x).νYr.R
′) +Mr,

(iv) Q ≡ νWY ′.(S ′ ‖ R′[b/x] ‖ C),

where Y ′ = Ann(W,YsYr), or if

(i) P ≡ νW.(τ.νY.P ′ ‖ C) ∈ Pnf ,

(ii) Q ≡ νWY ′.(P ′ ‖ C),

where Y ′ = Ann(W,Y).
We de�ne the set Reach(Ann, P) := {Q | P →∗Ann Q }, writing→∗Ann to mean the

re�exive, transitive closure of→Ann.

De�nition 12.2 (Hierarchical term). Let T be a �nite height forest (can have in�nitely
many nodes). A T-annotated term P is hierarchical if there exists an annotating oracle
Ann such that each Q ∈ Reach(Ann, P) is T-compatible.

Lemma 12.1. Every hierarchical term is depth-bounded.

Proof. T-compatibility of each reachable term implies that the depth of each reachable
term is bounded by height(T).

Lemma 12.2. Not all depth-bounded terms are hierarchical.

153

12. Extensions and Future Directions

Proof. We show this by presenting a depth-bounded process which is not hierarchical.
Take P = (!A ‖ !B ‖ !(C1 + C2)) where

A = τ.ν(a : a).p〈a〉 C1 = p(x).!(q(y).D) D = x〈y〉
B = τ.ν(b : b).q〈b〉 C2 = q(x).!(p(y).D)

then P is depth-bounded. However we can show there is no choice for Ann and T that
can prove it hierarchical. Let h be the height of T . From P we can reach, by reducing
the τ actions of A and B, any of the terms Qi,j = P ‖ (νa.p〈a〉)i ‖ (νb.q〈b〉)j (omitting
annotations) for i, j ∈ N. The function Ann can potentially assign a di�erent type in
T to each νa and νb. Let n,m ∈ N be naturals strictly greater than 2h and consider the
reachable term Qn,nm; from this term we can reach a term

Qab = P ‖
(

νa.
((

νb.D[a/x, b/y]
)m ‖ !

(
q(y).D[a/x]

)))n
by never selecting C2 as part of a redex. Each occurrence of a and b will have an
annotation as dictated by Ann. Each occurrence of νa in Qab has in its scope more than
h occurrences of νb. Assume Ann assigned a type tia to each occurrence i ≤ n of νa in
Qab and a type ti,jb to each occurrence j of νb under ν(a : tia) in Qab. We cannot extrude
more than h occurrences of νb because we would necessarily violate T-compatibility by
obtaining a path of length greater than h in the forest of the extruded term. Therefore,
w.l.o.g., we can assume that the types ti,1b , . . . , t

i,h+1
b are all descendants of tia, for each

i ≤ n. Pictorially, the parent relation in T entails the relations

t1a

t1,1b t1,2b · · · t1,h+1
b

t2a

t2,1b t2,2b · · · t2,h+1
b

tna

tn,1b tn,2b · · · tn,h+1
b

· · ·

where the edges represent<T . The type associations of the restrictions inQab are already
�xed in Qn,nm. From Qn,nm we can however also reach any of the terms

Qi
b = P ‖ · · · ‖

(
ν(b : ti,1b).

((
νa.D[a/x, b/y]

)n ‖ !
(
p(y).D[b/x]

)))
for i ≤ m, by making C2 and ν(b : ti,1b).q〈b〉 react and then repeatedly making !q(y).D
react with each ν(a : tja).p〈a〉. Let us consider Q1

b . As before, we cannot extrude more
than h occurrences of a or we would break T-compatibility. We must however extrude
(a : t1a) to get T-compatibility since t1a <T t

1,1
b . From these two facts we can infer that

there must be a type associated to one of the a, let it be t2a, such that t1a <T t
1,1
b <T t

2
a.

We can apply the same argument to Q2
b obtaining t1a <T t2a <T t

2,1
b <T t

3
a. Since m > 2h

we can repeat this h+ 1 times and get t1a <T t2a <T . . . <T th+1
a which contradicts the

assumption that the height of T is h.

154

12.3. Complexity

The reason why the counterexample presented in the proof above fails to be hier-
archical is that (unboundedly many) names are used in fundamentally di�erent ways
regarding their relative degree of sharing, in di�erent branches of the execution.

Being a semantic property, i.e. a non-trivial property of the set of reachable terms,
checking if a term is hierarchical has good chances to be undecidable. In fact it can be
proved undecidable using the same proof for the undecidability of depth boundedness
in [Mey09b]. The result is proved by showing that the folklore encoding of 2-counters
machines into π-calculus (which uses a variation of the stack process of Example 9.3 to
implement counters with zero-tests) preserves termination. Then, if checking if a term is
hierarchical were decidable, one could decide termination of a 2-counters machine M by

1. taking the π-calculus encoding P of M

2. deciding if P is hierarchical:

- if it is, then it is also depth-bounded and termination can be decided;
- if it is not, then it does not terminate.

This is clearly a contradiction since termination for 2-counters machines is undecidable.
The notion of hierarchical system can be modi�ed by further constraining how base

types are associated to names. It would be interesting to investigate the consequences of
these variations on complexity of veri�cation tasks or on expressivity.

Another direction is to relax the type associations so that some reassignment of types
during execution is possible, increasing the expressivity of the fragment.

12.3 Complexity

It would be interesting to further study the above de�nition of hierarchical system under
the lens of complexity theory: is checking coverability for hierarchical systems cheaper
than it is for depth-bounded ones? Imposing di�erent constraints on Ann can also lead
to further improvements in the asymptotic complexity of veri�cation problems.

Typably hierarchical terms have a very structured execution. This structure could
lead to more e�cient algorithms for their analysis.

155

Chapter 13

Conclusions

13.1 Summary

We investigated issues in automatic veri�cation of concurrent message passing systems.
These systems are very hard to analyse algorithmically due to the many sources of
unboundedness in their semantics.

We analysed each of the problematic features and proposed some abstractions that
can capture salient aspects of concurrent computation. We have de�ned a generic
analysis for a substantial fragment of Erlang, λActor, and a way of extracting from the
analysis a simulating in�nite-state abstract model in the form of an ACS, which can be
automatically veri�ed for coverability: if a state of the abstract model is not coverable then
the corresponding concrete states of the input λActor program are not reachable. Our
constructions are parametric, thus enabling di�erent analyses (implementing varying
degrees of precision with di�erent complexity bounds) to be easily instantiated. In
particular, with a 0-CFA-like specialisation of the framework, the analysis and generation
of the ACS are computable in polynomial time. Further, the dimension of the resulting
ACS is polynomial in the length of the input λActor program, small enough for the
veri�cation problem to be tractable in many useful cases. The empirical results using our
prototype implementation Soter are encouraging. They demonstrate that the abstraction
framework can be used to prove interesting safety properties of non-trivial programs
automatically.

Building on this experience, we focused our attention on a speci�c source of impre-
cision in our abstractions: the representation of the identities of dynamically created
processes. To isolate the essence of the issue we turn to the π-calculus, a succinct process
algebra revolving around the concept of names. To enable algorithmic analysis, one must
put constraints on the shape of terms. We consider depth-bounded π-calculus, which
is, to the best of our knowledge, the most expressive known fragment of π-calculus
supporting algorithmic veri�cation. Terms modelling Erlang programs are not always
depth-bounded: it is necessary to have a procedure to determine if a term is depth-

157

13. Conclusions

bounded in order to apply the corresponding veri�cation procedures. Unfortunately,
depth boundedness is an undecidable property. We solve this problem by proposing a
notion of hierarchical system, a more structured subset of depth-bounded systems. We
de�ne a type system that can algorithmically check (or infer) whether an arbitrary term
is hierarchical. Part II was devoted to the de�nition of the principles governing this novel
fragment of π-calculus.

13.2 Future Work

To conclude, we brie�y discuss ideas for extensions and future directions.
Static Analysis In Chapter 5 we have de�ned a generic analysis for λActor, and
a way of extracting from the analysis a simulating in�nite-state abstract model. Our
constructions are parametric on the abstractions for Time , Mailbox and Data , thus
enabling di�erent analyses to be instantiated. It would be interesting to explore the design
space for these abstractions tuning accuracy and performance for speci�c properties.
Also, as mentioned in Section 7.3, the CFA phase of the analysis could be extended to
support optimisations like abstract garbage collection [MS06] or stack reasoning [VS10]
to bring performance and accuracy improvements to the framework. We also believe
that the proposed abstraction technique can easily be adapted to accommodate other
languages and other abstract models.
Soter Soter currently supports only a subset of the full Erlang language but the tech-
niques it employs are general enough to support the missing features. Two characteristics
of Erlang could prove to have a fruitful interaction with Soter. First, Erlang de�nitions
are frequently annotated with speci�cations based on types; this could enable the use
of Soter for intra-module veri�cation. Second, programs using the Open Telecoms Plat-

form (OTP), the standard generic library of behaviours distributed with Erlang, share
a common �xed structure; specialising Soter’s analysis for OTP-based software could
improve performance and accuracy greatly.

Another possible extension of Soter is adding support for analysis of counter-examples
generated by the model checking phase. The level of generality at which the algorithm
is de�ned seems to support the de�nition of a Counter-Example Guided Abstract Re�ne-

ment (CEGAR) loop readily. In a CEGAR loop, when the model checker fails to prove
a property, it produces a counter-example, usually in the form of a trace violating the
property. The trace can be analysed to detect whether it witnesses a genuine bug or a
spurious behaviour. In the latter case the abstraction’s precision is tuned so the trace, and
other similar ones, is removed from the abstract model and the procedure is run again.
Hierarchical Systems First and foremost, we plan to implement the type system of
Section 10.3 to evaluate the approach empirically. An implementation could also be
integrated in Soter: Soter’s analysis could be exploited to generate a π-calculus term

158

13.2. Future Work

simulating the program, instead of an ACS. The term could be analysed using the type
system. Typably hierarchical terms could then be feeded to a dedicated depth-bounded
systems model checker as Picasso1 [BKWZ12; ZWH12]. Terms that are rejected by the
type system could still be analysed using the ACS abstraction.

The extraction of a π-calculus model from Erlang programs is an interesting problem
in itself. The fact that the π-calculus is Turing-powerful means that it is in principle
capable of encoding precisely any of Erlang’s features. Keeping the π-calculus encoding
100% accurate quickly degenerates into writing an Erlang interpreter in π-calculus, which
is clearly a bad choice for analysis purposes. Instead, multiple approximated π-calculus
models could be extracted, each focusing on di�erent aspects of computation by using
names to represent di�erent unbounded structures. Through each of these encodings, it
would be interesting to explore the interactions between the concept of T-compatibility
and Erlang’s idioms and primitives.

As detailed in Chapter 12 there are a number of directions for extending the ex-
pressivity of the type system. Special treatment for global names, multiplicity constraints,
subtyping are all extensions worth exploring. Another point of extension is the semantic
notion of Hierarchical system we gave in Section 12.2. Variations of this de�nition could
be devised to characterise other patterns of communication and maybe enable feasible
model checking algorithms. Di�erent ways of characterising these semantic fragments
statically by means of static analysis is also a topic of interest. Also open is the exact
complexity bound of type inference.

Names can be used to give semantics to numerous programming language concepts,
from heap cells addresses to process identi�ers. Structuring these objects using our notion
of hierarchy could enable automatic in�nite-state veri�cation. Depth-bounded systems
veri�cation can also be applied to shape analysis [WSR00] of concurrent programs where
the communication topology of π-terms encodes the layout of the heap. The notion of
hierarchical system could have interesting implications in this area.

A related research topic is analysis of graph rewriting systems where the concept of
depth boundedness has been used to de�ne classes of rewriting systems with decidable
properties [Ber+12; BKWZ12]. In this context too, depth boundedness remains an
undecidable property of rewriting systems and (generalisations of) the hierarchical
topology structure we introduced could prove useful.

1Available at http://pub.ist.ac.at/~zufferey/picasso.

159

http://pub.ist.ac.at/~zufferey/picasso

Bibliography

[ACJT96] P. A. Abdulla, K. Cerans, B. Jonsson and Y. Tsay. ‘General Decidability
Theorems for In�nite-State Systems’. In: Symposium on Logic in Computer

Science. IEEE Computer Society, 1996, pp. 313–321 (Cited on p. 18).
[Agh85] G. Agha. ‘Actors: A Model of Concurrent Computation in Distributed

Systems’. PhD thesis. Massachusetts Institute of Technology, 1985 (Cited
on p. 25).

[AJ93] P. A. Abdulla and B. Jonsson. ‘Verifying Programs with Unreliable Channels’.
In: Symposium on Logic in Computer Science. IEEE Computer Society, 1993,
pp. 160–170 (Cited on p. 36).

[AM02] R. M. Amadio and C. Meyssonnier. ‘On decidability of the control reachab-
ility problem in the asynchronous π-calculus’. In: Nordic Journal of Com-

puting 9.2 (2002), pp. 70–101 (Cited on p. 148).
[APT79] B. Aspvall, M. F. Plass and R. E. Tarjan. ‘A linear-time algorithm for testing

the truth of certain quanti�ed boolean formulas’. In: Information Processing

Letters 8.3 (1979), pp. 121–123 (Cited on p. 124).
[Arm10] J. Armstrong. ‘Erlang’. In: Communications of the ACM 53.9 (2010), p. 68

(Cited on pp. 26, 28).
[AVW93] J. Armstrong, R. Virding and M. Williams. Concurrent programming in

Erlang. Prentice Hall, 1993, pp. 1–281 (Cited on p. 26).
[Bae05] J. C. M. Baeten. ‘A brief history of process algebra’. In: Theoretical Computer

Science 335.2-3 (2005), pp. 131–146 (Cited on p. 25).
[Ber+12] N. Bertrand, G. Delzanno, B. König, A. Sangnier and J. Stückrath. ‘On the

Decidability Status of Reachability and Coverability in Graph Transforma-
tion Systems’. In: Rewriting Techniques and Applications (RTA). Ed. by A.
Tiwari. Vol. 15. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012, pp. 101–116 (Cited on p. 159).

[BGZ09] N. Busi, M. Gabbrielli and G. Zavattaro. ‘On the expressive power of recur-
sion, replication and iteration in process calculi’. In: Mathematical Structures

in Computer Science 19.6 (2009), pp. 1191–1222 (Cited on pp. 145, 148).

161

Bibliography

[BKWZ12] K. Bansal, E. Koskinen, T. Wies and D. Zu�erey. ‘Structural Counter Abstrac-
tion’. In: Tools and Algorithms for the Construction and Analysis of Systems.
TACAS’13. Rome: Springer-Verlag, 2012, pp. 62–77 (Cited on p. 159).

[BS07] H. Björklund and T. Schwentick. ‘On notions of regularity for data lan-
guages’. In: Fundamentals of Computation Theory. 2007, pp. 88–99 (Cited
on p. 133).

[Car01] R. Carlsson. ‘An Introduction to Core Erlang’. In: ACM SIGPLAN Erlang

Workshop. 2001 (Cited on pp. 29, 31).
[CH00] K. Claessen and J. Hughes. ‘QuickCheck: a lightweight tool for random

testing of Haskell programs’. In: International Conference on Functional

Programming (ICFP). 2000, pp. 268–279 (Cited on p. 80).
[CHMO15] C. Cotton-Barratt, D. Hopkins, A. S. Murawski and C.-H. L. Ong. ‘Fragments

of ML decidable by Nested Data Class Memory Automata’. In: Foundations
of Software Science and Computation Structures (FoSSaCS). To appear. 2015
(Cited on p. 133).

[Cla+09] K. Claessen et al. ‘Finding race conditions in Erlang with QuickCheck and
PULSE’. In: International Conference on Functional Programming (ICFP).
2009, pp. 149–160 (Cited on p. 80).

[Cli81] W. D. Clinger. ‘Foundations of Actor Semantics’. PhD thesis. MIT, 1981
(Cited on p. 25).

[CMO15] C. Cotton-Barratt, A. S. Murawski and C. L. Ong. ‘Weak and Nested Class
Memory Automata’. In: Language and Automata Theory and Applications.
Ed. by A. H. Dediu, E. Formenti, C. Martín-Vide and B. Truthe. Vol. 8977.
Lecture Notes in Computer Science. Springer, 2015, pp. 188–199 (Cited on
pp. 87, 133–135).

[Col95] C. Colby. ‘Analyzing the Communication Topology of Concurrent Pro-
grams’. In: Partial Evaluation and Semantics-Based Program Manipulation.
Ed. by N. D. Jones. ACM Press, 1995, pp. 202–213 (Cited on pp. 76, 149).

[CS05] K. Claessen and H. Svensson. ‘A semantics for distributed Erlang’. In: ACM
SIGPLAN Erlang Workshop. ERLANG ’05. ACM, 2005, pp. 78–87 (Cited on
pp. 62, 73).

[CS10] M. Christakis and K. Sagonas. ‘Static detection of race conditions in Erlang’.
In: Practical Aspects of Declarative Languages (2010), pp. 119–133 (Cited on
pp. 76, 80).

[CS11] M. Christakis and K. Sagonas. ‘Detection of asynchronous message passing
errors using static analysis’. In: Practical Aspects of Declarative Languages
(2011), pp. 5–18 (Cited on pp. 76, 80).

162

Bibliography

[CSW06] R. Carlsson, K. Sagonas and J. Wilhelmsson. ‘Message analysis for con-
current programs using message passing’. In: ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) (2006) (Cited on pp. 74, 76,
80).

[CT09] F. Cesarini and S. Thompson. Erlang Programming. O’Reilly Media, 2009.
isbn: 9780596555856 (Cited on p. 26).

[DKO12] E. D’Osualdo, J. Kochems and C.-H. L. Ong. ‘Soter: an Automatic Safety
Veri�er for Erlang’. In: Programming systems, languages and applications

based on actors, agents, and decentralized control abstractions. AGERE!’12.
Tucson, Arizona, USA: ACM, 2012, pp. 137–140 (Cited on p. 24).

[DKO13a] E. D’Osualdo, J. Kochems and C.-H. L. Ong. ‘Automatic Veri�cation of
Erlang-Style Concurrency’. In: CoRR abs/1303.2201 (2013). Available at
http://arxiv.org/abs/1303.2201 (Cited on p. 173).

[DKO13b] E. D’Osualdo, J. Kochems and C. L. Ong. ‘Automatic Veri�cation of Erlang-
Style Concurrency’. In: Static Analysis Symposium (SAS). Ed. by F. Logozzo
and M. Fähndrich. Vol. 7935. Lecture Notes in Computer Science. Springer,
2013, pp. 454–476 (Cited on pp. 24, 173).

[DS06] Y. Deng and D. Sangiorgi. ‘Ensuring termination by typability’. In: Inform-

ation and Computation 204.7 (2006), pp. 1045–1082 (Cited on p. 147).
[EMH10] C. Earl, M. Might and D. V. Horn. ‘Pushdown Control-Flow Analysis of

Higher-Order Programs’. In: Workshop on Scheme and Functional Program-

ming (Scheme). Montreal, Quebec, Canada, Aug. 2010 (Cited on p. 62).
[Fed94] T. Feder. ‘Network Flow and 2-Satis�ability’. In: Algorithmica 11.3 (1994),

pp. 291–319 (Cited on p. 124).
[Fer05] J. Feret. ‘Analysis of Mobile Systems by Abstract Interpretation’. PhD thesis.

École Polytechnique, 2005 (Cited on p. 76).
[FL10] Y. Fu and H. Lu. ‘On the expressiveness of interaction’. In: Theoretical

Computer Science 411.11-13 (2010), pp. 1387–1451 (Cited on pp. 145, 148).
[Fre01] L. Fredlund. ‘A Framework for Reasoning about Erlang Code’. PhD thesis.

Stockholm, Sweden: Royal Institute of Technology, 2001 (Cited on p. 73).
[FS01] A. Finkel and P. Schnoebelen. ‘Well-structured transition systems every-

where!’ In: Theoretical Computer Science 256.1-2 (2001), pp. 63–92 (Cited on
pp. 18, 19, 38).

[FS07] L. Fredlund and H. Svensson. ‘McErlang: a model checker for a distrib-
uted functional programming language’. In: International Conference on
Functional Programming (ICFP). 2007, pp. 125–136 (Cited on p. 77).

163

http://arxiv.org/abs/1303.2201

Bibliography

[Gay93] S. J. Gay. ‘A Sort Inference Algorithm for the Polyadic π-Calculus’. In:
Principles of Programming Languages (POPL). Ed. by M. S. V. Deusen and
B. Lang. ACM Press, 1993, pp. 429–438 (Cited on pp. 121, 147).

[GPT06] P. Garoche, M. Pantel and X. Thirioux. ‘Static Safety for an Actor Dedicated
Process Calculus by Abstract Interpretation’. In: Formal Methods for Open

Object-Based Distributed Systems (FMOODS). 2006, pp. 78–92 (Cited on p. 76).
[GRV06] G. Geeraerts, J. Raskin and L. Van Begin. ‘Expand, Enlarge and Check: New

algorithms for the coverability problem of WSTS’. In: Journal of Computer

and system Sciences 72.1 (2006), pp. 180–203 (Cited on p. 100).
[HBS73] C. Hewitt, P. Bishop and R. Steiger. ‘A Universal Modular ACTOR Formalism

for Arti�cial Intelligence’. In: International Joint Conferences on Arti�cial

Intelligence (IJCAI). 1973, pp. 235–245 (Cited on p. 25).
[He11] C. He. ‘The Decidability of the Reachability Problem for CCS!’ In: Concur-

rency Theory (CONCUR). Ed. by J. Katoen and B. König. Vol. 6901. Lecture
Notes in Computer Science. Springer, 2011, pp. 373–388 (Cited on pp. 88,
145, 146).

[Hei92] N. Heintze. ‘Set Based Program Analysis’. PhD thesis. Pittsburgh: Carnegie-
Mellon University, 1992 (Cited on p. 75).

[Hei94] N. Heintze. ‘Set-based analysis of ML programs’. In: ACM SIGPLAN Lisp

Pointers. Vol. 7. 1994, pp. 306–317 (Cited on p. 75).
[Hew10] C. Hewitt. ‘Actor Model for Discretionary, Adaptive Concurrency’. In: CoRR

abs/1008.1459 (2010) (Cited on p. 26).
[Hew77] C. Hewitt. ‘Viewing control structures as patterns of passing messages’. In:

Arti�cial Intelligence 8.3 (June 1977), pp. 323–364. issn: 0004-3702 (Cited on
p. 25).

[HMM13] R. Hüchting, R. Majumdar and R. Meyer. ‘A Theory of Name Boundedness’.
In: Concurrency Theory (CONCUR). 2013 (Cited on pp. 86, 99, 148).

[HO09] P. Haller and M. Odersky. ‘Scala Actors: Unifying thread-based and event-
based programming’. In: Theoretical Computer Science 410.2-3 (2009), pp. 202–
220 (Cited on p. 26).

[Huc02] F. Huch. ‘Model Checking Erlang Programs — Abstracting Recursive Func-
tion Calls’. In: 64 (2002), pp. 195–219 (Cited on p. 77).

[Huc99] F. Huch. ‘Veri�cation of Erlang Programs using Abstract Interpretation and
Model Checking’. In: International Conference on Functional Programming

(ICFP). 1999, pp. 261–272 (Cited on pp. 68, 77).

164

Bibliography

[HVK98] K. Honda, V. T. Vasconcelos and M. Kubo. ‘Language Primitives and Type
Discipline for Structured Communication-Based Programming’. In: European
Symposium on Programming (ESOP). Ed. by C. Hankin. Vol. 1381. Lecture
Notes in Computer Science. Springer, 1998, pp. 122–138 (Cited on pp. 79,
147).

[HW87] M. P. Herlihy and J. M. Wing. ‘Axioms for concurrent objects’. In: Principles
of Programming Languages (POPL). 1987, pp. 13–26 (Cited on p. 80).

[IK01] A. Igarashi and N. Kobayashi. ‘A generic type system for the Pi-calculus’.
In: Principles of Programming Languages (POPL). 2001, pp. 128–141 (Cited
on pp. 79, 147).

[JA07] N. D. Jones and N. Andersen. ‘Flow analysis of lazy higher-order functional
programs’. In: Theoretical Computer Science 375 (2007), pp. 120–136 (Cited
on p. 75).

[JLMH13] J. I. Johnson, N. Labich, M. Might and D. V. Horn. ‘Optimizing abstract
abstract machines’. In: International Conference on Functional Programming

(ICFP). ACM, 2013, pp. 443–454 (Cited on p. 62).
[Jon81] N. Jones. ‘Flow analysis of lambda expressions’. In: Automata, Languages

and Programming (1981), pp. 114–128 (Cited on p. 75).
[JW95] S. Jagannathan and S. Weeks. ‘A uni�ed treatment of �ow analysis in higher-

order languages’. In: Principles of Programming Languages (POPL). 1995,
pp. 393–407 (Cited on p. 75).

[KKW12] A. Kaiser, D. Kroening and T. Wahl. ‘E�cient Coverability Analysis by Proof
Minimization’. In: Concurrency Theory (CONCUR). www.cprover.org/bfc/.
2012 (Cited on p. 66).

[KM69] R. M. Karp and R. E. Miller. ‘Parallel program schemata’. In: Journal of
Computer and system Sciences 3.2 (1969), pp. 147–195 (Cited on p. 19).

[KNY95] N. Kobayashi, M. Nakade and A. Yonezawa. ‘Static Analysis of Communic-
ation for Asynchronous Concurrent Programming Languages’. In: Static
Analysis Symposium (SAS). Ed. by A. Mycroft. Vol. 983. Lecture Notes in
Computer Science. Springer, 1995, pp. 225–242 (Cited on p. 68).

[Lee06] E. A. Lee. ‘The problem with threads’. In: Computer 39.5 (2006), pp. 33–42
(Cited on p. 24).

[LS05] T. Lindahl and K. Sagonas. ‘TypEr: a type annotator of Erlang code’. In:
ACM SIGPLAN Erlang Workshop. 2005, pp. 17–25 (Cited on p. 79).

[LS06] T. Lindahl and K. Sagonas. ‘Practical type inference based on success typ-
ings’. In: Principles and Practice of Declarative Programming. 2006, pp. 167–
178 (Cited on pp. 76, 78, 80).

165

www.cprover.org/bfc/

Bibliography

[Mey08] R. Meyer. ‘On boundedness in depth in the π-calculus’. In: IFIP International
Conference on Theoretical Computer Science, IFIP TCS. 2008, pp. 477–489
(Cited on pp. 10, 11, 85, 90, 97–100, 104, 136).

[Mey09a] R. Meyer. ‘A theory of structural stationarity in the π-calculus’. In: Acta
Informatica 46.2 (2009), pp. 87–137 (Cited on p. 148).

[Mey09b] R. Meyer. ‘Structural stationarity in the π-calculus’. PhD thesis. University
of Oldenburg, 2009 (Cited on pp. 11, 99, 101, 155).

[MG09] R. Meyer and R. Gorrieri. ‘On the relationship between π-calculus and
�nite place/transition Petri nets’. In: Concurrency Theory (CONCUR). 2009,
pp. 463–480 (Cited on p. 148).

[MH11] M. Might and D. V. Horn. ‘A Family of Abstract Interpretations for Static
Analysis of Concurrent Higher-Order Programs’. In: Static Analysis Sym-

posium (SAS). Vol. 6887. Lecture Notes in Computer Science. Springer, 2011,
pp. 180–197 (Cited on pp. 41, 76).

[Mid12] J. Midtgaard. ‘Control-�ow analysis of functional programs’. In: ACM Com-

puting Surveys 44.3 (2012), p. 10 (Cited on p. 76).
[Mig10] M. Might. ‘Abstract Interpreters for Free’. In: Static Analysis Symposium

(SAS). Ed. by R. Cousot and M. Martel. Vol. 6337. Lecture Notes in Computer
Science. Springer, 2010, pp. 407–421 (Cited on p. 41).

[Mil89] R. Milner. Communication and concurrency. PHI Series in computer science.
Prentice Hall, 1989. isbn: 978-0-13-115007-2 (Cited on p. 145).

[Mil92] R. Milner. ‘Functions as processes’. In: Mathematical Structures in Computer

Science 2.02 (1992), pp. 119–141 (Cited on pp. 89, 93).
[Mil93] R. Milner. ‘The polyadic pi-calculus: a tutorial’. In: Logic and Algebra of

Speci�cation. Springer-Verlag, 1993 (Cited on pp. 90, 93, 104, 147).
[Mil99] R. Milner. Communicating and Mobile Systems: the π-Calculus. Cambridge

University Press, 1999 (Cited on pp. 90, 95).
[MJ08] J. Midtgaard and T. Jensen. ‘A calculational approach to control-�ow ana-

lysis by abstract interpretation’. In: Static Analysis Symposium (SAS) (2008),
pp. 347–362 (Cited on p. 50).

[MP97] U. Montanari and M. Pistore. ‘An Introduction to History Dependent Auto-
mata’. In: Electronic Notes in Theoretical Computer Science 10 (1997), pp. 170–
188 (Cited on p. 148).

[MPW92] R. Milner, J. Parrow and D. Walker. ‘A Calculus of Mobile Processes, I, II’.
In: Information and Computation 100.1 (1992), pp. 1–77 (Cited on pp. 8, 84,
93, 95).

166

Bibliography

[MS06] M. Might and O. Shivers. ‘Improving �ow analyses via ΓCFA: Abstract
garbage collection and counting’. In: ACM SIGPLAN Notices 41.9 (2006),
pp. 13–25 (Cited on pp. 75, 158).

[MW97] S. Marlow and P. Wadler. ‘A Practical Subtyping System For Erlang’. In:
International Conference on Functional Programming (ICFP). 1997, pp. 136–
149 (Cited on pp. 78, 79).

[Nys03] S. Nyström. ‘A soft-typing system for Erlang’. In: ACM SIGPLAN Erlang

Workshop. 2003, pp. 56–71 (Cited on pp. 75, 76, 78).
[Oa04] M. Odersky and al. An Overview of the Scala Programming Language. Tech.

rep. IC/2004/64. EPFL Lausanne, Switzerland, 2004 (Cited on p. 26).
[OR11] C.-H. L. Ong and S. J. Ramsay. ‘Verifying higher-order functional programs

with pattern-matching algebraic data types’. In: Principles of Programming

Languages (POPL). 2011, pp. 587–598 (Cited on pp. 36, 55).
[Pal03] C. Palamidessi. ‘Comparing the expressive power of the synchronous and

asynchronous π-calculi’. In: Mathematical Structures in Computer Science

13.05 (2003), pp. 685–719 (Cited on p. 148).
[PG92] Y. G. Park and B. Goldberg. ‘Escape analysis on lists’. In: ACM SIGPLAN

Notices. Vol. 27. 1992, pp. 116–127 (Cited on p. 80).
[PS00] B. C. Pierce and D. Sangiorgi. ‘Behavioral equivalence in the polymorphic

pi-calculus’. In: Journal of the ACM 47.3 (2000), pp. 531–584 (Cited on p. 147).
[PS11] M. Papadakis and K. Sagonas. ‘A PropEr Integration of Types and Function

Speci�cations with Property-Based Testing’. In: ACM SIGPLAN Erlang

Workshop. ACM Press, Sept. 2011, pp. 39–50 (Cited on p. 80).
[PS93] B. C. Pierce and D. Sangiorgi. ‘Typing and Subtyping for Mobile Processes’.

In: Symposium on Logic in Computer Science. 1993, pp. 376–385 (Cited on
p. 147).

[Rac78] C. Racko�. ‘The Covering and Boundedness Problems for Vector Addition
Systems’. In: Theoretical Computer Science 6 (1978), pp. 223–231 (Cited on
pp. 19, 38).

[Rep93] J. H. Reppy. ‘Concurrent ML: Design, Application and Semantics’. In: Func-
tional Programming, Concurrency, Simulation and Automated Reasoning: In-

ternational Lecture Series 1991–1992, McMaster University, Hamilton, Ontario,

Canada. Ed. by P. E. Lauer. Vol. 693. Lecture Notes in Computer Science.
Springer, 1993, pp. 165–198 (Cited on p. 149).

[RM14] R. M. Reiner Hüchting and R. Meyer. ‘Bounds on Mobility’. In: Concurrency
Theory (CONCUR). 2014, pp. 357–371 (Cited on pp. 86, 102, 148).

167

Bibliography

[RX07] J. H. Reppy and Y. Xiao. ‘Specialization of CML message-passing primitives’.
In: Principles of Programming Languages (POPL). Ed. by M. Hofmann and
M. Felleisen. ACM, 2007, pp. 315–326 (Cited on p. 76).

[SF07] H. Svensson and L. Fredlund. ‘A more accurate semantics for distributed
Erlang’. In: ACM SIGPLAN Erlang Workshop. 2007, pp. 43–54 (Cited on
p. 73).

[Shi88] O. Shivers. ‘Control �ow analysis in Scheme’. In: ACM SIGPLAN Notices

23.7 (1988), pp. 164–174 (Cited on p. 75).
[Shi91] O. Shivers. ‘Control-Flow Analysis of Higher-Order Languages’. PhD thesis.

Carnegie Mellon University, 1991 (Cited on pp. 44, 75).
[THK94] K. Takeuchi, K. Honda and M. Kubo. ‘An Interaction-based Language and its

Typing System’. In: Parallel Architectures and Languages Europe (PARLE). Ed.
by C. Halatsis, D. G. Maritsas, G. Philokyprou and S. Theodoridis. Vol. 817.
Lecture Notes in Computer Science. Springer, 1994, pp. 398–413 (Cited on
pp. 79, 147).

[Tze11] N. Tzevelekos. ‘Fresh-register automata’. In: Principles of Programming

Languages (POPL). 2011, pp. 295–306 (Cited on p. 148).
[Ven98] A. Venet. ‘Automatic Determination of Communication Topologies in Mo-

bile Systems’. In: Static Analysis Symposium (SAS). Ed. by G. Levi. Vol. 1503.
Lecture Notes in Computer Science. Springer, 1998, pp. 152–167 (Cited on
pp. 76, 149).

[VH93] V. T. Vasconcelos and K. Honda. ‘Principal Typing Schemes in a Polyadic
π-Calculus’. In: Concurrency Theory (CONCUR). Ed. by E. Best. Vol. 715.
Lecture Notes in Computer Science. Springer, 1993, pp. 524–538 (Cited on
pp. 121, 147).

[VM10] D. Van Horn and M. Might. ‘Abstracting abstract machines’. In: International
Conference on Functional Programming (ICFP). 2010, pp. 51–62 (Cited on
pp. 42, 54, 60, 75).

[VS10] D. Vardoulakis and O. Shivers. ‘CFA2: A Context-Free Approach to Control-
Flow Analysis’. In: European Symposium on Programming (ESOP). Ed. by
A. D. Gordon. Vol. 6012. Lecture Notes in Computer Science. Springer, 2010,
pp. 570–589 (Cited on pp. 76, 158).

[WSR00] R. Wilhelm, M. Sagiv and T. Reps. ‘Shape analysis’. In:Compiler Construction.
2000, pp. 1–17 (Cited on p. 159).

[WZH10] T. Wies, D. Zu�erey and T. Henzinger. ‘Forward analysis of depth-bounded
processes’. In: Foundations of Software Science and Computation Structures

(FoSSaCS). 2010, pp. 94–108 (Cited on p. 100).

168

Bibliography

[ZWH12] D. Zu�erey, T. Wies and T. Henzinger. ‘Ideal abstractions for well-structured
transition systems’. In: Veri�cation, Model Checking, and Abstract Interpret-

ation (VMCAI). 2012, pp. 445–460 (Cited on pp. 100, 101, 159).

169

Appendices

Appendix A

Proof of Soundness of the CFA

The material presented in this appendix appeared in [DKO13b; DKO13a] and is joint work

with Jonathan Kochems and Luke Ong.

A.1 Abstract Domains, Orders, Abstraction Functions

and Abstract Auxiliary Functions

In Chapter 5 we simpli�ed notation by overloading the abstraction function symbol
α. Here we give the explicit de�nitions of the abstract domains for completeness. In
what follows we write f + g := {(x, x′) | (x, x′) ∈ f or (x, x′) ∈ g}. Also recall from
Section 5.2 that when B is a �at domain, the abstraction of a partial map C = A ⇀ B to
Ĉ = Â→P(B̂) is de�ned as

αC(f) := λâ ∈ Â. {αB(b) | (a, b) ∈ f and αA(a) = â}

where the preorder on Ĉ is f̂ ≤Ĉ ĝ ⇔ ∀â. f̂(â) ⊆ g(â).
Let us �rst spell out the underlying orders and abstraction functions of each abstract

domain.

P̂id := ProgLoc × T̂ime

≤pid := = × ≤t

αpid := id× αt

V̂Addr := P̂id × Var × D̂ata × T̂ime

≤va := ≤pid × = × ≤d × ≤t

αva := αpid × id× αd × αt

Ênv := Var ⇀ V̂Addr

173

A. Proof of Soundness of the CFA

ρ̂ ≤env ρ̂
′ ⇐⇒ ∀x ∈ Var . ρ̂(x) ≤va ρ̂

′(x)

αenv(ρ)(x) := αva(ρ(x))

K̂Addr := P̂id × ProgLoc × Ênv × T̂ime

≤ka := ≤pid × = × ≤env × ≤t

αka := αpid × id× αenv × αt

Ĉlosure := ProgLoc × Ênv

≤cl := = × ≤env

αcl := id × αenv

V̂alue := Ĉlosure] P̂id

≤val := ≤cl + ≤pid

αval := αcl + αpid

̂ProcState := (ProgLoc] P̂id)× Ênv × K̂Addr × Time

≤ps := (= + ≤pid)× ≤env × ≤ka × ≤t

αps := (id + αpid)× αenv × αka × αt

P̂rocs := P̂id →P(̂ProcState)

π̂ ≤proc π̂
′ ⇐⇒ ∀ι̂ ∈ P̂id . π̂(̂ι) ⊆ π̂′(̂ι)

αprocs(π)(̂ι) := {αps(π(ι)) | αpid(ι) = ι̂ }
̂Mailboxes := P̂id → M̂ailbox

µ̂ ≤ms µ̂
′ ⇐⇒ ∀ι̂ ∈ P̂id . µ̂(̂ι) ≤m µ̂′(̂ι)

αms(µ)(̂ι) :=
⊔
{αm(µ(ι)) | αpid(ι) = ι̂ }

Ŝtore := (V̂Addr →P(V̂alue))× (K̂Addr →P(K̂ont))

σ̂ ≤st σ̂
′ ⇐⇒ ∀b̂ ∈ V̂Addr . σ̂(b̂) ⊆ σ̂′(b̂)

∀â ∈ K̂Addr . σ̂(â) ⊆ σ̂′(â)

αst(σ)(b̂) := {αval(σ(b)) | αva(b) = b̂ }, b̂ ∈ V̂Addr

αst(σ)(â) := {αkont(σ(a)) | αka(a) = â }, â∈ K̂Addr

Ŝtate := P̂rocs × ̂Mailboxes × Ŝtore

≤ :=≤procs × ≤ms × ≤st

αcfa := (id + αpid)× αenv

The abstract counterparts of the auxiliary functions newkpush, newkpop, newva and

174

A.1. Abstract Domains, Orders, Abstraction Functions and Abstract Auxiliary Functions

newpid are straightforward liftings of the concrete functions:

̂newkpush : P̂id × ̂ProcState → K̂Addr

̂newkpush(̂ι, (`, ρ̂, _, t̂)) := (̂ι, `.arg0, ρ̂, t̂)

n̂ewkpop : P̂id × K̂ont × ̂ProcState → K̂Addr

n̂ewkpop(̂ι, κ̂, 〈_, _, _, t̂ 〉) := (̂ι, `.argi+1, ρ̂, t̂)

where κ = Argi〈`, . . . , ρ̂, _〉

n̂ewva : P̂id × Var × D̂ata × ̂ProcState → V̂Addr

n̂ewva(̂ι, x, δ̂, 〈_, _, _, t̂ 〉) := (̂ι, x, δ̂, t̂)

n̂ewpid : P̂id × ProgLoc × T̂ime → P̂id

n̂ewpid((`
′, t̂′), `, t̂) := (`, t̂ick

∗
(t̂, t̂ick(`′, t̂′))

Concrete and Abstract Match Function

Given two substitutions θ and θ′, we de�ne the associative and commutative operator

θ ⊗ θ′ =

{
⊥ if ∃x. θ(x) 6= θ′(x)

θ ∪ θ′ otherwise

extending it to �nite sets of substitutions:
⊗
{θ1, . . . , θn} = θ1⊗θ2 · · ·⊗θn and

⊗
∅ = [].

The way Erlang (and λActor) matches data against patterns is formalised below with
the function match.

matchρ,σ(pi, (x, ρ
′)) = matchρ,σ(pi, σ(ρ′(x)))

matchρ,σ(x, d) = [x 7→ d] if x /∈ dom(ρ)

matchρ,σ(x, d) = [x 7→ d] if matchρ′,σ(p′, d) 6= ⊥
where (p′, ρ′) = σ(ρ(x))

matchρ,σ(p, (t, ρ′)) =
⊗
{matchρ,σ(pi, (ti, ρ

′)) | 1 ≤ i ≤ n}

where p = c(p1, . . . , pn)

t = c(t1, . . . , tn)

matchρ,σ(p, d) = ⊥ otherwise

175

A. Proof of Soundness of the CFA

A sound abstract version of match is de�ned as follows

m̂atchρ̂,σ̂(pi, (x, ρ̂
′)) =

⋃
d̂∈σ̂(ρ̂′(x))

m̂atchρ̂,σ̂(pi, d̂)

m̂atchρ̂,σ̂(x, d) = {[x 7→ d̂]}

m̂atchρ̂,σ̂(p, (t, ρ̂′)) =
⊗̂
{m̂atchρ̂,σ̂(pi, (ti, ρ̂

′)) | 1 ≤ i ≤ n}

if p = c(p1, . . . , pn) and
t = c(t1, . . . , tn)

m̂atchρ̂,σ̂(p, d) = ∅ otherwise

where⊗̂
({Θi | 1 ≤ i ≤ n}) =

{
θ
∣∣∣ θ =

⊗
{θi | 1 ≤ i ≤ n}, θ 6= ⊥, θi ∈ Θi, 1 ≤ i ≤ n

}
A.2 Proof of Theorem 5.1

We start with some simple technical lemmata.

Lemma A.1. Suppose the concrete domain C = A ⇀ B of partial functions has abstract

domain Ĉ = Â→P(B̂) with the induced order ≤ and abstraction function αC : C → Ĉ ,
then for all f ∈ C and for all αC(f) ≤ f̂

∀a ∈ dom(f) . αB(f(a)) ∈ f̂(αA(a)). (A.1)

Further suppose f, f ′ ∈ C such that f ′ = f [a1 7→ b1, . . . , an 7→ bn] and let f̂ , f̂ ′ ∈ Ĉ such

that f̂ ′ = f̂ t [â1 7→ b̂1, . . . , ân 7→ b̂n] with αC(f) ≤ f̂ and αA(ai) = âi, αB(bi) = b̂i for
i = 1, . . . , n then

αC(f ′) ≤ f̂ ′. (A.2)

Proof. Let f ∈ C and f̂ ∈ Ĉ such that αC(f) ≤ f̂ . The de�nition of ≤ implies that for
all â ∈ Â

αC(f)(â) ⊆ f̂(â).

Take a ∈ A and �x â = αA(a) then we obtain

αC(f)(αA(a)) ⊆ f̂(αA(a)).

Expanding the de�nition of αC yields

{αB(b0) | (a0, b0) ∈ f, αA(a0) = αA(a))} ⊆ f̂(αA(a)).

176

A.2. Proof of Theorem 5.1

In particular αB(f(a)) ∈ {αB(b0) | (a0, b0) ∈ f, αA(a0) = αA(a))} which yields what we
set out to prove

∀a ∈ dom(f) . αB(f(a)) ∈ f̂(αA(a)).

Turning to equation A.2 we want to show αC(f ′) ≤ f̂ ′. Let â ∈ Â then there are
several cases to consider

1. αC(f ′)(â) = αC(f)(â). Then since αC(f) ≤ f̂ ≤ f̂ ′ we have

αC(f)(â) ⊆ f̂(â) ⊆ f̂ ′(â).

2. â = αA(ai) for some 1 ≤ i ≤ n. Then â = âi and thus

αC(f ′)(â) = {αB(bi)} ∪ {αB(f(a))|αA(a) = â, a 6= ai}
⊆ {b̂i} ∪ αC(f)(â)

⊆ {b̂i} ∪ f̂(â) ⊆ f̂ ′(â)

3. otherwise there does not exist (a, b) ∈ f ′ such thatαA(a) = â, henceαC(f ′)(a) = ∅
which makes our claim trivially true.

We can thus conclude that αC(f ′) ≤ f̂ ′.

Corollary A.2. Let π ∈ Procs and π̂ ∈ P̂rocs such that αproc(π) ≤ π̂, let σ ∈ Store and

σ̂ ∈ Ŝtore such that αst(σ) ≤ σ̂ and Let µ ∈ Mailboxes and µ̂ ∈ ̂Mailboxes such that

αms(µ) ≤ µ̂ then

1. ∀ι ∈ Pid . αps(π(ι)) ∈ π̂(αpid(ι))

2. ∀b ∈ VAddr . αval(σ(b)) ∈ σ̂(αva(b))

3. ∀a ∈ KAddr . αkont(σ(a)) ∈ σ̂(αka(a))

4. ∀ι ∈ Pid . αm(µ(ι)) ≤ µ̂(αpid(ι))

5. ∀ι ∈ Pid .∀x ∈ Var . ∀δ ∈ Data .∀q ∈ ProcState .

αva(newva(ι, x, δ, q)) = n̂ewva(αpid(ι), x, αd(δ), αps(q))

Proof. Cases 1 - 3 follow directly from Lemma A.1; it remains to show the claims of 4
and 5.

177

A. Proof of Soundness of the CFA

(iv) By assumption αms(µ) ≤ µ̂ which implies that

αms(µ)(αpid(ι)) ≤ µ̂(αpid(ι)) = µ̂(̂ι).

Expanding αms then gives us that αm(µ(ι)) ≤ αms(µ)(αpid(ι)), since αms(µ) =
λι̂.
⊔
{αm(µ(ι)) | αpid(ι) = ι̂}, which allows us to conclude

αm(µ(ι)) ≤ µ̂(̂ι).

(v) The claim follows straightforwardly from expanding newva and n̂ewva:

αva(newva(ι, x, δ, q)) = (αpid(ι), x, αd(δ), αt(t))

n̂ewva(αpid(ι), x, αd(δ), αps(q))

where q = 〈e, ρ, a, t〉.

We now prove Theorem 5.1.

Proof of Theorem 5.1. The proof is by a case analysis of the rule that de�nes the concrete
transition s→ s′. For each rule, the transition in the concrete system can be replicated in
the abstract transition system using the abstract version of the rule, with the appropriate
choice of abstract pid, the continuation from the abstract store, the message from the
abstract mailbox, etc.

Let s = 〈π, µ, σ〉 → 〈π′, µ′, σ′〉 = s′ and u = 〈π̂, µ̂, σ̂〉 such that αproc(π) ≤ π̂,
αmail(µ) ≤ µ̂, and αst(σ) ≤ σ̂. We consider a number of rules for illustration.
Case: (Send). We know that s→ s′ using rule Send; we can thus assume

π(ι) = 〈v, ρ, a, t〉
σ(a) = Arg2〈`, d, ι′, _, c〉

d = (send, _)

and for s′

π′ = π[ι 7→ 〈v, ρ, c, t〉]
µ′ = µ[ι′ 7→ enq((v, ρ), µ(ι′))]

σ′ = σ.

As a �rst step we will examine u and show that u u′ for some u′. For π̂ and σ̂, writing
ι̂ := αpid(ι), Corollary A.2 gives us

〈v, ρ̂, â, t̂ 〉 ∈ π̂(̂ι)

Arg2〈`, d̂, ι̂′, _, ĉ〉 ∈ σ̂(â)

178

A.2. Proof of Theorem 5.1

where αenv(ρ) = ρ̂, αak(a) = â, d̂ = αval(d), t̂ = αt(t), ι̂′ = αpid(ι
′) and ĉ = αka(c). Rule

AbsSend is now applicable and we can set

π̂′ := π̂ t [̂ι 7→ q̂]

q̂ := 〈v, ρ̂, ĉ, t̂ 〉
µ̂′ := µ̂[̂ι′ 7→ ênq((v, ρ̂), µ̂(̂ι′))]

u′ := 〈π̂′, µ̂′, σ̂〉.

It follows from rule (AbsSend) that u u′. It remains to show that αcfa(s
′) ≤ u′ which

follows directly from 1. αproc(π
′) ≤ π̂′ and 2. αms(µ

′) ≤ µ̂′.

1. αproc(π
′) ≤ π̂′ follows immediately from Lemma A.1 since ι̂ = αpid(ι) and αps(q) =

q̂.

2. αms(µ
′) ≤ µ̂′. It is su�cient to show that αpid(ι

′) = ι̂′, which is immediate,
and αm(µ′(ι′)) ≤ µ̂(̂ι). For the latter, since αenv(ρ) = ρ̂, a sound basic domain
abstraction gives us

αm(µ′(ι′)) = αm(enq((v, ρ), µ(ι′)))

≤ ênq((v, ρ̂), µ̂(̂ι′)) = µ̂(̂ι)

provided we can show αm(µ(ι′)) ≤ µ̂(̂ι′); the latter inequality follows Corollary
A.2. Hence we can conclude αms(µ

′) ≤ µ̂′ which completes the proof of this case.

Case: (Receive). In the concrete s → s′ using the Receive, hence we can make the
following assumptions

π(ι) = 〈receive p1 → e1 . . . pn → en end, ρ, a, t〉 =: q

(i, θ,m) = mmatch(p1 . . . pn, µ(ι), ρ, σ)

θ = [x1 7→ d1 . . . xk 7→ dk]

bj = newva(ι, xj, δj, q)

δj = res(σ, dj)

and for state s′

π′ = π[ι 7→ q′]

q′ = 〈ei, ρ′, a, t〉
ρ′ = ρ[x1 7→ b1 . . . xk 7→ bk]

µ′ = µ[ι 7→ m]

σ′ = σ[b1 7→ d1 . . . bk 7→ dk].

179

A. Proof of Soundness of the CFA

As a �rst step we will look at u to prove there there exists a u′ such that u u′ using
rule AbsReceive. We can invoke Corollary A.2, since αproc(π) ≤ π̂, to obtain

q̂ := 〈receive p1 → e1 . . . pn → en end, ρ̂, â, t̂ 〉 ∈ π̂(̂ι)

where we write ρ̂ := αenv(ρ), â := αka(a), t̂ = αt(t) and ι̂ := αpid(ι). Moreover Corollary
A.2 gives us

αm(µ(ι)) ≤ µ̂(̂ι).

as αms(µ) ≤ µ̂ and ι̂ = αpid(ι). Since the instantiation of the basic domains is sound and
αst(σ) ≤ σ̂ we then know that

(i, θ̂, m̂) ∈ m̂match(~p, µ̂(̂ι), ρ̂, σ̂)

such that θ̂ = αsub(θ) and m̂ ≥ αm(m). Turning to the substitution θ̂ we can see that

θ̂ = [x1 7→ d̂1 . . . xk 7→ d̂k]

where d̂i = α(di) for 1 ≤ i ≤ k. Appealing to the sound basic domain instan-
tiation once more, noting that αst(σ) ≤ σ̂, yields that for j = 1, . . . , k we have
δ̂j := αd(δj) ∈ res(σ̂, d̂j); to obtain new abstract variable addresses we can now set
b̂j := n̂ewva(̂ι, xj, δ̂j, q̂). Rule AbsReceive is applicable now; we make the following
de�nitions

π̂′ := π̂ t [̂ι 7→ q̂′]

q̂′ := 〈ei, ρ̂′, â, t̂ 〉
ρ̂′ := ρ̂[x1 7→ b̂1 . . . xk 7→ b̂k]

µ̂′ := µ̂[̂ι 7→ m̂]

σ̂′ := σ̂ t [b̂1 7→ d̂1 . . . b̂k 7→ d̂k]

û′ := 〈π̂′, µ̂′, σ̂′, ϑ̂〉

and observe that u u′. It remains to show αcfa(s
′) ≤ u′ which follows directly if we

can prove 1. αproc(π
′) ≤ π̂′, 2. αms(µ

′) ≤ µ̂′ and 3. αst(σ
′) ≤ σ̂′.

1. αproc(π
′) ≤ π̂′. We note that by Corollary A.2 we know b̂i = αva(bi) as ι̂ = αpid(ι),

δ̂i = αd(δi) and αproc(q) = q̂ for 1 ≤ i ≤ n. It follows that ρ̂′ = αenv(ρ
′) and hence

q̂′ = αps(q
′). Lemma A.1 is now applicable, since ι̂ = αpid(ι), to give αproc(π

′) ≤ π̂′.

2. αms(µ
′) ≤ µ̂′. It is su�cient to show that ι̂ = αpid(ι), which is immediate, and

αm(m) ≤ m̂ which we have already established above; hence we can conclude
αms(µ

′) ≤ µ̂′.

180

A.2. Proof of Theorem 5.1

3. αst(σ
′) ≤ σ̂′. The observation that b̂i = αva(bi) and d̂i = αval(di) allows the

application of Lemma A.1 which gives αst(σ
′) ≤ σ̂′ as desired.

This completes the proof of this case.
Case: (Apply). Since s→ s′ using rule Apply we can assume that

π(ι) = 〈v, ρ, a, t〉 =: q

σ(a) = Argn〈`, d0 . . . dn−1, ρ′, c〉 := κ

arity(`) = n

d0 = (fun(x1 . . . xn)→ e, ρ0)

dn = (v, ρ)

and for i = 1, . . . , n

δi = res(σ, di)

bi = newva(ι, xi, δi, q)

additionally for the successor state s′

π′ = π[ι 7→ q′]

where q′ := 〈e, ρ′[x1 → b1 . . . xn → bn], c, tick(`, t)〉
σ′ = σ[b1 7→ d1 . . . bn 7→ dn]

µ′ = µ

As a �rst step we will examine u and show that there exists a u′ such that u u′ using
rule AbsApply. From Corollary A.2, since αproc(π) ≤ π̂, it follows that

q̂ := 〈v, αenv(ρ), αka(a), αt(t)〉 ∈ π̂(αpid(ι)).

Letting ρ̂ := αenv(ρ), â := αka(a), t̂ := αt(t) and ι̂ := αpid(ι) we can appeal to Corollary
A.2 again, as αst(σ) ≤ σ̂, to obtain

Argn〈`, d̂0 . . . d̂n−1, ρ̂′, ĉ〉 ∈ σ̂(â)

where we write d̂i := αval(di) for 0 ≤ i < n, ρ̂′ := αenv(ρ
′) and ĉ := αka(c). Expanding

αval yields
d̂0 = (fun(x1 . . . xn)→ e, ρ̂0)

where we write ρ̂0 := αenv(ρ0). Taking d̂n := (v, ρ̂) we obtain from our sound basic
domain abstraction

δ̂i := αd(δi) ∈ r̂es(σ̂, d̂i) for i = 1, . . . , n

181

A. Proof of Soundness of the CFA

as αst(σ) ≤ σ̂ and d̂i = αval(di). Turning to the abstract variable addresses we de�ne

b̂i := n̂ewva(̂ι, xi, δ̂i, q̂) for 1 ≤ i ≤ n.

Rule AbsApply is now applicable and we de�ne

π̂′ := π̂ t [̂ι 7→ q̂′]

q̂′ := 〈e, ρ̂′[x1 → b̂1 . . . xn → b̂n], ĉ, t̂ick(`, t̂)〉
σ̂′ := σ̂ t [b̂1 7→ d̂1 . . . b̂n 7→ d̂n]

u′ := 〈π̂′, µ̂, σ̂′〉.

It is clear from rule AbsApply that u u′; it remains to show that αcfa(s
′) ≤ u′ to prove

this case. The latter follows if we can justify 1. αproc(π
′) ≤ π̂′ and 2. αst(σ

′) ≤ σ̂′.

1. αproc(π
′) ≤ π̂′. We can appeal to Lemma A.1 provided we can show that ι̂ = αpid(ι)

and αps(q
′) = q̂′ where the former is immediate. For the latter, �rst observe that

since we have a sound basic domain abstraction we know αt(tick(`, t)) ≤ t̂ick(`, t̂);
however as Time is a �at domain so the above inequality is in fact an equality

αt(tick(`, t)) = t̂ick(`, t̂).

Moreover b̂i = αva(bi) for 1 ≤ i ≤ n by Corollary A.2, hence

αenv(ρ
′[x1 → b1 . . . xn → bn]) = ρ̂′[x1 → b̂1 . . . xn → b̂n]

as αenv(ρ
′) = ρ̂′; in combination with ĉ = αka(c) we obtain the desired αps(q

′) = q̂′.
Thus we conclude that αproc(π

′) ≤ π̂′.

2. αst(σ
′) ≤ σ̂′. Since αva(bi) = b̂i and αval(di) = d̂i for 1 ≤ i ≤ n Lemma A.1 is

applicable once more and gives us αst(σ
′) ≤ σ̂′ and completes the proof of this

case.

182

Appendix B

Proof of Soundness of the Generated

ACS

Terminology Analogously to our remark in Section 5.3 on active components for rules
AbsR in the abstract operational semantics it is possible to identify a similar pattern
in the concrete operational semantics. Henceforth we will speak of the concrete active
component (ι, q, q′) of a rule R of the concrete operational semantics and we will say the
abstract active component (̂ι, q̂, q̂′) of a rule AbsR of the abstract operational semantics
where AbsR is the abstract counterpart of R. We will omit the adjectives abstract and
concrete when there is no confusion.

Lemma B.1. Suppose s → s′ using the concrete rule R with concrete active component

(ι, q, q′) and ŝ ≥ αcfa(s). Then ŝ ŝ′ with ŝ′ ≥ αcfa(s
′) using rule AbsR with abstract

active component (αpid(ι), αps(q), αps(q
′)).

Proof. The claim follows from inspection of the proof of Theorem 5.1.

Proof of Theorem 5.3. Suppose s→ s′ using rule R of the concrete operational semantics
with active component (ι, q, q′). We will prove our claim by case analysis on R.

- R = FunEval, ArgEval, Apply or Vars. Take ŝ = αcfa(s); Lemma B.1 gives us that
ŝ ŝ′ using abstract rule AbsR = AbsFunEval, AbsArgEval, AbsApply or Vars

respectively with active component (̂ι, q̂, q̂′) where ι̂ = αpid(ι), q̂ = αps(q) and
q̂′ = αps(q

′). It follows that

r := ι̂ : q̂
τ−→ q̂′ ∈ R.

Since s→ s′ with active component (ι, q, q′) it follows that

1. αacs(s)(̂ι, q̂) ≥ 1,
2. αacs(s

′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1 and

183

B. Proof of Soundness of the Generated ACS

3. αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1

as ι̂ = αpid(ι), q̂ = αps(q) and q̂′ = αps(q
′). We know αacs(s) ≤ v and thus

v(̂ι, q̂) ≥ 1. If we de�ne

v′ := v[(̂ι, q̂) 7→ v(̂ι, q̂)− 1, (̂ι, q̂′) 7→ v(̂ι, q̂′) + 1],

then it is clear that v→acs v
′ using rule r ∈ R and the inequalities

αacs(s
′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1 ≤ v(̂ι, q̂)− 1 = v′(̂ι, q̂)

αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1 ≤ v(̂ι, q̂′) + 1 = v′(̂ι, q̂′);

the consequence of the latter two is that αacs(s
′) ≤ v′, since αacs(s) ≤ v, which

completes the proof of this case.

- R = Receive. Letting ŝ = αcfa(s) Lemma B.1 yields that ŝ ŝ′ using abstract
rule AbsReceive with active component (̂ι, q̂, q̂′) where ι̂ = αpid(ι), q̂ = αps(q) and
q̂′ = αps(q

′). We note that s = 〈π, σ, µ〉 and ŝ = 〈π̂, σ̂, µ̂〉 where π̂ = αproc(π),
σ̂ = αst(σ) and µ̂ = αms(µ). Let the message matched by mmatch and extracted
from µ(ι) be d = (pi, ρ

′) then inspecting rule AbsReceive we can assume that
during ŝ ŝ′ message d̂ = (pi, ρ̂

′), where ρ̂′ = αenv(ρ
′), is matched by m̂match.

Since the message abstraction is a sound data abstraction we know that

m̂ := αmsg(res(σ, d)) ∈ r̂esmsg(σ̂, d̂)

and hence we have
r := ι̂ : q̂

?m̂−→ q̂′ ∈ R

Additionally we know

1. αacs(s)(̂ι, q̂) ≥ 1,
2. αacs(s)(̂ι, m̂) ≥ 1,
3. αacs(s

′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1,
4. αacs(s

′)(̂ι, q̂′) = αacs(s)(̂ι, q̂
′) + 1 and

5. αacs(s
′)(̂ι, m̂) = αacs(s)(̂ι, m̂)− 1

since d is the message extracted from µ(ι) and m̂ = αmsg(res(σ, d)). By assumption
we know αacs(s) ≤ v which implies v(̂ι, q̂) ≥ 1 and v(̂ι, m̂) ≥ 1, and so we can
de�ne

v′ := v

 (̂ι, q̂) 7→ v(̂ι, q̂)− 1,

(̂ι, m̂) 7→ v(̂ι, m̂)− 1,

(̂ι, q̂′) 7→ v(̂ι, q̂′) + 1

;

184

it is then clear that, using rule r ∈ R, v→acs v
′ and

αacs(s
′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1 ≤ v(̂ι, q̂)− 1 = v′(̂ι, q̂)

αacs(s
′)(̂ι, m̂) = αacs(s)(̂ι, m̂)− 1 ≤ v(̂ι, m̂)− 1 = v′(̂ι, m̂)

αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1 ≤ v(̂ι, q̂′) + 1 = v′(̂ι, q̂′).

Hence, since αacs(s) ≤ v, we can conclude αacs(s
′) ≤ v′ as desired.

- R = Send. Using Lemma B.1, with ŝ = αcfa(s), gives ŝ ŝ′ with active component
(̂ι, q̂, q̂′) for the abstract ruleAbsSendwhere ι̂ = αpid(ι), q̂ = αps(q) and q̂′ = αps(q

′).
Examining the concrete and abstract states we see s = 〈π, σ, µ〉 and ŝ = 〈π̂, σ̂, µ̂〉
where π̂ = αproc(π), σ̂ = αst(σ) and µ̂ = αms(µ). Let the pid of the recipient be
ι′ and let d be the value enqueued to ι′’s mailbox µ(ι′); inspecting the proof of
Theorem 5.1 the pid of the abstract recipient is ι̂′ := αpid(ι

′) and the sent abstract
value is d̂ = αval(d). Appealing to the soundness of the message abstraction we
obtain

m̂ := αmsg(res(σ, d)) ∈ r̂esmsg(σ̂, d̂)

and hence we have
r := ι̂ : q̂

′ ι̂′!m̂−−→ q̂′ ∈ R
Additionally we know

1. αacs(s)(̂ι, q̂) ≥ 1,
2. αacs(s

′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1,
3. αacs(s

′)(̂ι, q̂′) = αacs(s)(̂ι, q̂
′) + 1 and

4. αacs(s
′)(̂ι′, m̂) = αacs(s)(̂ι

′, m̂) + 1

since d is the message enqueued to µ(ι′) and m̂ = αmsg(res(σ, d)). From our
assumption we know αacs(s) ≤ v and thus v(̂ι, q̂) ≥ 1; making the de�nition

v′ := v

 (̂ι, q̂) 7→ v(̂ι, q̂)− 1,

(̂ι, q̂′) 7→ v(̂ι, q̂′) + 1,

(̂ι′, m̂) 7→ v(̂ι′, m̂) + 1

;

we observe that we are able to use rule r ∈ R to make the step v→acs v
′. Further

the inequalities

αacs(s
′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1 ≤ v(̂ι, q̂)− 1 = v′(̂ι, q̂)

αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1 ≤ v(̂ι, q̂′) + 1 = v′(̂ι, q̂′)

αacs(s
′)(̂ι′, m̂) = αacs(s)(̂ι

′, m̂)− 1 ≤ v(̂ι′, m̂)− 1 = v′(̂ι′, m̂).

imply, since αacs(s) ≤ v, that αacs(s
′) ≤ v′ which concludes the proof of this case.

185

B. Proof of Soundness of the Generated ACS

- R = Spawn. Take ŝ = αcfa(s); Lemma B.1 gives us that ŝ ŝ′ using abstract
rule AbsSpawn with active component (̂ι, q̂, q̂′) where ι̂ = αpid(ι), q̂ = αps(q) and
q̂′ = αps(q

′). We note that s = 〈π, σ, µ〉, s′ = 〈π′, σ′, µ′〉 and ŝ = 〈π̂, σ̂, µ̂〉 where
π̂ = αproc(π), σ̂ = αst(σ) and µ̂ = αms(µ). Further we can assume

π(ι) = 〈fun()→ e, ρ, a, t〉
σ(a) = Arg1〈`, d, ρ′, c〉

d = (spawn, _)

ι′ := newpid(ι, `, ϑ)

π′(ι) = 〈ι′, ρ′, c, t〉 = q′

π′(ι′) = 〈e, ρ,∗, t0〉 =: q′′

Noting that we are replicating the step s→ s′ in the abstract ŝ ŝ′, αcfa(s) = ŝ
and αpid ◦ newpid = n̂ewpid ◦ α we can see that the new abstract pid created is
ι̂′ = αpid(ι

′) together with its process state q̂′′ = αps(q
′′). Hence we can conclude

that
r := ι̂ : q̂

ν′ ι̂′.q̂′′−−−→ q̂′ ∈ R
and we observe that

1. αacs(s)(̂ι, q̂) ≥ 1,
2. αacs(s

′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1,
3. αacs(s

′)(̂ι, q̂′) = αacs(s)(̂ι, q̂
′) + 1 and

4. αacs(s
′)(̂ι′, q̂′′) = αacs(s)(̂ι

′, q̂′′) + 1.

Now the assumption αacs(s) ≤ v allows us to conclude v(̂ι, q̂) ≥ 1, so that we can
de�ne

v′ := v

 (̂ι, q̂) 7→ v(̂ι, q̂)− 1,

(̂ι, q̂′) 7→ v(̂ι, q̂′) + 1,

(̂ι′, q̂′′) 7→ v(̂ι′, q̂′′) + 1

;

and use rule r ∈ R to make the step v→acs v
′. Further with the inequalities

αacs(s
′)(̂ι, q̂) = αacs(s)(̂ι, q̂)− 1 ≤ v(̂ι, q̂)− 1 = v′(̂ι, q̂)

αacs(s
′)(̂ι, q̂′) = αacs(s)(̂ι, q̂

′) + 1 ≤ v(̂ι, q̂′) + 1 = v′(̂ι, q̂′)

αacs(s
′)(̂ι′, q̂′′) = αacs(s)(̂ι

′, q̂′′)− 1 ≤ v(̂ι′, q̂′′)− 1 = v′(̂ι′, q̂′′).

and our assumption αacs(s) ≤ v we see that αacs(s
′) ≤ v′ which completes the

proof of this case and the theorem.

186

Index

Symbols
CMF(D,Q) . 134
GJP K see communication topology
S see sequential term
Qf . 134
αacs . 57
αcfa . 49
→A . 134
 see λActor abstract semantics
JVK . 19
D see nested dataset
↔P see linked to relation
I see basic domains abstraction
/P see tied to (name) relation
Miga(y).P see migratable
aP see tied to relation

A
abstract interpretation 6, 149
abstract semantics50
active components 55
active sub-term 89
Actor Communicating System (ACS) . 5,

23, 37
dimension . 61
generated by P , I , Dmsg 56
semantics . 38

B
base type constraints 122
basic domains abstraction (I) 48
behaviours . 27, 34

BFC . 66, 70

C
channel . see name
Class Memory Automata 133
class memory function 134
communication topology 7, 8, 85, 95, 149
concrete semantics 46
Concurrent ML (CML) 76, 149
continuations . 44
contours . 44, 53
Control-Flow Analysis (CFA) 75
Core Erlang . 73
counter abstraction . . . 7, 36, 37, 62, 131
Counter-Example Guided Abstract Re-

�nement (CEGAR) 158
coverability 8, 18, 23, 38, 142

D
data abstraction 48
data-�ow constraints 122
degree of sharing 14, 103, 155
depth . 98
depth-bounded 10, 85, 98
Dialyzer . 80

E
exchange law 13, 89
Expand, Enlarge and Check (EEC) . 100

F
�nitary π-calculus 148
�nite-control π-calculus 148

187

Index

First-In-First-Fireable-Out (FIFFO) 32, 36
First-In-First-Out (FIFO) 32
forest . 93

embedding 100
L-labelled forest93
representation (forest(P))94

fragments . 98
Fresh-Register Automata (FRA) . . . 148

G
graph rewriting systems 159

H
heightν see restriction height
heisenbugs . 28
History-Dependent Automata 148
hypergraphs . 95

K
Karp-Miller trees 148

L
labels (of a program) 32
λActor . 31

abstract semantics 50
concrete semantics 46
reduction semantics 32
syntax . 31

λ-calculus . 32, 75
linked to relation (↔P) 96
Lossy Channel Systems 36

M
mailbox . 3, 23, 35
mailbox abstraction 48
McErlang . 77
migratable (Miga(y).P) 96
mixed bounded 148
mutual exclusion . . . 5, 23, 35, 38, 55, 66

N
name 89, see also process identi�er
name bounded 99, 148

Nested Data Class Memory Automata
(NDCMA) 87, 133, 134

nested dataset (D) 134
nesting of restrictions 97
normal form 90, 91

O
Open Telecoms Platform (OTP) . 29, 77,

158

P
Petri nets . 8, 19, 23, 38, 99, 133, 148, see

also VAS
π-calculus . 76, 89

normal form 91
semantics . 92
syntax . 89

Picasso . 101, 159
pid-class . 36, 37
pred-basis . 18, 100
process algebra . 25
process identi�er (pid) 3, 27, 45
PropEr . 80

R
reachability 17, 59, 99, 134, 142, 145
restriction height (heightν) 94

S
safety property 5, 38
Scala . 26
Scheme . 75
scope . 89
scope extrusion 13, 89
sequential term 89
Session Types 79, 147
shape analysis 159
soft-typing . 74
standard form . 90
structural congruence 13, 89
structurally stationary 148
supervision tree 28

188

Index

T
term embedding order100
tied to (name) relation (/P)96
tied to relation (aP) 96
time abstraction 48
typably hierarchical 87, 121

U
upper-closure . 18

V
Vector Addition System (VAS) . 8, 19, 23

W
well quasi ordering (wqo) 18, 100
Well Structured Transition System (WSTS)

. .18

189

	Contents
	List of Figures
	List of Definitions
	1 Introduction
	1.1 An Erlang Primer
	1.2 Soter's verification approach
	1.3 Process Identities and the pi-calculus
	1.4 Hierarchical Systems
	1.5 Outline

	2 Preliminaries
	2.1 Transition Systems
	2.2 Well Structured Transition Systems
	2.3 Vector Addition Systems

	I Soter: Infinite-State Verification for Erlang
	3 Overview
	3.1 Contributions
	3.2 The Actor Model
	3.3 Erlang

	4 Models of Message-Passing Concurrency
	4.1 A Prototypical Fragment of Erlang
	4.2 The Quest for a Decidable Abstraction
	4.3 Actor Communicating Systems

	5 Verifying Lambda-Actor programs
	5.1 An Operational Semantics for Lambda-Actor
	5.2 Parametric Abstract Interpretation
	5.3 Generating the Actor Communicating System
	5.4 An Efficient Algorithm for ACS Generation
	5.5 Limitations

	6 Soter: a Verification Tool for Erlang
	6.1 The Soter Tool
	6.2 Empirical Evaluation
	6.3 A Simple Case Study

	7 Related Work
	7.1 Semantics of Erlang
	7.2 The Many Faces of Soundness
	7.3 Static Analysis
	7.4 Abstract Model Checking
	7.5 Type Systems for Erlang
	7.6 Session Types
	7.7 Bug-finding and Testing

	II Typably Hierarchical Systems
	8 Beyond Petri Nets
	8.1 Motivation
	8.2 Contributions and Outline

	9 The pi-calculus and Depth Boundedness
	9.1 The pi-calculus
	9.2 Forest Representation of Terms
	9.3 Communication Topology
	9.4 The "tied to" relation
	9.5 Depth-bounded Systems

	10 Typably Hierarchical Topologies
	10.1 Proving Depth-Boundedness Using T-compatibility
	10.2 A canonical representative
	10.3 A Type System for Hierarchical Topologies
	10.4 Soundness
	10.5 Type Inference
	10.6 Polyadic and Global Channels
	10.7 Some examples

	11 Relation with Other Models
	11.1 Nested Data Class Memory Automata
	11.2 Encoding Typably Hierarchical Terms into NDCMA
	11.3 Encoding NDCMA into Typably Hierarchical Terms
	11.4 CCS!
	11.5 Other Related Work

	12 Extensions and Future Directions
	12.1 More Expressive Types
	12.2 Semantic Notion of Hierarchical System
	12.3 Complexity

	13 Conclusions
	13.1 Summary
	13.2 Future Work

	Bibliography
	Appendices
	A Proof of Soundness of the CFA
	A.1 Abstract Domains, Orders, Abstraction Functions and Abstract Auxiliary Functions
	A.2 Proof of soundness

	B Proof of Soundness of the Generated ACS
	Index

