Memory Model-aware Testing
a Unified Complexity Analysis

Florian Furbach, Roland Meyer,
Klaus Schneider, and Maximilian Senftleben

University of Kaiserslautern
Department of Computer Science
Germany

ACSD 2014

June 26, 2014
Introduction
Motivation

- Programmers expect sequential consistency.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Programmers expect sequential consistency.

Modern architectures lack sequential consistency.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Introduction
Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.
- State explosion for reachability analysis.

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Introduction

Motivation

- Programmers expect sequential consistency.
- Modern architectures lack sequential consistency.
- Modern architectures employ weak memory models.
- Weak memory models may introduce undesired states.
- State explosion for reachability analysis.

- **Complexity of Testing?**

Gibbons, Korach 1997
Cantin, Lipasti, Smith 2005
Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0.

Example: Test \(\tau \)
Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0.

Example: Test \mathcal{T}

```
P1: (w, x, 1)  (w, x, 2)
P2: (r, x, 1)
```

\downarrow

x: 0
Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0.

Example: Test \mathcal{T}

\[\begin{align*}
\text{P1} & : (w, x, 1) \\
& \quad (w, x, 2) \\
\text{P2} & : (r, x, 1) \\
\end{align*} \]

\downarrow : $(w, x, 1)$

x : 1
Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0.

Example: Test \mathcal{T}

\[(w, x, 1) \]
\[(w, x, 2) \]
\[(r, x, 1) \]

$\downarrow: (w, x, 1).(r, x, 1)$

$x: 1$
Introduction

Notions

- Test: sequences of reads/writes for multiple processes.
- Reads are blocking.
- Memory variables initialized to 0.

Example: Test \mathcal{T}

- P_1: $(w, x, 1)$, $(w, x, 2)$
- P_2: $(r, x, 1)$

\downarrow: $(w, x, 1).(r, x, 1).(w, x, 2)$

x: 2
Serial View

- Processes observe operations in different orders (views).
- A **serial view** $\leftarrow = \text{SerialView}(\mathcal{O},<)$ is a sequence of operations from \mathcal{O} that respects some partial order $<.$
- Always read from last write.

Steinke, Nutt 2004
Serial View

- Processes observe operations in different orders (views).
- A **serial view** $\triangleright = \text{SerialView}(\mathcal{O}, <)$ is a sequence of operations from \mathcal{O} that respects some partial order $<$.
- Always read from last write.

- A Test \mathcal{T} is **executable under sequential consistency** if:

$$\exists \; \triangleright = \text{SerialView}(\mathcal{T}, <_{PO}).$$

Example $\triangleright : \; (w, x, 1).(r, x, 1).(w, x, 2)$

Steinke, Nutt 2004
The Testing Problem

Testing Problem of model M:

Given test \mathcal{T}, is it executable under model M?
The Testing Problem

Testing Problem of model M:

Given test \(\mathcal{T} \), is it executable under model \(\mathbf{M} \)?

Steinke, Nutt 2004
The Testing Problem

Testing Problem of model M:

Given test \mathcal{T}, is it executable under model M?

Steinke, Nutt 2004
The Testing Problem

- Testing Problem is in NP for all models
- Testing Problem is NP-hard for most models
- Testing Problem is in P for some models
Testing is in NP

Uniform Reduction to SAT:

- Formula:
 \[WT(T) \land SV_1 \land .. \land SV_k \]

 \(WT \): Unique Writes-To
 \(SV \): SerialView properties
Testing is in NP

Uniform Reduction to SAT:

- Formula:
 \[
 WT(T) \land SV_1 \land .. \land SV_k
 \]
 \(WT\): Unique Writes-To
 \(SV\): SerialView properties

- Boolean variable:
 \[
 sv_{i,j} \leftrightarrow (op_i \blacktriangleleft op_j)
 \]

- Serial view properties:
 Totality, Asymmetry, Transitivity, Read-Last-Write
The Testing Problem

- **Testing Problem is in NP for all models**
 - Uniform SAT reduction.
 - Optimal solution if NP-hard.

- Testing Problem is NP-hard for most models
- Testing Problem is in P for some models
The Testing Problem

- Testing Problem is in NP for all models
- **Testing Problem is NP-hard for most models**
- Testing Problem is in P for some models
The Testing Problem

- Testing Problem is in NP for all models
- **Testing Problem is NP-hard for most models**
 - Our proofs cover multiple models
- Testing Problem is in P for some models
NP-hard for most models

Range reduction

\[M_{\text{Strong}} \leq M_{\text{Weak}} \text{-range reduction } f \text{ of SAT to testing:} \]

\[
\begin{align*}
\text{M}_{\text{Strong}} & \downarrow \\
\text{SAT} & \Downarrow \\
\text{M} & \Downarrow \\
\text{M} & \Downarrow \\
\text{M} & \Downarrow \\
\text{M}_{\text{Weak}} & \\
\end{align*}
\]

(i) \(\phi \) is SAT \(\implies \) test \(f(\phi) \) is executable under \(M_{\text{Strong}} \).

(ii) test \(f(\phi) \) is executable under \(M_{\text{Weak}} \) \(\implies \) \(\phi \) is SAT.
NP-hard for most models

Range reduction

\(M_{Strong} \leq M_{Weak} \) - range reduction \(f \) of SAT to testing:

(i) \(\phi \) is SAT \(\implies \) test \(f(\phi) \) is executable under \(M_{Strong} \).

(ii) test \(f(\phi) \) is executable under \(M_{Weak} \) \(\implies \phi \) is SAT.
NP-hard for most models

Range reduction

\[M_{\text{Strong}} \leq M_{\text{Weak}} \text{-range reduction } f \text{ of SAT to testing:} \]

(i) \(\phi \) is SAT \(\iff \) test \(f(\phi) \) is executable under \(M_{\text{Strong}} \).
(ii) test \(f(\phi) \) is executable under \(M_{\text{Weak}} \) \(\iff \) \(\phi \) is SAT.
NP-hard for most models

Range reduction

\[M_{Strong} \leq M_{Weak} \text{-range reduction } f \text{ of SAT to testing:} \]

\[\begin{align*}
(i) & \quad \phi \text{ is SAT } \implies \text{test } f(\phi) \text{ is executable under } M_{Strong}. \\
(ii) & \quad \text{test } f(\phi) \text{ is executable under } M_{Weak} \implies \phi \text{ is SAT.}
\end{align*} \]
NP-hard for most models

\(SC \leq SLOW\text{-Range\text{-}Reduction} \)
NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.
NP-hard for most models

Slow Consistency

*W*rites from one process to one variable are observed in same order by all processes.

- The **program order** is respected.
- For each process p and variable x: there exists a serial view on all writes to x and reads from x of p.

\[
\forall x, p \exists \text{ SerialView}(\mathcal{T}|_{w,x} \cup \mathcal{T}|_{p,x}, <_{PO})
\]

\[
\exists \text{ SerialView}(\mathcal{T}, <_{PO}) \quad [SC]
\]

Hutto, Ahamad 1990
NP-hard for most models

Slow Consistency

Writes from one process to one variable are observed in same order by all processes.

- The program order is respected.
- For each process p and variable x: there exists a serial view on all writes to x and reads from x of p.

\[
\forall x, p \exists \ SerialView(\ T_{w,x} \cup T_{p,x}, <PO)\]

\[
\exists \ SerialView(\ T, <PO) \quad [SC]
\]

Hutto, Ahamad 1990
NP-hard for most models

Slow Consistency

```
Writes from one process to one variable are observed in same order by all processes.
```

- The program order is respected.
- For each process p and variable x: there exists a serial view on all writes to x and reads from x of p.

\[
\forall x, p \exists \downarrow = \text{SerialView}(\: T|_{w,x} \cup T|_{p,x} \: , <PO) \]

\[
\exists \downarrow = \text{SerialView}(\: T \: , <PO) \quad [\text{SC}]
\]

Hutto, Ahamad 1990
NP-hard for most models
SC ≤ SLOW-Range-Reduction of SAT

Reduction Idea

- Test uses only one variable ξ.
- Test has only one process with reads.
- \Rightarrow Test behaves the same from Slow to SC.

$$\forall x, p \exists = \text{SerialView}(\mathcal{T}|_{w,x} \cup \mathcal{T}|_{p,x}, <_{PO}) \quad [\text{Slow}]$$

$$\exists = \text{SerialView}(\mathcal{T}, <_{PO}) \quad [\text{SC}]$$
NP-hard for most models

\[SC \leq \text{SLOW-Range-Reduction of SAT} \]

Reduction Idea

- Test uses only one variable \(\xi \).
- Test has only one process with reads.
- \(\Rightarrow \) Test behaves the same from Slow to SC.

\[
\forall x, p \exists \bigtriangleup = \text{SerialView}(T|_{w,x} \cup T|_{p,x}, <_{PO}) \quad [\text{Slow}]
\]

\[
\exists \bigtriangleup = \text{SerialView}(T, <_{PO}) \quad [SC]
\]

SAT-Reduction

- We associate clauses and variables with values of \(\xi \).
SC-Slow Reduction - Example

\[
\begin{array}{c}
(a \lor b) \land \neg a \\
\text{cl}_1 \quad \text{cl}_2
\end{array}
\]

\[a = false\]
\[b = true\]
SC-Slow Reduction - Example

\[(a \lor b) \land \neg a\]

\[\quad \quad \quad
SC-Slow Reduction - Example

\[(a \lor b) \land \neg a\]

\[\begin{align*}
 &\quad \text{cl}_1 \\
 &\quad \text{cl}_2
\end{align*}\]

\[a = \text{false}\]
\[b = \text{true}\]

\[\text{True}_a := (w, \xi, \text{cl1}) \cdot (w, \xi, a)\]
\[\text{False}_a := (w, \xi, \text{cl2}) \cdot (w, \xi, a)\]
\[\text{True}_b := (w, \xi, \text{cl1}) \cdot (w, \xi, b)\]
\[\text{False}_b := (w, \xi, b)\]
SC-Slow Reduction - Example

\[(a \lor b) \land \lnot a\]

\(\begin{array}{c}
\text{cl}_1 \\
\text{cl}_2
\end{array}\)

\(a = \text{false}\)

\(b = \text{true}\)

\[\text{True}_a := (w, \xi, \text{cl}1) \cdot (w, \xi, a)\]

\[\text{False}_a := (w, \xi, \text{cl}2) \cdot (w, \xi, a)\]

\[\text{True}_b := (w, \xi, \text{cl}1) \cdot (w, \xi, b)\]

\[\text{False}_b := (w, \xi, b)\]

\[\text{Eval} := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, \text{cl}1) \cdot (r, \xi, \text{cl}2)\]

\[\triangledown := \]

\[\xi := 0\]
SC-Slow Reduction - Example

\[
\begin{align*}
(a \lor b) \land \neg a
\end{align*}
\]

\[
\begin{align*}
\text{cl}_1 & \quad \text{cl}_2
\end{align*}
\]

\[
\begin{align*}
a = \text{false} \\
b = \text{true}
\end{align*}
\]

\[
\begin{align*}
\text{True}_a := (w, \xi, \text{cl}1) \cdot (w, \xi, a) \\
\text{False}_a := (w, \xi, \text{cl}2) \cdot (w, \xi, a) \\
\text{True}_b := (w, \xi, \text{cl}1) \cdot (w, \xi, b) \\
\text{False}_b := (w, \xi, b) \\
\text{Eval} := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, \text{cl}1) \cdot (r, \xi, \text{cl}2)
\end{align*}
\]

\[
\begin{align*}
\downarrow & : (w, \xi, \text{cl}1) \\
\xi & : 1
\end{align*}
\]
SC-Slow Reduction - Example

\[
\begin{align*}
(a \lor b) \land \neg a & \quad \text{cl}_1 \\
\neg a & \quad \text{cl}_2
\end{align*}
\]

\[
\begin{align*}
(a \lor b) \land \neg a & \quad a = \text{false} \\
\neg a & \quad b = \text{true}
\end{align*}
\]

\[
\begin{align*}
\text{True}_a & := (w, \xi, \text{cl1}) \cdot (w, \xi, a) \\
\text{False}_a & := (w, \xi, \text{cl2}) \cdot (w, \xi, a) \\
\text{True}_b & := (w, \xi, \text{cl1}) \cdot (w, \xi, b) \\
\text{False}_b & := (w, \xi, b) \\
\text{Eval} & := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, \text{cl1}) \cdot (r, \xi, \text{cl2})
\end{align*}
\]

\[
\begin{align*}
\downarrow & \quad (w, \xi, \text{cl1}) \cdot (w, \xi, a)
\end{align*}
\]

\[
\xi : \quad a
\]
SC-Slow Reduction - Example

\[
\begin{align*}
(a \lor b) & \land \neg a \\
& \quad \\ \\
& cl_1 \quad cl_2
\end{align*}
\]

\[a = \text{false} \quad b = \text{true}\]

\[\text{True}_a := (w, \xi, cl1) . (w, \xi, a)\]

\[\text{False}_a := (w, \xi, cl2) . (w, \xi, a)\]

\[\text{True}_b := (w, \xi, cl1) . (w, \xi, b)\]

\[\text{False}_b := (w, \xi, b)\]

\[\text{Eval} := (r, \xi, a) . (r, \xi, b) . (r, \xi, cl1) . (r, \xi, cl2)\]

\[\triangleleft := (w, \xi, cl1). (w, \xi, a). (r, \xi, a)\]

\[\xi := a\]
\[
\frac{(a \lor b) \land \neg a}{cl_1} \quad \frac{\neg a}{cl_2}
\]

\begin{align*}
\text{True}_a &:= (w, \xi, cl_1) \cdot (w, \xi, a) \\
\text{False}_a &:= (w, \xi, cl_2) \cdot (w, \xi, a) \\
\text{True}_b &:= (w, \xi, cl_1) \cdot (w, \xi, b) \\
\text{False}_b &:= (w, \xi, b) \\
\text{Eval} &:= (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, cl_1) \cdot (r, \xi, cl_2)
\end{align*}

\[\blacktriangleleft : (w, \xi, cl_1).(w, \xi, a).(r, \xi, a).(w, \xi, b)\]

\[\xi : b\]
SC-Slow Reduction - Example

\[
\frac{(a \lor b) \land \neg a}{cl_1 \quad cl_2} \quad a = \text{false} \\
\quad \quad b = \text{true}
\]

\[
\begin{align*}
\text{True}_a & := (w, \xi, cl1) \cdot (w, \xi, a) \\
\text{False}_a & := (w, \xi, cl2) \cdot (w, \xi, a) \\
\text{True}_b & := (w, \xi, cl1) \cdot (w, \xi, b) \\
\text{False}_b & := (w, \xi, b) \\
\text{Eval} & := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, cl1) \cdot (r, \xi, cl2)
\end{align*}
\]

\[
\triangleleft : (w, \xi, cl1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b)
\]

\[
\xi : \quad b
\]
SC-Slow Reduction - Example

\[(a \lor b) \land \neg a\]

\[\begin{aligned}
 \cdot cl_1 & \quad \cdot cl_2 \\
 a &= \text{false} \\
 b &= \text{true}
\end{aligned}\]

\[\begin{aligned}
 True_a & := (w, \xi, cl1) \cdot (w, \xi, a) \\
 False_a & := (w, \xi, cl2) \cdot (w, \xi, a) \\
 True_b & := (w, \xi, cl1) \cdot (w, \xi, b) \\
 False_b & := (w, \xi, b) \\
 Eval & := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, cl1) \cdot (r, \xi, cl2)
\end{aligned}\]

\[\downarrow : (w, \xi, cl1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b)\]

\[\cdot (w, \xi, cl1)\]

\[\xi : 1\]
SC-Slow Reduction - Example

\[(a \lor b) \land \neg a\]

\[
\begin{align*}
cl_1 & \quad cl_2 \\
\end{align*}
\]

\[a = false \quad b = true\]

\[
True_a := (w, \xi, cl1) \cdot (w, \xi, a)
\]

\[
False_a := (w, \xi, cl2) \cdot (w, \xi, a)
\]

\[
True_b := (w, \xi, cl1) \cdot (w, \xi, b)
\]

\[
False_b := (w, \xi, b)
\]

\[
Eval := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, cl1) \cdot (r, \xi, cl2)
\]

\[
\downarrow : \quad (w, \xi, cl1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b)
\]

\[
\cdot (w, \xi, cl1).(r, \xi, cl1)
\]

\[
\xi : \quad 1
\]
SC-Slow Reduction - Example

\[(a \lor b) \land \neg a\]
\[\text{cl}_1 \quad \text{cl}_2\]
\[a = \text{false}\]
\[b = \text{true}\]

\[True_a := (w, \xi, \text{cl}1) \cdot (w, \xi, a)\]

\[False_a := (w, \xi, \text{cl}2) \cdot (w, \xi, a)\]

\[True_b := (w, \xi, \text{cl}1) \cdot (w, \xi, b)\]

\[False_b := (w, \xi, b)\]

\[Eval := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, \text{cl}1) \cdot (r, \xi, \text{cl}2)\]

\[\updownarrow: \quad (w, \xi, \text{cl}1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b)\]
\[.\quad (w, \xi, \text{cl}1).(r, \xi, \text{cl}1). (w, \xi, \text{cl}2)\]

\[\xi: \quad 2\]
SC-Slow Reduction - Example

\[
\frac{(a \lor b) \land \neg a}{cl_1} \quad \frac{\neg a}{cl_2}
\]

\[
a = false
\]
\[
b = true
\]

\[
True_a := (w, \xi, cl1) . (w, \xi, a)
\]
\[
False_a := (w, \xi, cl2) . (w, \xi, a)
\]
\[
True_b := (w, \xi, cl1) . (w, \xi, b)
\]
\[
False_b := (w, \xi, b)
\]
\[
Eval := (r, \xi, a) . (r, \xi, b) . (r, \xi, cl1) . (r, \xi, cl2)
\]

\[
\triangleright: \ (w, \xi, cl1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b)
\]
\[
\ . (w, \xi, cl1).(r, \xi, cl1).(w, \xi, cl2).(r, \xi, cl2)
\]
\[
\xi: \ 2
\]
SC-Slow Reduction - Example

\[
\begin{align*}
(a \lor b) \land \neg a & \quad a = \text{false} \\
c_{l1} & \quad b = \text{true} \\
c_{l2}
\end{align*}
\]

\[
\begin{align*}
\text{True}_a & := (w, \xi, cl1) . (w, \xi, a) \\
\text{False}_a & := (w, \xi, cl2) . (w, \xi, a) \\
\text{True}_b & := (w, \xi, cl1) . (w, \xi, b) \\
\text{False}_b & := (w, \xi, b) \\
\text{Eval} & := (r, \xi, a) . (r, \xi, b) . (r, \xi, cl1) . (r, \xi, cl2)
\end{align*}
\]

\[
\begin{align*}
\triangledown : & \quad (w, \xi, cl1).(w, \xi, a).(r, \xi, a).(w, \xi, b).(r, \xi, b) \\
& \quad .(w, \xi, cl1).(r, \xi, cl1).(w, \xi, cl2).(r, \xi, cl2).(w, \xi, a) \\
\xi : & \quad a
\end{align*}
\]
SC-Slow Reduction - Example

\[
\frac{(a \lor b) \land \neg a}{c_{l1}} \quad c_{l2} \quad a = false \\
\]

\[
b = true
\]

\[
True_a := (w, \xi, c1). (w, \xi, a)
\]

\[
False_a := (w, \xi, c2). (w, \xi, a)
\]

\[
True_b := (w, \xi, c1). (w, \xi, b)
\]

\[
False_b := (w, \xi, b)
\]

\[
Eval := (r, \xi, a). (r, \xi, b). (r, \xi, c1). (r, \xi, c2)
\]

\[
\blacktriangledown := (w, \xi, c1). (w, \xi, a). (r, \xi, a). (w, \xi, b). (r, \xi, b) \\
\quad . (w, \xi, c1). (r, \xi, c1). (w, \xi, c2). (r, \xi, c2). (w, \xi, a). (w, \xi, b)
\]

\[
\xi := b
\]
SC-Slow Reduction - Example

\[
\frac{(a \lor b) \land \neg a}{cl_1} \quad \frac{b = true}{cl_2} \quad \text{a = false}
\]

\[
True_a := (w, \xi, cl1) \cdot (w, \xi, a)
\]

\[
False_a := (w, \xi, cl2) \cdot (w, \xi, a)
\]

\[
True_b := (w, \xi, cl1) \cdot (w, \xi, b)
\]

\[
False_b := (w, \xi, b)
\]

\[
Eval := (r, \xi, a) \cdot (r, \xi, b) \cdot (r, \xi, cl1) \cdot (r, \xi, cl2)
\]

\[
\downarrow : (w, \xi, cl1). (w, \xi, a). (r, \xi, a). (w, \xi, b). (r, \xi, b).
\]

\[
\cdot (w, \xi, cl1). (r, \xi, cl1). (w, \xi, cl2). (r, \xi, cl2). (w, \xi, a). (w, \xi, b)
\]

\[
\xi : b
\]
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of $\text{Test}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of $\text{Test}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of Test(M)</th>
<th>General</th>
<th>Process</th>
<th>Length</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
<td>NPC(by 3)</td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
<td>NPC(by 3)</td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
<td>NPC(by 3)</td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
<td></td>
<td>NPC(by 1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
<td>P(by 2)</td>
<td>P(by 2)</td>
<td>P(by 2)</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of $\text{Test}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of TEST(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of Test(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of $\text{Test}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Memory Model</th>
<th>Complexity Class of $\text{Test}(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td>SC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>TSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PSO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-G</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PC-D</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GAO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GPO+GDO</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>Causal</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM-M</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>GWO</td>
<td>NPC(by 3)</td>
</tr>
<tr>
<td>CC</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>PRAM</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>SLOW</td>
<td>NPC(by 1)</td>
</tr>
<tr>
<td>LOCAL</td>
<td>P_2</td>
</tr>
</tbody>
</table>