	Theoretical Computer Science 1	
Exercise Sheet 6	TU Braunschweig	
René Maseli		Winter semester 2022/23

Release: 24.01.2023
Due: 03.02.2023, 09:45

Hand in your solutions to the Vips directory of the StudIP course until Friday, 03.02.2023 09:45 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

This is the last exercise sheet of the semester. However, all coming lecture content is still relevant for the written exam.

Exercise 1: The syntax of programming languages as grammar [8 points]

The syntax of a programming language is usually formulated with a context-free grammar (oftentimes expressed in EBNF or a syntax diagram). In this exercise you will construct a grammar which describes the syntax of a simple programming language.
a) [2 points] Give a context-free grammar G such that its language $\mathcal{L}(G)$ consists of the set of syntactically correct programs as described below.

- Use the terminals $\Sigma:=\{i d$, num, var, if, then, else, end, ; op, $=,()$,$\} .$
id, num and op are placeholders for possible variable names, natural numbers and binary operators (including ==). The other symbols represent single keywords and symbols.
- An expression consists of variables, numbers and parenthesized binary operations such as i.e. $(x+2),(z<500),\left(x^{*}(y / 3)\right),(x==(y+1))$.
- A program is either
- empty
- a variable definition (i.e. let $x=(y+1))$
- a conditional statement (i.e.if x then let $y=(z / x)$ end)
- a case distinction (i.e. if x then let $y=(z / x)$ else let $y=z$ end)
- a ;-delimited sequence of programs (i.e. var x; $x=500$)
b) [2 points] Derive the following program from your grammar in part a) starting from the initial symbol. Give the complete derivation sequence.
let $x=10$; let $y=0$; if $(y<x)$ then let $y=((y * 2)+1)$ end
(First you have to replace each variable with id and each number with num and the operations by op.)
c) [2 points] Use the pumping lemma to prove that $\mathcal{L}(G)$ is not regular.
d) [2 points] Modify G to another grammar G^{\prime}, such that its programming language supports functions.
A function starts with the keyword function, a function name and a,-delimited list of parameters (potentially empty), followed by the function body (a program) and the keyword end. Inside the function body, the return statement (i.e. return ($x^{*} x$)) may appear.
Function calls may be used as statements and as expressions in the program.
For example, the following word should be a valid program:
function $f(x)$ var $y ; y=2$; return $g(x, y)$ end;
function $g(x, y)$ if ($x<y$) return x else return y end end;
f(4);

Exercise 2: CFG, CNF, CYK [10 points]

The Cocke-Younger-Kasami-algorithm (CYK algorithm) assumes as input a context-free grammar (CFG) in Chomsky normal form (CNF). This means that all production rules are of the form $X \rightarrow Y Z$ (for non-terminals Y and Z) or of the form $X \rightarrow a$ (for a terminal a).

Given the two CFG $G=\left\langle\{S, W, X\},\{a, b\}, P_{G}, S\right\rangle$ and $H=\left\langle\{S, U, V\},\{a, b, c\}, P_{H}, S\right\rangle$.

$$
\begin{aligned}
P_{G}: S & \rightarrow \varepsilon \mid b W \\
W & \rightarrow a \mid X X b \\
X & \rightarrow S S \mid a b
\end{aligned}
$$

a) [1 point] Use the procedure introduced in the lecture to construct a grammar G_{a} without ε productions, which satisfies $\mathcal{L}\left(G_{a}\right)=\mathcal{L}(G) \backslash\{\varepsilon\}$.
b) [1 point] Use G_{a} and the procedure from the lecture to construct a grammar G_{b} in CNF with $\mathcal{L}\left(G_{b}\right)=\mathcal{L}(G) \backslash\{\varepsilon\}$.
c) [1 point] Use G_{b} and the CYK algorithm to decide whether the word bbaab is produced by G.
d) [3 points] Use G_{b} and the CYK algorithm to decide whether bbababb $\in \mathcal{L}(G)$ is true.

$$
\begin{aligned}
P_{H}: S & \rightarrow U V a b \mid b U \\
U & \rightarrow a V \mid a U S c \\
V & \rightarrow \varepsilon|b S c| U
\end{aligned}
$$

e) [1 point] Use the procedure from the lecture to construct a grammar H_{e} in CNF, that satisfies $\mathcal{L}\left(H_{e}\right)=\mathcal{L}(H) \backslash\{\varepsilon\}$.
f) [3 points] Use H_{e} and the CYK algorithm to decide whether the word aaabca is produced by H.

Exercise 3: Pushdown automata [10 points]

JavaScript Object Notation (JSON) is a description language for structured collections of serializable data, which is applied in numerous web technologies. Alongside some primitive datatypes, they can also express lists (arrays) and associative containers (objects).
a) [5 points] Construct pushdown automata M for the following language L and state which acceptance condition (empty stack or final states) you assume. Do not just give context-free grammars. You do not need to prove the correctness of your construction.
Consider a simplified variant of JSON over $\{a, b,\{\}$,$\} : ,Objects' start and end with fitting curly$ braces ,\{' and ,\}.' Inside, there is an arbitrary number of key-value pairs. Keys are words of $a \cdot b^{*}$ and may not be unique inside the same object. Values are either words of $a . b^{*}$, or again objects. The automaton M shall accept exactly the well-formed objects.
For example, $\{a b b a b a b b\}\} \in L$ and $\{a b b\{a b\{a b a\} a\{a b b a b\}\}\} \in L$ have to be accepted, but neither $\{a b a b a b\} \notin L, a b b\{a a\} \notin L \operatorname{nor}\{a b\{ \} \notin L$.
b) [5 points] Describe the behavior of the following pushdown automaton N, with empty-stack acceptance, by explaining the role of all states and stack symbols with one sentence, each.

Exercise 4: Triple Construction [7 points]

Consider the Pushdown Automaton $M=\left\langle\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\},\{0,1\}, q_{0}, 0, \delta\right\rangle$, with empty-stack acceptance and whose transition relation δ is given by the following diagram.

a) [1 point] Consider just the states on their own, to answer those two questions. Which two states are befitting destinations $q \in Q$ in triples like $\langle p, s, q\rangle$? Which five pairs of $p \in Q$ and $s \in \Gamma$ are enabled?
b) [6 points] Find a contextfree grammar G with $\mathcal{L}(M)=\mathcal{L}(G)$, by using the triple construction from the lecture.

