Theoretical Computer Science 1		
René Maseli	Exercise Sheet 5	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23
Release: 10.01.2023		Due: 20.01.2023, 09:45

Hand in your solutions to the Vips directory of the StudIP course until Friday, 20.01.2022 **09:45** pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Equivalence classes [10 points]

Let $\Sigma = \{a, b\}$ be an alphabet.

a) [4 points] Consider $L = \{a^n b^m \mid n, m \in \mathbb{N}, n \ge m\}$. Prove that

$$\begin{bmatrix} a^n \end{bmatrix}_{\equiv_L} = \{a^n\} \text{ for all } n \in \mathbb{N}$$
$$\begin{bmatrix} a^n . a . b \end{bmatrix}_{\equiv_L} = \{a^{\ell+1} . b^{\ell+1-n} \mid \ell \in \mathbb{N}, \ell \ge n\} \text{ for all } n \in \mathbb{N}$$

holds.

Find all remaining equivalence classes with respect to \equiv_L . In particular, for all $n, m \in \mathbb{N}$ determine the equivalence class of $a^n b^m$. (You do not have to give a formal proof.)

- b) [3 points] Consider the language $M = \{a, b\}^* \cdot \{aab, abb\} \cdot \{a, b\}^*$. Find all equivalence classes of \equiv_M . Construct the equivalence class automaton A_M .
- c) [3 points] Consider the language $N = \{a, b\}^* \cdot \{a\} \cdot \{a, b\}^* \cup (\{a, b\}, \{a, b\})^*$. Find all equivalence classes of \equiv_N . Construct the equivalence class automaton A_N .

Exercise 2: Minimization [10 points]

Consider the following NFA A over $\{a, b\}$.

a) [5 points] Determine the ~-equivalence classes on the states of *A* by using the Table-Filling-Algorithm from the lecture. Make clear in which order the cells of the table were marked.

- b) [2 points] Give the minimal DFA *B* for $\mathcal{L}(A)$. Make use of the ~-equivalence classes.
- c) [3 points] Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$. Find an expression for $\mathcal{L}(A)$ as a union of a certain subset of those classes.

Exercise 3: Pumping Lemma [6 points]

Consider $\Sigma = \{a, b\}$. For any word $w | \text{et } |w|_a$ be the number of occurrences of symbol a in w. $|w|_b$ is defined analogously.

By using the Pumping Lemma, prove that the following languages are not regular.

a) [2 points] $L_1 = \{w \in \{a, b\}^* \mid |w|_b + 7 > |w|_a\}$

b) [4 points] $L_2 = \{(ab)^n b^m w \in \{a, b\}^* \mid |w|_a = n, m \ge 2\}$

Exercise 4: Context free grammars [9 points]

Consider $\Sigma = \{a, b\}$. Give context free grammars G_1 , G_2 and G_3 , which produce the following languages:

a) [1 point] $\mathcal{L}(G_1) = \{a^n b^m w \mid w \in \Sigma^*, m > 2, |w|_a = n\}.$

b) [2 points] $\mathcal{L}(G_2) = \{ w \in \Sigma^* \mid |w|_a < |w|_b \}.$

c) [2 points] $\mathcal{L}(G_3) = \{ w \in \Sigma^* \mid \forall u, v \colon w = u.v \Rightarrow |v|_a \le |v|_b \}.$

A context free grammar *G* is called **regular** if it is left linear or right linear. Right linear means that the right-hand sides of all production rules contain at most one non-terminal which (if it exists) is at the right most position. Hence, all rules are of the form $X \rightarrow w$ or $X \rightarrow w.Y$ where $w \in \Sigma^*$. Left linear is defined similarly.

Prove that the regular languages exactly coincide with the languages that are produced by some right linear grammar *G*.

- d) [2 points] Explain how to construct a right linear grammar *G* from a given NFA *A* such that $\mathcal{L}(G) = \mathcal{L}(A)$ holds.
- e) [2 points] Explain how to construct an NFA A from a given right linear grammar G such that $\mathcal{L}(G) = \mathcal{L}(A)$ holds.

Remark: An analogous result holds for left linear grammars as well. That is why we speak of **regular** grammars in both cases.