	Theoretical Computer Science 1	
René Maseli	Exercise Sheet 5	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23

Release: 10.01.2023
Due: 20.01.2023, 09:45

Hand in your solutions to the Vips directory of the StudIP course until Friday, 20.01.2022 09:45 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Equivalence classes [10 points]

Let $\Sigma=\{a, b\}$ be an alphabet.
a) [4 points] Consider $L=\left\{a^{n} b^{m} \mid n, m \in \mathbb{N}, n \geq m\right\}$. Prove that

$$
\begin{aligned}
{\left[a^{n}\right]_{\Xi_{L}} } & =\left\{a^{n}\right\} \text { for all } n \in \mathbb{N} \\
{\left[a^{n} \cdot a \cdot b\right]_{\Xi_{L}} } & =\left\{a^{\ell+1} \cdot b^{\ell+1-n} \mid \ell \in \mathbb{N}, \ell \geqslant n\right\} \text { for all } n \in \mathbb{N}
\end{aligned}
$$

holds.
Find all remaining equivalence classes with respect to \equiv_{L}. In particular, for all $n, m \in \mathbb{N}$ determine the equivalence class of $a^{n} b^{m}$. (You do not have to give a formal proof.)
b) [3 points] Consider the language $M=\{a, b\}^{*} .\{a a b, a b b\} .\{a, b\}^{*}$. Find all equivalence classes of \equiv_{M}. Construct the equivalence class automaton A_{M}.
c) [3 points] Consider the language $N=\{a, b\}^{*} .\{a\} .\{a, b\}^{*} \cup(\{a, b\} .\{a, b\})^{*}$. Find all equivalence classes of \equiv_{N}. Construct the equivalence class automaton A_{N}.

Exercise 2: Minimization [10 points]

Consider the following NFA A over $\{a, b\}$.

a) [5 points] Determine the ~-equivalence classes on the states of A by using the Table-FillingAlgorithm from the lecture. Make clear in which order the cells of the table were marked.
b) [2 points] Give the minimal DFA B for $\mathcal{L}(A)$. Make use of the \sim-equivalence classes.
c) [3 points] Find all equivalence classes of the Nerode right-congruence $\equiv_{\mathcal{L}(A)}$. Find an expression for $\mathcal{L}(A)$ as a union of a certain subset of those classes.

Exercise 3: Pumping Lemma [6 points]

Consider $\Sigma=\{a, b\}$. For any word w let $|w|_{a}$ be the number of occurrences of symbol a in w. $|w|_{b}$ is defined analogously.

By using the Pumping Lemma, prove that the following languages are not regular.
a) [2 points] $L_{1}=\left\{\left.w \in\{a, b\}^{*}| | w\right|_{b}+7>|w|_{a}\right\}$
b) [4 points] $L_{2}=\left\{\left.(a b)^{n} b^{m} w \in\{a, b\}^{*}| | w\right|_{a}=n, m \geq 2\right\}$

Exercise 4: Context free grammars [9 points]

Consider $\Sigma=\{a, b\}$. Give context free grammars G_{1}, G_{2} and G_{3}, which produce the following languages:
a) [1 point] $\mathcal{L}\left(G_{1}\right)=\left\{a^{n} b^{m} w\left|w \in \Sigma^{*}, m>2,|w|_{a}=n\right\}\right.$.
b) [2 points] $\mathcal{L}\left(G_{2}\right)=\left\{\left.w \in \Sigma^{*}| | w\right|_{a}<|w|_{b}\right\}$.
c) [2 points] $\mathcal{L}\left(G_{3}\right)=\left\{\left.w \in \Sigma^{*}|\forall u, v: w=u . v \Rightarrow| v\right|_{a} \leq|v|_{b}\right\}$.

A context free grammar G is called regular if it is left linear or right linear. Right linear means that the right-hand sides of all production rules contain at most one non-terminal which (if it exists) is at the right most position. Hence, all rules are of the form $X \rightarrow w$ or $X \rightarrow w . Y$ where $w \in \Sigma^{*}$. Left linear is defined similarly.

Prove that the regular languages exactly coincide with the languages that are produced by some right linear grammar G.
d) [2 points] Explain how to construct a right linear grammar G from a given NFA A such that $\mathcal{L}(G)=\mathcal{L}(A)$ holds.
e) [2 points] Explain how to construct an NFA A from a given right linear grammar G such that $\mathcal{L}(G)=\mathcal{L}(A)$ holds.
Remark: An analogous result holds for left linear grammars as well. That is why we speak of regular grammars in both cases.

