	Theoretical Computer Science 1	
René Maseli	Exercise Sheet 4	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23

Release: 13.12.2022
Due: 23.12.2022, 23:59

Hand in your solutions to the Vips directory of the StudIP course until Friday, 23.12.2022 23:59 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Definition: Endlicher Transduktor

A finite-state transducer over a finite input alphabet Σ and a finite output alphabet Γ is formally a quadruple $T=\left\langle Q, q_{0}, \rightarrow, Q_{F}\right\rangle$ consisting of

1. a finite set of states Q,
2. an initial state $q_{0} \in Q$
3. a transition relation $\rightarrow \subseteq Q \times(\Sigma \cup\{\tau\}) \times(\Gamma \cup\{\tau\}) \times Q$,
4. and a set of accepting states $Q_{F} \subseteq Q$

A transducer can be thought of as an NFA with spontaneous transitions, which not only accepts input words but also outputs new words. It translates input words from Σ^{*} to output words in Γ^{*}. Transducers are used in linguistics and the processing of natural languages.

In the following we fix notation and important definitions:

1. $\langle p, a, x, q\rangle \in \rightarrow$ is denoted by $p \xrightarrow{a / x} q$. When reading an a in state p, the transducer transitions to state q and outputs x. Intuitively, $a=\tau$ denotes a spontaneous transition, while $x=\tau$ denotes a transition without output.
2. $\rightarrow^{*} \subseteq Q \times(\Sigma \cup\{\tau\})^{*} \times(\Gamma \cup\{\tau\})^{*} \times Q$ denotes the reflexive, transitive closure of \rightarrow. It satisfies $q \xrightarrow{\varepsilon / \varepsilon}{ }^{*} q$ and $q \xrightarrow{w / 0} q_{n} \Longleftrightarrow \exists q_{1}, \ldots, q_{n-1}: q \xrightarrow{w_{1} / o_{1}} q_{1} \xrightarrow{w_{2} / o_{2}} \cdots \xrightarrow{w_{n-1} / o_{n-1}} q_{n-1} \xrightarrow{w_{n} / o_{n}} q_{n}$.
3. T induces a relation $\llbracket T \rrbracket \subseteq \Sigma^{*} \times \Gamma^{*}$ as follows:
$w \llbracket T \rrbracket o \Longleftrightarrow \exists w^{\prime} \in(\Sigma \cup\{\tau\})^{*}, o^{\prime} \in(\Gamma \cup\{\tau\})^{*}: q_{0} \xrightarrow{w^{\prime} / o^{\prime}}{ }^{*} q_{f} \in Q_{F} \quad$ and $\quad \pi_{\Sigma}\left(w^{\prime}\right)=w, \pi_{\Gamma}\left(o^{\prime}\right)=0$
Hereby, $\pi_{\Sigma}:(\Sigma \cup\{\tau\}) \rightarrow \Sigma^{*}$ with $\pi_{\Sigma}(\tau)=\varepsilon$ and $\forall a \in \Sigma: \pi_{\Sigma}(a)=a$ induces a homomorphism, which deletes τ from a word. τ denotes either spontaneous transitions or empty output and hence should not be visible.

We say that $o \in \Gamma^{*}$ is an output of T on $w \in \Sigma^{*}$.
4. T does not only transduce single words, but whole languages. We define for any language $L \subseteq \Sigma^{*}$ the translation under T as $T(L)=\left\{o \in \Gamma^{*} \mid \exists w \in L: w \llbracket T \rrbracket o\right\} \subseteq \Gamma^{*}$.

Exercise 1: Finite transducers [20 points]

a) [3 points] Construct a transducer T that for any given word $w \in\{a, b, c\}^{*}$ works a follows: it prepends a b to every occurence of a and removes every second occurrence of c. Give a regular expression for $T\left((a c)^{*}\right)$.
A proof of correctness is not needed.
b) [3 points] We call a transducer deterministic if in any state and for any input, the transducer has at most one possible, and hence unique, transition; this transition may be spontaneous. For example, a state with an a-labeled transition may not have another a-labeled transition nor another spontaneous transition, because in either case there would be two possible transitions on a.
Show that it is not possible to determinize transducers in general. That means, there are transducers T which do not have any equivalent deterministic transducer $T^{\text {det }}$ such that $T(L)=T^{\text {det }}(L)$ for all languages $L \subseteq \Sigma^{*}$.
c) [3 points] Let $h: \Sigma^{*} \rightarrow \Gamma^{*}$ be an arbitrary homomorphism between words. Construct a transducer T_{h} such that $T_{h}(L)=h(L)$ holds for all languages $L \subseteq \Sigma^{*}$. Prove the correctness of your construction.
d) [3 points] Now prove that there is also a transducer $T_{h^{-1}}$ such that $T_{h^{-1}}(L)=h^{-1}(L)$ holds for all $L \subseteq \Gamma^{*}$. Prove the correctness of your construction.
e) [2 points] Show that for any regular language M, there is a transducer T_{M} with $T_{M}(L)=L \cap M$.

Remark: In this exercise you have shown that transducers are capable of representing many typical operations on languages. If a class of languages is closed under translations of transducers, then it follows directly that it is also closed under the above mentioned operations.
f) [6 points] Now show that the converse also holds true, i.e. a class of languages that is closed under those three mentioned operations is also closed under translations of transducers.
Remark: You have to show that for any transducer T, you can express the translation of a language L under T in terms of those three operations.

Exercise 2: Unique minimal DFAs [9 points]

Let $L \subseteq \Sigma^{*}$ be a regular language and $A=\left\langle Q_{A}, i_{A}, \rightarrow_{A}, F_{A}\right\rangle$ its Equivalence-class-DFA with
 was proven that A satisfies $\mathcal{L}(A)=L$ and that A is minimal for L. Let $B=\left\langle Q_{B}, i_{B}, \rightarrow_{B}, F_{B}\right\rangle$ another DFA with $\mathcal{L}(B)=L$ and $\left|Q_{B}\right|=\left[\bar{E}_{L}\right]$.
a) [2 points] Show that all states in B are reachable. This means that for each state $q \in Q_{B}$, there is at least one word $w \in \Sigma^{*}$, such that there is a run $i_{B}{ }_{\rightarrow}^{w *} q$.

You will have to show that B is isomorphic to $A(B \sim A)$.
b) [3 points] Show that for all $w \in \Sigma^{*}$, the image is $f\left(q_{w}\right)=[w]_{\xi_{\iota}}$, where $q_{w} \in Q_{B}$ denotes the unique state with $i_{B} \xrightarrow{w}{ }_{B}^{*} q_{w}$.
c) [2 points] Show that f is bijective.
d) [2 points] Let $q \in Q_{B}$ be a state of B. Show $q \in F_{B} \Longleftrightarrow f(q) \in F_{A}$.

Exercise 3: Costs of Determinization [6 points]

In this exercise we want to show that some languages that admit a description by small NFAs do not admit a description by small DFAs; every DFA for that language is necessarily large.

For a number $k \in \mathbb{N}, k>0$ let $L_{a @ k}=\Sigma^{*} \cdot a \cdot \Sigma^{k-1}$ be the language of words over $\Sigma=\{a, b\}$ that have an a at the k-th last position.
a) [1 point] Show how to construct for any $k \in \mathbb{N}, k>0$ an NFA $A_{k}=\left\langle Q_{k}, q_{0}, \rightarrow_{k}, F_{k}\right\rangle$ with $\mathcal{L}\left(A_{k}\right)=L_{a @ k}$ and $\left|Q_{k}\right|=k+1$. Give the automaton formally as a tuple. You do not have to show correctness of your construction.
b) [2 points] Now draw A_{3} and its determinization $A_{3}^{\text {det }}$ via Rabin-Scott-power set construction. Compare the number of states of A_{3} and $A_{3}^{\text {det }}$.
c) [3 points] Let $k \in \mathbb{N}, k>0$ be arbitrary. Prove that for $L_{a @ k}$ there is no DFA B with less than 2^{k} many states such that $\mathcal{L}(B)=L_{a @ k}$ holds.
Hint: Proceed as follows:

1. Assume there is a DFA $B=\left(Q^{\prime}, q_{0}^{\prime}, \rightarrow^{\prime}, Q_{F}^{\prime}\right)$ with $\mathcal{L}(B)=L_{a @ k}$ and $\left|Q^{\prime}\right|<2^{k}$.
2. Consider the set Σ^{k} of words of length k. How many such words are there?
3. Now consider to each word $w \in \Sigma^{k}$ the (unique) state q_{w} in the DFA B after it read the word w.
4. Now derive a contradiction.
