	Theoretical Computer Science 1	
René Maseli	Exercise 3	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23

Release: 29.11.2022
Due: 09.12.2021, 09:45

Hand in your solutions to the Vips directory of the StudIP course until Friday, 09.12.2022 09:45 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Properties of Regular Languages [8 points]

Show that the following statements are valid:
a) [4 points] The Kleene-Star is indeed a closure operator: $\left(L^{*}\right)^{*}=L^{*}$.
b) [4 points] For each pair of NFAs A and B, there are (other) NFAs $A \cup B$ und $A . B$, with $\mathcal{L}(A \cup B)=\mathcal{L}(A) \cup \mathcal{L}(B)$ and $\mathcal{L}(A, B)=\mathcal{L}(A) . \mathcal{L}(B)$.

Hint: Give a construction procedure for each NFA, that works for any A's and B's, and prove, that the respective languages are equal.

Exercise 2: Boolean Programs are regular [9 points]

Consider programs on boolean variables only. Expressions e Exp are non-deterministicly evaluated on variable states $\sigma \in\{0,1\}^{V}:$ For $v \in\{0,1\}, S_{v}(e)$ marks the set of variable states, on which e may return v. For a variable $x \in V$ is $S_{v}(x)=\left\{\sigma \in\{0,1\}^{v} \mid \sigma(x)=v\right\}$. I.e. $\sigma \in S_{v}(y \vee \neg z)$ holds, if and only if $v=\max (\sigma(y), 1-\sigma(z)) \in\{0,1\}$. There is also the havoc-expression $*$, which non-deterministicly evaluates to both 0 and $1: S_{0}(*)=S_{1}(*)=\{0,1\}^{v}$.

Let V be the set of variables in the boolean program. Some words of $\{s\} \cup(V \times\{0,1\})$ correspond to executions of the program. There is an NFA $\left\langle\left(B \times\{0,1\}^{V}\right),\left\langle b_{0}, 0^{V}\right\rangle, \rightarrow,\{f\} \times\{0,1\}^{V}\right\rangle$, whose language is exactly the set of words that correspond to halting executions. It starts on the initial block $i \in B$ with all variables set to 0 and accepts on the (sole) final block $f \in B$, regardless of the variables.

The transition $\langle b, \sigma\rangle \xrightarrow{\langle x, v\rangle}\langle c, \tau\rangle$ exists in the NFA, if and only if all $y \in V \backslash\{x\}$ satisfy $\sigma(y)=\tau(y)$, the value is $\tau(x)=v, b=[x:=e]^{e}$ is an assignment, c is the successor of b and if $\sigma \in S_{v}(e)$.

The transition $\langle b, \sigma\rangle \xrightarrow{s}\langle c, \tau\rangle$ exists, if and only if $\sigma=\tau, b=[e]^{\ell}$ is the condition of a conditional or a loop, and either

- c is the first else-Block or if no such exists, the successor of b, and $\sigma \in S_{0}(e)$.
- c is the first then-Block or the first inner loop block and $\sigma \in S_{1}(e)$.
a) [8 points] Consider the following program P with blocks $B=\left\{b_{0}, b_{1}, b_{2}, b_{3}, b_{4}, b_{5}, b_{6}, b_{7}\right\}$ and purely-boolean variables $V=\{x, y, z\}$.

$$
\begin{aligned}
& {[x:=*]^{0}} \\
& \text { while }[\neg x \wedge \neg z]^{1} \text { do } \\
& {[y:=\neg x \vee \neg z]^{2}} \\
& {[x:=*]^{3}} \\
& \text { if }[x \wedge y]^{4} \text { then } \\
& {[y:=y \vee \neg z]^{5}} \\
& \text { end if } \\
& {[z:=\neg z \vee \neg y]^{6}} \\
& \text { end while } \\
& \text { [skip] }
\end{aligned}
$$

Construct the finite automaton A_{p} that accepts words of $\{s\} \cup V \times\{0,1\}$: $\Sigma=\{s, x 0, x 1, y 0, y 1, z 0, z 1\}$.
$\varepsilon \notin \mathcal{L}\left(A_{P}\right)$, since every execution must pass through Block b_{0}.
$x 1 . s \notin \mathcal{L}\left(A_{P}\right)$, since executions always start with $z=0$ and therfore have to iterate at least once.
$x 1 . s . y 0 . x 1 . s . z 1 . s \in \mathcal{L}\left(A_{P}\right)$, because there is an execution that first reads 1 and then 0 , breaking the loop.
b) [1 Punkt] Is your automaton A_{p} partially deterministic (missing transitions just have to lead into a new state Ø)?

Exercise 3: NFA to REG using Arden's Rule [10 points]

Consider the following NFA A over the alphabet $\{a, b\}$:

a) [1 point] Formulate the equation system associated with A.
b) [3 points] Find a regular expression for $\mathcal{L}(A)$ by solving the equation system using Arden's Rule.
c) [2 points] Give expressions for all other variables of the equation system.
d) [3 points] Find a DFA B with $\mathcal{L}(B)=\mathcal{L}(A)$ using the construction by Rabin \& Scott.
e) [1 point] Give a regular expression for $\overline{\mathcal{L A}}$.

Exercise 4: Homomorphisms [8 points]

Examine the following NFA A over the alphabet $\Sigma=\{a, b, c\}$:

Consider the homomorphism $f: \Sigma \rightarrow\{0,1\}$.

$$
\begin{aligned}
& f(a)=\varepsilon \\
& f(b)=10 \\
& f(c)=01
\end{aligned}
$$

a) $[3$ points $]$ Construct the image-automaton $f(A)$ with $\mathcal{L}(f(A))=f(\mathcal{L}(A))$.
b) [1 point] Show $1001011010100110 \in \mathcal{L}(f(A))$ by giving a corresponding run through A.

Consider the homomorphism $g:\{d, e\} \rightarrow \Sigma$.

$$
\begin{aligned}
& g(d)=b c c \\
& g(e)=a b
\end{aligned}
$$

c) [3 points] Construct the co-image-automaton $g^{-1}(A)$ with $\mathcal{L}\left(g^{-1}(A)\right)=g^{-1}(\mathcal{L}(A))$.
c) [1 point] Show deeded $\in \mathcal{L}\left(g^{-1}(A)\right)$ by giving a corresponding run through A.

