	Theoretical Computer Science 1	
René Maseli	Exercise 2	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23

Hand in your solutions to the Vips directory of the StudIP course until Friday, 25.11.2022 09:45 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Graph Reachability [7 points]

Find all vertices in the following graph $G=\langle V, E\rangle$, that are reachable from the start node q_{0}.

a) [3 points] Formulate a $ப$-continuous function $f: \mathcal{P}(V) \rightarrow \mathcal{P}(V)$, that is suitably describes the propagation of the reachability property.
b) [4 points] Compute $\operatorname{lfp}(f)$ using the sequence in Kleene's fixed point theorem.

Exercise 2: Graph Unreachability [10 points]

Find all vertices in the following graph $G=\langle V, E\rangle$, that are not reachable from the start node q_{0}.

Consider the function $f: \mathcal{P}(V) \rightarrow \mathcal{P}(V)$.

$$
f(X)=\left\{v \in V \mid v \neq q_{0} \text { AND }(\forall x \in V \backslash X:\langle x, v\rangle \notin E)\right\}
$$

a) [3 points] Show that f is monotone in $\langle\mathcal{P}(V), \subseteq\rangle$.
b) [3 points] Show that f is Π-continuous in $\langle\mathcal{P}(V), \subseteq\rangle$.
c) [4 points] Compute $g f p(f)$ using the sequence in Kleene's fixed point theorem.

```
\([x:=0]^{0}\)
while \(\left[x^{2}<y\right]^{1}\) do
    \([x:=x+1]^{2}\)
end while
if \(\left[x^{2}=y\right]^{3}\) then
    \([z:=1]^{4}\)
else
    \([x:=y]^{5}\)
    \([z:=0]^{6}\)
end if
[skip] \({ }^{7}\)
```

```
\([x:=0]^{0}\)
while \(\left[x<2^{4}\right]^{1}\) do
    \([y:=3 x+2]^{2}\)
    while \([y<5 x]^{3}\) do
        \([y:=y+2]^{4}\)
        if \([3 x<y]^{5}\) then
        \([x:=x+1]^{6}\)
        end if
    end while
end while
\([x:=x-14]^{7}\)
```


Exercise 3: Live Variables [9 points]

Map each block in the left program to the set of variables that may be read by some other block later in the program order.
a) [1 point] Draw the control flow graph G. Note that this is a backwards analysis.
b) [3 points] Consider the lattice $\mathcal{D}=\langle\mathcal{P}(\{x, y, z\}), \subseteq\rangle$. Assign for each block $b \in B$ a suitable, monotone transfer function f_{b} over this lattice.
c) [5 points] Consider the data flow system $\left\langle G, \mathcal{D},\{x, y, z\},\left(f_{b}\right)_{b \in B}\right\rangle$. Write down the induced equation system and determine its least solution using Kleene's fixed point theorem.

Exercise 4: Reaching Definitions [9 points]

Map each block in the right program to the set of assignment blocks, that may have determined the current value of some variable when this block starts.
a) [1 point] Draw the control flow graph G. Mark its extremal blocks. Note that this is a forwards analysis.
b) [3 points] Consider the lattice $\mathcal{D}=\langle\mathcal{P}(\{x, y\} \times(B+\{?\})), \subseteq\rangle$. Assign for each block $b \in B$ a suitable, monotone transfer function f_{b} over this lattice.
c) [5 points] Consider the data flow system $\left\langle G, \mathcal{D},\{(x, ?),(y, ?)\},\left(f_{b}\right)_{b \in B}\right\rangle$. Write down the induced equation system and determine its least solution using Kleene's fixed point theorem.

