Theoretical Computer Science 1		
René Maseli	Exercise 2	TU Braunschweig
Prof. Dr. Roland Meyer		Winter semester 2022/23
Release: 15.11.2022		Due: 25.11.2022, 09:45

Hand in your solutions to the Vips directory of the StudIP course until Friday, 25.11.2022 09:45 pm. You should provide your solutions either directly as .pdf file or as a readable scan/photo of your handwritten notes. Submit your results as a group of four.

Exercise 1: Graph Reachability [7 points]

Find all vertices in the following graph $G = \langle V, E \rangle$, that are reachable from the start node q_0 .

- a) [3 points] Formulate a \sqcup -continuous function $f : \mathcal{P}(V) \to \mathcal{P}(V)$, that is suitably describes the propagation of the reachability property.
- b) [4 points] Compute lfp(f) using the sequence in Kleene's fixed point theorem.

Exercise 2: Graph Unreachability [10 points]

Find all vertices in the following graph $G = \langle V, E \rangle$, that are **not** reachable from the start node q_0 .

Consider the function $f : \mathcal{P}(V) \to \mathcal{P}(V)$.

 $f(X) = \{ v \in V \mid v \neq q_0 \text{ AND } (\forall x \in V \setminus X: \langle x, v \rangle \notin E) \}$

- a) [3 points] Show that *f* is monotone in $(\mathcal{P}(V), \subseteq)$.
- b) [3 points] Show that *f* is \sqcap -continuous in $\langle \mathcal{P}(V), \subseteq \rangle$.
- c) [4 points] Compute gfp(f) using the sequence in Kleene's fixed point theorem.

$[x := 0]^0$	$[x := 0]^0$	
while $[x^2 < y]^1$ do	while $[x < 2^4]^1$ do	
$[x := x + 1]^2$	$[y := 3x + 2]^2$	
end while	while $[y < 5x]^3$ do	
if $[x^2 = y]^3$ then	$[y := y + 2]^4$	
$[z := 1]^4$	if $[3x < y]^5$ then	
else	$[x := x + 1]^6$	
$[x \coloneqq y]^5$	end if	
$[z := 0]^6$	end while	
end if	end while	
[skip] ⁷	$[x := x - 14]^7$	

Exercise 3: Live Variables [9 points]

Map each block in the left program to the set of variables that may be read by some other block later in the program order.

- a) [1 point] Draw the control flow graph G. Note that this is a backwards analysis.
- b) [3 points] Consider the lattice $\mathcal{D} = \langle \mathcal{P}(\{x, y, z\}), \subseteq \rangle$. Assign for each block $b \in B$ a suitable, monotone transfer function f_b over this lattice.
- c) [5 points] Consider the data flow system $\langle G, \mathcal{D}, \{x, y, z\}, (f_b)_{b \in B} \rangle$. Write down the induced equation system and determine its least solution using Kleene's fixed point theorem.

Exercise 4: Reaching Definitions [9 points]

Map each block in the right program to the set of assignment blocks, that may have determined the current value of some variable when this block starts.

- a) [1 point] Draw the control flow graph G. Mark its extremal blocks. Note that this is a forwards analysis.
- b) [3 points] Consider the lattice $\mathcal{D} = \langle \mathcal{P}(\{x, y\} \times (B + \{?\})), \subseteq \rangle$. Assign for each block $b \in B$ a suitable, monotone transfer function f_b over this lattice.
- c) [5 points] Consider the data flow system $(G, \mathcal{D}, \{(x, ?), (y, ?)\}, (f_b)_{b \in B})$. Write down the induced equation system and determine its least solution using Kleene's fixed point theorem.