Bounded context switching for valence systems

Roland Meyer1, Sebastian Muskalla1, and Georg Zetzsche2

September 4, CONCUR 2018, Beijing

1 TU Braunschweig, Germany
\{roland.meyer, s.muskalla\}@tu-bs.de

2 IRIF (Université Paris-Diderot, CNRS), France
zetzsche@irif.fr
Result and structure

Theorem
Reachability under *bounded context switching*
for *valence systems over graph monoids*
is *always in NP* (for all graph monoids).
Theorem

Reachability under *bounded context switching*

for *valence systems over graph monoids*

is *always in NP* (for all graph monoids).

1. What is *bounded context switching (BCS)*?
Theorem

Reachability under **bounded context switching**
for **valence systems over graph monoids**
is always in NP (for all graph monoids).

1. What is **bounded context switching (BCS)**?
2. What are **valence systems over graph monoids**?
Theorem

Reachability under \textit{bounded context switching}

for \textit{valence systems over graph monoids}

is \textit{always in NP} (for all graph monoids).

1. What is \textit{bounded context switching (BCS)}?

2. What are \textit{valence systems over graph monoids}?

3. What is \textit{BCS for valence systems}?
1. BCS
Setting:
Concurrent system, each component modeled as automaton
The problem

Setting:
Concurrent system, each component modeled as automaton

Problem:
If components are beyond finite-state, reachability (safety verification) is difficult
The problem

Setting:
Concurrent system, each component modeled as automaton

Problem:
If components are beyond finite-state, reachability (safety verification) is difficult

Solution:
Consider bounded context switching (BCS)
Context: Infix of the (sequentialized) computation where a single thread is active
Context: Infix of the (sequentialized) computation where a single thread is active

BCS: Number of contexts switches ($\#\text{contexts} - 1$) bounded by a constant
Bounded context switching

Context: Infix of the (sequentialized) computation where a single thread is active

BCS: Number of contexts switches (#contexts $- 1$) bounded by a constant

Reachability under bounded context switching (BCSREACH)

Given: Concurrent system S, number k (in unary)

Decide: Final configuration reachable from initial one in S by a computation with $\leq k$ context switches?
Reachability under bounded context switching (BCSREACH)

Given: Concurrent system \(S \), number \(k \) (in unary)

Decide: Final configuration reachable from initial one in \(S \) by a computation with \(\leq k \) context switches?
Reachability under bounded context switching (BCSREACH)

Given: Concurrent system S, number k (in unary)
Decide: Final configuration reachable from initial one in S
by a computation with $\leq k$ context switches?

Under-approximation of reachability
Reachability under bounded context switching (BCSREACH)

<table>
<thead>
<tr>
<th>Given:</th>
<th>Concurrent system S, number k (in unary)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decide:</td>
<td>Final configuration reachable from initial one in S by a computation with $\leq k$ context switches?</td>
</tr>
</tbody>
</table>

Under-approximation of reachability

Complexity is typically much lower
Reachability under bounded context switching (BCSREACH)

Given: Concurrent system S, number k (in unary)

Decide: Final configuration reachable from initial one in S by a computation with $\leq k$ context switches?

Under-approximation of reachability

Complexity is typically much lower

Useful as bugs usually occur within few context switches [MQ07,LPSZ08]
Example [QR05]:

Concurrent system where each component is a PDS, communicating via finite control
Example [QR05]:

Concurrent system where each component is a PDS, communicating via finite control

\[\downarrow\] essentially a MPDS
Example [QR05]:

Concurrent system where each component is a PDS, communicating via finite control

↕ essentially a MPDS

Reachability is *undecidable* if \#components \(\geq 2 \)
Example [QR05]:

Concurrent system where each component is a PDS, communicating via finite control

\[\Downarrow \] essentially a MPDS

Reachability is undecidable if \#components \(\geq 2 \)

Context: Infix in which only one stack is used
Example [QR05]:

Concurrent system where each component is a PDS, communicating via finite control

\[\Rightarrow \text{essentially a MPDS} \]

Reachability is undecidable if \(\# \text{components} \geq 2 \)

Context: Infix in which only one stack is used

Reachability under BCS is NP-complete
Related work

Similar results for

- various types of components,
- various types of communication,
- various BCS-like restrictions.
Related work

Similar results for

- various types of components,
- various types of communication,
- various BCS-like restrictions.

For example:

- Queues as storages [LMP08]
- Pushdowns with dynamic thread creation [ABQ09]
- Pushdowns communicating via queues [HLMS12]

...
Our goal: General BCS result
Related work II

Our goal: General BCS result

Other people’s work:

- Using graph-theoretic measures (tree width, ...)
 - Can handle queues
 - Cannot handle counters
 - Applies to settings where the complexity is beyond NP
- Reductions to PA-satisfiability
 - Can handle reversal-bounded counters
 - Does not allow nested combination of counters and stack
- Results incomparable to ours
- Our technique provides an algebraic view
Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
 • Can handle queues
 • Cannot handle counters
 • Applies to settings where the complexity is beyond NP
Related work II

Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
- Can handle queues
- Cannot handle counters
- Applies to settings where the complexity is beyond NP

Reductions to $\exists PA$-satisfiability [HL12, EGT14]
- Can handle reversal-bounded counters
- Does not allow nested combination of counters and stack
Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) [MP11, A14]
 • Can handle queues
 • Cannot handle counters
 • Applies to settings where the complexity is beyond NP

Reductions to $\exists P A$-satisfiability [HL12, EGT14]
 • Can handle reversal-bounded counters
 • Does not allow nested combination of counters and stack

Results incomparable to ours
Our goal: General BCS result

Other people’s work:

Using graph-theoretic measures (tree width, ...) \([\text{MP11, A14}]\)

- Can handle queues
- Cannot handle counters
- Applies to settings where the complexity is beyond NP

Reductions to \(\exists \Pi_2 \text{-satisfiability} \) \([\text{HL12, EGT14}]\)

- Can handle reversal-bounded counters
- Does not allow nested combination of counters and stack

Results incomparable to ours

Our technique provides an algebraic view
2. Valence systems
Valence systems

Need a single model that can represent various types of memory
Valence systems

Need a single model that can represent various types of memory

Introducing valence systems over some monoid \mathbb{M}
Valence systems

Need a single model that can represent various types of memory

Introducing **valence systems** over some monoid \mathbb{M}

Monoid \mathbb{M} represents the **storage** of the system
Valence systems

Need a single model that can represent various types of memory

Introducing valence systems over some monoid \mathbb{M}

Monoid \mathbb{M} represents the storage of the system

Syntax:
- Finite control
- Transitions labeled by generators of \mathbb{M}
Valence systems

Need a single model that can represent various types of memory

Introducing valence systems over some monoid \(\mathbb{M} \)

Monoid \(\mathbb{M} \) represents the storage of the system

Syntax:
- Finite control
- Transitions labeled by generators of \(\mathbb{M} \)

Semantics:
- Configurations \((q, m)\) with \(q\) control state, \(m \in \mathbb{M}\)
- Transition \(q \xrightarrow{m'} q'\) leads to \((q', m \cdot m')\)
Valence system over $\mathbb{Z} \times \mathbb{Z}$ (with component-wise addition)
Valence system over $\mathbb{Z} \times \mathbb{Z}$ (with component-wise addition)

(essentially an integer 2-VASS)
Want results of the following shape:

Theorem

If monoid \mathbb{M} satisfies condition c, then checking property P for all valence systems over \mathbb{M} is in complexity class \mathcal{C}.
Graph monoids

Want results of the following shape:

Theorem

*If monoid \mathbb{M} satisfies condition c, then checking property P for all valence systems over \mathbb{M} is in complexity class \mathcal{C}.***

Best case: *Complete for classification* for property P
Graph monoids

Want results of the following shape:

Theorem

*If monoid \mathbb{M} satisfies condition c, then checking property P for all valence systems over \mathbb{M} is in complexity class \mathcal{C}.***

Best case: **Complete for classification** for property P

For example, want classification of $P = \text{reachability}$

Reachability for valence systems

Given: Valence system \mathcal{A} over monoid \mathbb{M}

Decide: $(q_{\text{init}}, 1_{\mathbb{M}}) \rightarrow^* (q_{\text{final}}, 1_{\mathbb{M}})\,$?
Problem: Monoids are too diverse
Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids
Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse
Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive
Graph monoids

Problem: Monoids are too diverse

Focus on an interesting subclass of monoids

Finitely generated monoids: Too diverse

Finite monoids: Not expressive

Graph monoids
Example: Graph monoid

Consider the following undirected graph:

\[\begin{align*}
 &a & b \\
\end{align*} \]
Example: Graph monoid

Consider the following undirected graph:

Nodes a, b are counters / stack symbols
Consider the following undirected graph:

Nodes a, b are counters / stack symbols

Operations: a^+, b^+ ("push a / b", "increment a / b") and a^-, b^- ("pop a / b", "decrement a / b")
Example: Graph monoid

Consider the following undirected graph:

\[
\begin{array}{c}
\bullet \\
a \\
\bullet \\
b
\end{array}
\]

Nodes \(a, b\) are counters / stack symbols

Operations: \(a^+, b^+\) ("push a / b", "increment a / b")
and \(a^-, b^-\) ("pop a / b", "decrement a / b")

Monoid elements: Sequences of operations
Example: Graph monoid

Consider the following undirected graph:

\[a \quad b \]

Nodes \(a, b \) are counters / stack symbols

Operations: \(a^+, b^+ \) ("push a / b", "increment a / b")

and \(a^-, b^- \) ("pop a / b", "decrement a / b")

Monoid elements: Sequences of operations modulo the congruence \(o^+.o^- \cong \varepsilon \)
Example: PDS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^* / \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]
Example: PDS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^*/ \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]
Example: PDS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^*/ \cong \]

\[o^+.o^- \cong \varepsilon \quad \forall o \in \{a, b\} \]

\[a^+b^+b^-a^- \cong a^+a^- \]
Example: PDS

\[M_G = \{a^+, b^+, a^-, b^-\}^*/\cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]

\[a^+b^+b^-a^- \cong a^+a^- \cong \varepsilon = 1_M \]
Example: PDS

\[M_G = \{ a^+, b^+, a^-, b^- \}^* / \simeq \]

\[o^+.o^- \simeq \varepsilon \ \forall o \in \{ a, b \} \]

\[a^+b^+b^-a^- \simeq a^+a^- \simeq \varepsilon = 1_{M_I} \]

\[a^+b^+a^-b^- \]

irreducible
Example: PDS

\[M_G = \{ a^+, b^+, a^-, b^- \}^* / \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{ a, b \} \]

\[a^+ b^+ b^- a^- \cong a^+ a^- \cong \varepsilon = 1_{M_I} \]

\[a^+ b^+ a^- b^- \] irreducible

\[a^- a^+ \] irreducible
Example: PDS

\[M_G = \{ a^+, b^+, a^-, b^- \}^* / \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]

\[a^+b^+b^-a^- \cong a^+a^- \cong \varepsilon = 1_{M_I} \]

\[a^+b^+a^-b^- \quad \text{irreducible} \]

\[a^-a^+ \quad \text{irreducible} \]

Valence systems over \(M_G \) are PDS over stack alphabet \(\{a, b\} \)
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, I)$
Graph monoid \mathbb{M}_G given by undirected graph $G = (V, I)$

Nodes of G are counters
Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{E})$

Nodes of G are counters

Operations \mathcal{O} consisting of o^+, o^- for each node $o \in V$
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Nodes of G are counters

Operations \mathcal{O} consisting of o^+, o^- for each node $o \in V$

$\mathbb{M}_G = \mathcal{O}^*/\cong$
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Nodes of G are counters

Operations \mathcal{O} consisting of o^+, o^- for each node $o \in V$

$\mathbb{M}_G = \mathcal{O}^*/\simeq$

Monoid elements are represented by sequences of operations
Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{E})$

Nodes of G are counters

Operations \mathcal{O} consisting of o^+, o^- for each node $o \in V$

$\mathbb{M}_G = \mathcal{O}^*/\simeq$

Monoid elements are represented by sequences of operations

Monoid operation: Concatenation of representatives
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Nodes of G are counters

Operations \mathcal{O} consisting of o^+, o^- for each node $o \in V$

$\mathbb{M}_G = \mathcal{O}^*/\cong$

Monoid elements are represented by sequences of operations

Monoid operation: Concatenation of representatives

Congruence \cong satisfies $o^+.o^- \cong \varepsilon$ for all o
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, I)$

Congruence \cong satisfies $o^+.o^- \cong \varepsilon$ for all o
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Congruence \cong satisfies $o^+.o^- \cong \varepsilon$ for all o

Edge relation \mathcal{I} called independence relation
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Congruence \cong satisfies $o^+.o^- \cong \varepsilon$ for all o

Edge relation \mathcal{I} called independence relation

Intuition:
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, I)$

Congruence \equiv satisfies $o^+.o^- \equiv \varepsilon$ for all o

Edge relation I called independence relation

Intuition:
If $o \mathrel{I} u$, then o and u belong to independents part of the storage
Graph monoids

Graph monoid \mathbb{M}_G given by undirected graph $G = (V, \mathcal{I})$

Congruence \cong satisfies $o^+.o^- \cong \varepsilon$ for all o

Edge relation \mathcal{I} called independence relation

Intuition:
If $o \mathcal{I} u$, then o and u belong to independents part of the storage
Congruence should identify computations that order independent operations differently
Graph monoid M_G given by undirected graph $G = (V, \mathcal{I})$

Congruence \cong satisfies $o^+ . o^- \cong \varepsilon$ for all o

Edge relation \mathcal{I} called independence relation

Intuition:
If $o \mathcal{I} u$, then o and u belong to independents part of the storage
Congruence should identify computations that order independent operations differently

If $o \mathcal{I} u$, then o^\pm and u^\pm commute: $o^\pm . u^\pm \cong u^\pm . o^\pm$
Example: VASS

\[M_G = \{ a^+, b^+, a^-, b^- \}^*/ \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]

\[o^\pm .u^\pm \cong u^\pm .o^\pm \text{ where } \{u, o\} = \{a, b\} \]
Example: VASS

\[M_G = \{a^+, b^+, a^-, b^-\}^* / \sim \]

\[o^+.o^- \sim \varepsilon \ \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \sim u^\pm.o^\pm \text{ where } \{u, o\} = \{a, b\} \]

\[a^+b^+b^-a^- \sim a^+a^- \sim \varepsilon = 1_M \text{ still valid} \]
Example: VASS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^*/ \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \cong u^\pm.o^\pm \text{ where } \{u, o\} = \{a, b\} \]

\[a^+b^+b^-a^- \cong a^+a^- \cong \varepsilon = 1_{\mathbb{M}} \text{ still valid} \]

\[a^+b^+a^-b^- \cong a^+b^+b^-a^- \cong \varepsilon \]
Example: VASS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^* / \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \cong u^\pm.o^\pm \text{ where } \{u, o\} = \{a, b\} \]

\[a^+b^+b^-a^- \cong a^+a^- \cong \varepsilon = 1_{\mathbb{M}} \text{ still valid} \]

\[a^+b^+a^-b^- \cong a^+b^+b^-a^- \cong \varepsilon \]

\[a^-a^+ \text{ still irreducible} \]
Example: VASS

\[M_G = \{a^+, b^+, a^-, b^-\}^*/ \cong \]

\[o^+.o^- \cong \varepsilon \quad \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \cong u^\pm.o^\pm \quad \text{where} \quad \{u, o\} = \{a, b\} \]

\[a^+ b^+ b^- a^- \cong a^+ a^- \cong \varepsilon \cong 1_{M} \quad \text{still valid} \]

\[a^+ b^+ a^- b^- \cong a^+ b^+ b^- a^- \cong \varepsilon \]

\[a^-a^+ \quad \text{still irreducible} \]

Valence systems over \(M_G \) are \(2\text{-VASS} \)
Example: integer VASS

\[M_G = \{ a^+, b^+, a^-, b^- \}^* / \cong \]

\[o^+.o^- \cong \varepsilon \ \forall o \in \{ a, b \} \]

\[o^\pm .u^\pm \cong u^\pm .o^\pm \ \forall u, o \in \{ a, b \} \]
Example: integer VASS

\[M_G = \{a^+, b^+, a^-, b^-\}^* / \sim \]

\[o^+.o^- \sim \varepsilon \quad \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \sim u^\pm.o^\pm \quad \forall u, o \in \{a, b\} \]

\[a^+b^+b^-a^- \sim a^+a^- \sim \varepsilon = 1_M \quad \text{still valid} \]
Example: integer VASS

\[M_G = \{ a^+, b^+, a^-, b^- \}^* / \cong \]

\[o^+.o^- \cong \epsilon \ \forall o \in \{a, b\} \]

\[o^\pm.u^\pm \cong u^\pm.o^\pm \ \forall u, o \in \{a, b\} \]

\[a^+ b^+ b^- a^- \cong a^+ a^- \cong \epsilon = 1_M \ \text{still valid} \]

\[a^+ b^+ a^- b^- \cong a^+ b^+ b^- a^- \cong \epsilon \]
Example: integer VASS

\[\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^* / \cong \]

\[o^+ . o^- \cong \varepsilon \quad \forall o \in \{a, b\} \]

\[o^\pm . u^\pm \cong u^\pm . o^\pm \quad \forall u, o \in \{a, b\} \]

\[a^+ b^+ b^- a^- \cong a^+ a^- \cong \varepsilon = 1_{\mathbb{M}} \quad \text{still valid} \]

\[a^+ b^+ a^- b^- \cong a^+ b^+ b^- a^- \cong \varepsilon \]

\[a^- a^+ \cong a^+ a^- \cong \varepsilon \]
Example: integer VASS

$$\mathbb{M}_G = \{a^+, b^+, a^-, b^-\}^*/\cong$$

$$o^+.o^- \cong \varepsilon \ \forall o \in \{a, b\}$$

$$o^\pm.u^\pm \cong u^\pm.o^\pm \ \forall u, o \in \{a, b\}$$

$$a^+b^+b^-a^- \cong a^+a^- \cong \varepsilon = 1_\mathbb{M} \quad \text{still valid}$$

$$a^+b^+a^-b^- \cong a^+b^+b^-a^- \cong \varepsilon$$

$$a^-a^+ \cong a^+a^- \cong \varepsilon$$

Valence systems over \mathbb{M}_G are integer 2-VASS
Example: MPDS

\begin{center}
\begin{tikzpicture}

\node[draw, circle, fill=black] (a) at (0,0) {a_ℓ};
\node[draw, circle, fill=black] (b) at (1,1) {b_ℓ};
\node[draw, circle, fill=black] (c) at (1,-1) {b_r};
\node[draw, circle, fill=black] (d) at (0,0) {a_r};

\draw (a) -- (b);
\draw (a) -- (c);
\draw (b) -- (c);
\draw (b) -- (d);
\draw (c) -- (d);

\end{tikzpicture}
\end{center}
Any \(m \in \{a_\ell^+, a_\ell^-, \ldots\}^* \) can be written as

\[
m \cong m_{\mid_\ell} \cdot m_{\mid_r}\]

such that \(m \cong \varepsilon \) iff \(m_{\mid_\ell} \cong \varepsilon \) and \(m_{\mid_r} \cong \varepsilon \)
Any $m \in \{a_\ell^+, a_\ell^-, \ldots\}^*$ can be written as

$$m \equiv m_{\mid_\ell} \cdot m_{\mid_r}$$

such that $m \equiv \varepsilon$ iff $m_{\mid_\ell} \equiv \varepsilon$ and $m_{\mid_r} \equiv \varepsilon$

Valence systems over \mathbb{M}_G are 2-PDS (with a binary stack alphabet for each stack)
Graph monoids can model:
Graph monoids can model:

- Natural (partially blind) counters
- Integer (blind) counters
Graph monoids can model:

- Natural (partially blind) counters
- Integer (blind) counters
- Combinations of these
Graph monoids can model:

- Natural (partially blind) counters
- Integer (blind) counters
- Combinations of these
- Stacks of these
Graph monoids can model:

- Natural (partially blind) counters
- Integer (blind) counters
- Combinations of these
- Stacks of these

Graph monoids cannot model:
Graph monoids can model:
- Natural (partially blind) counters
- Integer (blind) counters
- Combinations of these
- Stacks of these

Graph monoids cannot model:
- Queues
Graph monoids

Graph monoids can model:
- Natural (partially blind) counters
- Integer (blind) counters
- Combinations of these
- Stacks of these

Graph monoids cannot model:
- Queues
- Higher-order stacks
Characterization results for valence systems/automata:

reachability [Z15]
regularity [Z11]
context-freeness [BZ13]
semilinearity of the Parikh image [BZ13]
...

3. BCS for valence systems
How to define BCS for valence systems over graph monoids?
How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:
How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

The system is modeled as a single valence system
How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

- The system is modeled as a single valence system
- The monoid models the total storage of all components
How to define BCS for valence systems over graph monoids?

Concurrent system as valence system

Assume:

- The system is modeled as a single valence system
- The monoid models the total storage of all components
- The components share a control state
 (communication between components)
How to define BCS for valence systems over graph monoids?
How to define BCS for valence systems over graph monoids?

A slight modification
How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape \((q, m)\) where \(m\) is a sequence of operations.
How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape (q, m) where m is a sequence of operations.

We do not store the monoid element, but its syntactic representation.
How to define BCS for valence systems over graph monoids?

A slight modification

Consider configurations of the shape \((q, m)\) where \(m\) is a sequence of operations

We do not store the monoid element, but its syntactic representation

Crucial as our notion of context is not invariant under congruence
Contexts

\[a_\ell \quad b_\ell \quad b_r \quad a_r \]
Nodes belonging to independent parts of the storage are connected by an edge.
Nodes belonging to independent parts of the storage are connected by an edge

Intuitively:

$$m = \ldots o^\pm . u^\pm \ldots$$

with $o I u$, then this constitutes a context switch
Nodes belonging to independent parts of the storage are connected by an edge

Intuitively:

\[m = \ldots o^\pm . u^\pm \ldots \]

with \(o \mathcal{I} u \), then this constitutes a context switch

In general, we need a more restrictive definition
Definition

A sequence of operations m is called dependent if for all o, u in m with $o \neq u$, $o \not\equiv u$ does not hold.
Definition

A sequence of operations m is called **dependent** if for all o^\pm, u^\pm in m with $o \neq u$, $o \not\mathcal{I} u$ does not hold.
Definition
A sequence of operations m is called dependent if for all o^\pm, u^\pm in m with $o \neq u$, $o \mathcal{I} u$ does not hold.

\[a^+c^+ \text{ dependent} \]
Dependent computations

Definition

A sequence of operations m is called **dependent** if for all o^\pm, u^\pm in m with $o \neq u$, $o \not\equiv u$ does not hold.

\[
\begin{align*}
 a^+c^+ & \quad \text{dependent} \\
 b^+c^+ & \quad \text{dependent}
\end{align*}
\]
Dependent computations

Definition
A sequence of operations m is called **dependent** if for all o^\pm, u^\pm in m with $o \neq u$, $o \not\equiv u$ does not hold.

\[
\begin{array}{ccc}
\text{c} & \cdot & \text{a} + c^+ & \text{dependent} \\
& & b^+ c^+ & \text{dependent} \\
\text{a} & \text{b} & a^+ b^+ & \text{not dependent}
\end{array}
\]
Dependent computations

Definition
A sequence of operations \(m \) is called **dependent** if for all \(o^\pm, u^\pm \) in \(m \) with \(o \neq u \), \(o \not\mathcal{I} u \) does not hold.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Dependence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a^+c^+)</td>
<td>dependent</td>
</tr>
<tr>
<td>(b^+c^+)</td>
<td>dependent</td>
</tr>
<tr>
<td>(a^+b^+)</td>
<td>not dependent</td>
</tr>
<tr>
<td>(a^+c^+b^+)</td>
<td>not dependent</td>
</tr>
</tbody>
</table>
Dependent computations

Definition

A sequence of operations m is called **dependent** if for all o^\pm, u^\pm in m with $o \neq u$, $o \not I u$ does not hold.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^+c^+</td>
<td>dependent</td>
</tr>
<tr>
<td>b^+c^+</td>
<td>dependent</td>
</tr>
<tr>
<td>a^+b^+</td>
<td>not dependent</td>
</tr>
<tr>
<td>$a^+c^+b^+$</td>
<td>not dependent</td>
</tr>
<tr>
<td>a^+a^-</td>
<td>dependent</td>
</tr>
</tbody>
</table>
Definition
A sequence of operations m is called dependent if for all o^\pm, u^\pm in m with $o \neq u$, $o \mathcal{I} u$ does not hold.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a^+ c^+$</td>
<td>dependent</td>
</tr>
<tr>
<td>$b^+ c^+$</td>
<td>dependent</td>
</tr>
<tr>
<td>$a^+ b^+$</td>
<td>not dependent</td>
</tr>
<tr>
<td>$a^+ c^+ b^+$</td>
<td>not dependent</td>
</tr>
<tr>
<td>$a^+ a^-$</td>
<td>dependent</td>
</tr>
<tr>
<td>$a^+ b^+ b^- a^-$</td>
<td>not dependent</td>
</tr>
</tbody>
</table>
Definition
A sequence of operations m is called dependent if for all o^\pm, u^\pm in m with $o \neq u$, $o \not I u$ does not hold.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Dependent/Not Dependent</th>
</tr>
</thead>
<tbody>
<tr>
<td>a^+c^+</td>
<td>dependent</td>
</tr>
<tr>
<td>b^+c^+</td>
<td>dependent</td>
</tr>
<tr>
<td>a^+b^+</td>
<td>not dependent</td>
</tr>
<tr>
<td>$a^+c^+b^+$</td>
<td>not dependent</td>
</tr>
<tr>
<td>a^+a^-</td>
<td>dependent</td>
</tr>
<tr>
<td>$a^+b^+b^-a^-$</td>
<td>not dependent</td>
</tr>
<tr>
<td>but $a^+a^- \not\equiv a^+b^+b^-a^-$!</td>
<td></td>
</tr>
</tbody>
</table>
Let m be a sequence of operations
Let m be a sequence of operations

Its first context is its maximal dependent prefix
Let m be a sequence of operations

Its first context is its maximal dependent prefix

Inductively:
The i^{th} context of m is the maximal dependent prefix of m with the first $i - 1$ contexts removed
Let m be a sequence of operations

Its first context is its maximal dependent prefix

Inductively:
The i^{th} context of m is the maximal dependent prefix of m with the first $i - 1$ contexts removed

The number of context switches $cs(m)$ is the number of contexts minus 1
In the examples

Assume the number of context switches is bounded by \(k \)

1. \(a \) \(b \)
 PDS
 no restriction

2. \(a \) \(b \)
 VASS
 changing the counter \(\leq k \) times

3. \(a \) \(b \)
 integer VASS
 changing the counter \(\leq k \) times

4. \(b_\ell \) \(b_r \)
 MPDS
 changing the stack \(\leq k \) times
BCSREACH for valence systems over graph monoids

Given: Valence system \mathcal{A} over \mathbb{M}_G, number k (in unary)

Decide: Is there $(q_{\text{init}}, \varepsilon) \rightarrow (q_{\text{final}}, m)$
with $m \cong \varepsilon$ and $cs(m) \leq k$?
The result

Theorem

BCSREACH for valence systems over graph monoids is in NP (for all graph monoids).

BCSREACH for valence systems over graph monoids

Given: Valence system \mathcal{A} over \mathbb{M}_G, number k (in unary)

Decide: Is there $\left(q_{\text{init}}, \varepsilon\right) \rightarrow \left(q_{\text{final}}, m\right)$ with $m \cong \varepsilon$ and $\text{cs}(m) \leq k$?
The proof / The algorithm
Proof outline

Need to find a computation \((q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m)\) with \(m \preceq \varepsilon\)
Proof outline

Need to find a computation \((q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m)\) with \(m \cong \varepsilon\)

Good: Bound \(cs(m) \leq k\)
Proof outline

Need to find a computation \((q_{\text{init}}, \varepsilon) \to^* (q_{\text{final}}, m)\) with \(m \equiv \varepsilon\)

Good: Bound \(cs(m) \leq k\)

Bad: No bound on length of length of \(m\)
Proof outline

Need to find a computation \((q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m)\) with \(m \equiv \varepsilon\)

Good: Bound \(cs(m) \leq k\)

Bad: No bound on length of length of \(m\)

Consider blockwise-reduction
Need to find a computation \((q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m)\) with \(m \equiv \varepsilon\)

Good: Bound \(cs(m) \leq k\)

Bad: No bound on length of length of \(m\)

Consider blockwise-reduction

If contexts irreducible, get existence of a reducible block decomposition of length \(\leq k^2\)
Proof outline

Need to find a computation \((q_{init}, \varepsilon) \rightarrow^* (q_{final}, m)\) with \(m \cong \varepsilon\)

Good: Bound \(cs(m) \leq k\)

Bad: No bound on length of length of \(m\)

Consider **blockwise-reduction**

If contexts **irreducible**, get existence of a reducible **block decomposition** of length \(\leq k^2\)

Ensure irreducibility by saturating system
Proof outline

Need to find a computation \((q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m)\) with \(m \cong \varepsilon\)

Good: Bound \(cs(m) \leq k\)

Bad: No bound on length of length of \(m\)

Consider **blockwise-reduction**

If contexts **irreducible**, get existence of a reducible **block decomposition of length \(\leq k^2\)**

Ensure irreducibility by saturating system

Then check existence of reducible block decomposition using guessing and representing blocks as **finite automata**
If $m \cong \varepsilon$, then there is a reduction of m that swaps letters and cancels letters.
If $m \equiv \epsilon$, then there is a reduction of m that
swaps letters
cancels letters.

Can define similarly a notation of reduction that
swaps blocks (infixes)
cancels blocks
in one step.
If \(m \cong \varepsilon \), then there is a \textit{reduction} of \(m \) that
swaps letters
cancels letters.

Can define similarly a notation of reduction that
swaps blocks (infixes)
cancels blocks
in one step.

E.g. \(m_1.m_2 \rightarrow m_2.m_1 \) if \textit{every symbol} in \(m_1 \) commutes with \textit{every symbol} in \(m_2 \)
Block decomposition

Let $m = m_1, m_2, \ldots, m_n$ be a decomposition of m into blocks.
Let \(m = m_1, m_2, \ldots, m_n \) be a decomposition of \(m \) into blocks.

If \(m \) can be reduced to \(\varepsilon \) by blockwise operations, call it \textit{freely reducible}.
Let $m = m_1, m_2, \ldots, m_n$ be a decomposition of m into blocks.

If m can be reduced to ε by blockwise operations, call it freely reducible.

If $m \cong \varepsilon$, then its decomposition into letters is always freely reducible.
Let $m = m_1, m_2, \ldots, m_n$ be a decomposition of m into blocks.

If m can be reduced to ε by blockwise operations, call it \textit{freely reducible}.

If $m \cong \varepsilon$, then its decomposition into letters is always freely reducible.

Coarser decompositions might not be freely reducible:

\[o^+ u^+ , u^- , o^- \]
Sequence is **irreducible** if it is not congruent to a shorter one.
Sequence is \textbf{irreducible} if it is not congruent to a shorter one

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Let} (m) \textit{be a sequence of operations with}</td>
</tr>
<tr>
<td>(k) contexts</td>
</tr>
<tr>
<td>\textit{each of them irreducible, and}</td>
</tr>
<tr>
<td>(m \cong \varepsilon.)</td>
</tr>
<tr>
<td>\textit{Then there is a decomposition of} (m) \textit{into} (\leq k^2) \textit{blocks that is freely reducible}.</td>
</tr>
</tbody>
</table>
Sequence is **irreducible** if it is not congruent to a shorter one.

Theorem

Let m be a sequence of operations with

k contexts

each of them irreducible, and

$m \cong \varepsilon$.

Then there is a decomposition of m into $\leq k^2$ blocks that is freely reducible.

Size of the decomposition is independent of the length of m.
Sequence is **irreducible** if it is not congruent to a shorter one.

Theorem

Let m *be a sequence of operations with* k *contexts, each of them irreducible, and* $m \cong \varepsilon$.

Then there is a decomposition of m *into* $\leq k^2$ *blocks that is freely reducible.*

Size of the decomposition is independent of the length of m. **Existence can be checked algorithmically.**
The algorithm

Given: valence system \mathcal{A}, bound k
The algorithm, Step I

The algorithm

Given: valence system \mathcal{A}, bound k

Part I: Enforcing irreducibility
The algorithm

Given: valence system \mathcal{A}, bound k

Part I: Enforcing irreducibility

1. Guess $\leq k$ dependent parts of \mathcal{A}
The algorithm, Step I

The algorithm

Given: valence system \mathcal{A}, bound k

Part I: Enforcing irreducibility

1. Guess $\leq k$ dependent parts of \mathcal{A}
2. Saturate each part:
Let A_{sat} be the resulting valence system.
Let \mathcal{A}_{sat} be the resulting valence system.

Theorem

$$(q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m) \text{ in } \mathcal{A} \text{ with } m \equiv \varepsilon \text{ and } cs(m) \leq k,$$
The algorithm, Step 1

Let A_{sat} be the resulting valence system

Theorem

$$(q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m) \text{ in } A \text{ with } m \cong \varepsilon \text{ and } cs(m) \leq k,$$

iff

$$(q_{\text{init}}, \varepsilon) \rightarrow^* (q_{\text{final}}, m') \text{ in } A_{\text{sat}} \text{ with } m' \cong \varepsilon, cs(m') \leq k,$$

and contexts of m' irreducible.
The algorithm, Step II

Part II:
Checking the existence of a freely reducible block decomposition
The algorithm, Step II

Part II:
Checking the existence of a freely reducible block decomposition

3. For each context i, guess part of A_{sat} that is used in block $m_{i,j}$ as NFA $A_{i,j}$
Part II:
Checking the existence of a freely reducible block decomposition

3. For each context i, guess part of A_{sat} that is used in block $m_{i,j}$ as NFA $A_{i,j}$

4. Guess reduction on blocks (NFAs) of polynomial length
Part II:
Checking the existence of a freely reducible block decomposition

3. For each context i, guess part of A_{sat} that is used in block $m_{i,j}$ as NFA $A_{i,j}$

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step
The algorithm, Step II

Part II:
Checking the existence of a freely reducible block decomposition

3. For each context \(i \), guess part of \(\mathcal{A}_{\text{sat}} \) that is used in block \(m_{i,j} \) as NFA \(\mathcal{A}_{i,j} \)

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

 Swap rule applicable to \(\mathcal{A}_{i,j}, \mathcal{A}'_{i',j'} \)
 if \(\forall o^\pm \in \text{Alphabet}(\mathcal{A}_{i,j}) \forall u^\pm \in \text{Alphabet}(\mathcal{A}'_{i',j'}) : o \not\epsilon u \)
The algorithm, Step II

Part II: Checking the existence of a freely reducible block decomposition

3. For each context \(i \), guess part of \(\mathcal{A}_{\text{sat}} \) that is used in block \(m_{i,j} \) as NFA \(\mathcal{A}_{i,j} \)

4. Guess reduction on blocks (NFAs) of polynomial length

5. Verify reduction step-by-step

 - **Swap rule** applicable to \(\mathcal{A}_{i,j}, \mathcal{A}_{i',j'} \)

 \[\text{if } \forall o^\pm \in \text{Alphabet}(\mathcal{A}_{i,j}) \forall u^\pm \in \text{Alphabet}(\mathcal{A}_{i',j'}): o \mathcal{I} u \]

 - **Cancel rule** applicable to \(\mathcal{A}_{i,j}, \mathcal{A}_{i',j'} \)

 \[\text{if } \mathcal{L}(\mathcal{A}_{i,j}) \cap \mathcal{L}(\mathcal{A}_{i',j'})^{\text{inverse}} \text{ is non-empty} \]
Complexity for fixed graphs
Now, assume that the graph \(G \) is fixed, consider \(\text{BCSREACH}(G) \).
Now, assume that the graph G is fixed, consider $\text{BCSREACH}(G)$.

Let G^- denote G with self-loops removed.
Now, assume that the graph G is fixed, consider $\text{BCSREACH}(G)$

Let G^{-} denote G with self-loops removed.

Theorem

If G^{-} is a clique, then $\text{BCSREACH}(G)$ is NL-complete.
Now, assume that the graph G is **fixed**, consider $\text{BCSREACH}(G)$

Let G^- denote G with self-loops removed.
Now, assume that the graph G is fixed, consider $\text{BCSREACH}(G)$.

Let G^- denote G with self-loops removed.

Theorem

If G^- contains C_4 as induced subgraph, then $\text{BCSREACH}(G)$ is NP-complete.
Now, assume that the graph G is fixed, consider $\text{BCSREACH}(G)$.

Let G^- denote G with self-loops removed.

Theorem

If G^- contains C_4 as induced subgraph, then $\text{BCSREACH}(G)$ is NP-complete.

Theorem

*If G^- contains neither C_4 nor P_4 as induced subgraphs, then $\text{BCSREACH}(G)$ is in P.***
Conclusion

Theorem

Reachability under *bounded context switching*

for *valence systems over graph monoids*

is *always in NP*.

+ almost complete classification of complexity for fixed graphs.
Conclusion

Theorem

Reachability under *bounded context switching*

for *valence systems over graph monoids*

is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:
Theorem

Reachability under *bounded context switching* for *valence systems over graph monoids* is *always in NP*.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:

 Complexity for valence systems over P4?
Theorem

Reachability under **bounded context switching**
for **valence systems over graph monoids**
is **always in NP**.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:

Complexity for valence systems over P4?
Bounded **phase** switching?
Conclusions

Theorem

Reachability under *bounded context switching* for *valence systems over graph monoids* is *always in NP*.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:

- Complexity for valence systems over P4?
- Bounded *phase* switching?
- BCS for *reachability games*?
Conclusion

Theorem

Reachability under bounded context switching for valence systems over graph monoids is always in NP.

+ almost complete classification of complexity for fixed graphs.

Open problems / future work:

- Complexity for valence systems over P4?
- Bounded phase switching?
- BCS for reachability games?
- Richer model supporting queues, higher order?
Thank you!
Questions?