
Matthew Hague

with Roland Meyer, Sebastian Muskalla,and Martin Zimmermann

Royal Holloway, University of London

Parity to Safety in Polynomial
Time for Pushdown and Collapsible
Pushdown Games

Abstract

Safety games for pushdown systems:
 n-EXPTIME-complete
Parity games for pushdown systems:
 n-EXPTIME-complete

 (for order-n collapsible pushdown)

Abstract

Safety games for pushdown systems:
 n-EXPTIME-complete
Parity games for pushdown systems:
 n-EXPTIME-complete

 (for order-n collapsible pushdown)

We give a "natural" parity->safety reduction

Abstract

Safety games for pushdown systems:
 n-EXPTIME-complete
Parity games for pushdown systems:
 n-EXPTIME-complete

 (for order-n collapsible pushdown)

We give a "natural" parity->safety reduction
(i.e. not parity algorithm -> TM -> safety)

Motivation

Safety is easy to reason about
(Parity is hard)

Parity is more expressive

To know the relationship

Ideas We Start With

Finite-state parity to safety using counters
(Bernet et al, 2002)

Ideas We Start With

Finite-state parity to safety using counters
(Bernet et al, 2002)
Pushdown parity to safety with large counters
(Fridman and Zimmermann, 2012)

Ideas We Start With

Finite-state parity to safety using counters
(Bernet et al, 2002)
Pushdown parity to safety with large counters
(Fridman and Zimmermann, 2012)

Reduction order-n -> order-(n-1)
 Rank awareness
(H, Murawski, Ong, Serre, 2008)

Ideas We Start With

Finite-state parity to safety using counters
(Bernet et al, 2002)
Pushdown parity to safety with large counters
(Fridman and Zimmermann, 2012)

Reduction order-n -> order-(n-1)
 Rank awareness
(H, Murawski, Ong, Serre, 2008)

Encoding large counters in a pushdown stack
(Cachat and Walukiewicz, 2007)

Contributions

Generalise counter encoding to collapse

Direct proof based on commutativity of
 Counters encoding
 Stack removal

Counters behave like a stack

Parity Game

Elvis

Anarchist

4

1

2

4

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1 2

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1 2 4

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1 2 44

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1 2 44 1 4 4 1 2 4...

Parity Game

Elvis

Anarchist

4

1

2

4

Play: 4 1 2 44 1 4 4 1 2 4...
Winner: Elvis if least infinitely
 occuring rank is even

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

There is a loop!
(Hit 1 five times over 4 states)

Parity with Counters

4

1

2

4

Count: number of each rank
 (without seeing anything smaller)

Counters:
1:
2:

3:
4:

There is a loop!
(Hit 1 five times over 4 states)

The smallest rank is odd: Elvis loses!

Parity to Safety

Reduce parity to safety game (Bernet et al):

 Keep counters in state (n * n^k states)

 Elvis loses if odd counter is high

Parity to Safety

Reduce parity to safety game (Bernet et al):

 Keep counters in state (n * n^k states)

 Elvis loses if odd counter is high

Exponential blow up!

Pushdown Games
 a
 a b b
 b b b b
p1 c p2 c p3 c p4 c

Each state has:
 Control state (from finite set)
 Stack of characters

Model recursive programs

Pushdown Parity to Safety

Pushdown Parity

Finite-state
 Parity

Finite-State
 Safety

Pushdown Safety

(Walukiewicz
 1996)

Pushdown Parity to Safety

Pushdown Parity

Finite-state
 Parity

Finite-State
 Safety

Pushdown Safety

(Walukiewicz
 1996)

(Bernet et al
 2002)

Pushdown Parity to Safety

Pushdown Parity

Finite-state
 Parity

Finite-State
 Safety

Pushdown Safety

(Walukiewicz
 1996)

(Bernet et al
 2002)

(Fridman and
 Zimmermann
 2012)

Pushdown Parity to Safety

Pushdown Parity

Finite-state
 Parity

Finite-State
 Safety

Pushdown Safety

(Walukiewicz
 1996)

(Bernet et al
 2002)

(Fridman and
 Zimmermann
 2012)

Commutes!

Pushdown Parity to Safety

 a
 a b b
 b b b b
p1 c p2 c p3 c p4 c

 (a, c1, c2)
 (b, c1, c2) (b, c1, c2')
p1 (c, c1, c2) p2 (c, c1, c2)

From:

To:

Pushdown Parity to Safety

 a
 a b b
 b b b b
p1 c p2 c p3 c p4 c

 (a, c1, c2)
 (b, c1, c2) (b, c1, c2')
p1 (c, c1, c2) p2 (c, c1, c2)

From:

To: Counters

Exponential Blow Up?

 (a, c1, c2')
p (b, c1, c2)

Counter values: can be exponential
(Pushdown->finite-state has 2^n states)

Number of stack characters: (2^n)^k
(For k ranks)

Exponential Blow Up?

 (a, c1, c2')
p (b, c1, c2)

Counter values: can be exponential
(Pushdown->finite-state has 2^n states)

Number of stack characters: (2^n)^k
(For k ranks)

Reducing Size

 (a, c1, c2')
p (b, c1, c2)

 a
 c2'
 c1
 b
 c2
p c1

From: To:

Reducing Size

 (a, c1, c2')
p (b, c1, c2)

 a
 c2'
 c1
 b
 c2
p c1

From: To:

Number of characters: 2^n

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Lost c2'
(It will be reset)

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Lost c2'
(It will be reset) '

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Lost c2'
(It will be reset) '

0

Updating Counters

 a
 c2'
 c1
 b
 c2
 p c1

Increment c1

(, a)

Lost c2'
(It will be reset) '

0
a

Polynomial No. of Characters

 a
 c2'
 c1
 b
 c2
 p c1

Counters up to 2^n
Alphabet exponential

Polynomial No. of Characters

 a
 c2'
 c1
 b
 c2
 p c1

Counters up to 2^n
Alphabet exponential

 a
 0
 1
 1
 0
 1
 0
 .
 .
p .

c2' in binary

c1 in binary

Polynomial No. of Characters

 a
 c2'
 c1
 b
 c2
 p c1

Counters up to 2^n
Alphabet exponential

 a
 0
 1
 1
 0
 1
 0
 .
 .
p .

c2' in binary

c1 in binary

Pushdowns handle
length-n binary

Alphabet polynomial!

Pushdown Parity to Safety

Pushdown parity game -> pushdown safety game

Naively exponential

Use stack discipline of counters

Binary counter encoding of pushdowns

Polynomial time reduction

Collapsible Pushdown Systems

Pushdown Systems = First-Order Recursion

 Collapsible Pushdown Systems
 =
 Higher-Order Recursion

Higher-Order Programming: Niche?

Almost all modern languages support it

 Scala, Go, JavaScript, Python, ...

 Retro-fitted to C++ and Java

 Asynchronous programs/callbacks

 Map/Reduce

Collapsible Pushdown Systems

Higher-order program: functions of functions
Higher-order pushdown: stack of stacks

 a
 b
 p c

Collapsible Pushdown Systems

Higher-order program: functions of functions
Higher-order pushdown: stack of stacks

 a
 b
 p c

a b c

b c

d a cp

Collapsible Pushdown Systems

Higher-order program: functions of functions
Higher-order pushdown: stack of stacks

 a
 b
 p c

a b c

b c

d a cp

a b
b a a
c c c

 b
a b a
a c cp

Collapsible Pushdown Systems

Higher-order program: functions of functions
Higher-order pushdown: stack of stacks

 a
 b
 p c

a b c

b c

d a cp

a b
b a a
c c c

 b
a b a
a c cp

(+links)

Generalising Parity->Safety

Collapsible Pushdown -> Finite-State
(n-Exponential blow up)

n-Exponential Counters

Can encode in binary on order-n stack!

Summary

Parity -> Safety

Counters look out for loops
(Even with infinite states)

Reduction to finite-state
Counters behave like stacks
Counter values match limits of system

Polynomial-time encoding

Future and Related Work

Can these ideas lead to implementations?
 Direct implementation
 Abstraction/refinement of counters
 Counter size vs. structure of game
 Backend: HorSat, Preface, &c.

Parity->Safety:
 Berwanger and Doyen, 2008
 Sohail and Somenzi, 2009
 Biere et al, 2002
 Podelski and Rybalchenko, 2011
 Konnov et al, 2017

