Domains for Higher-Order Games

Matthew Hague, Roland Meyer, Sebastian Muskalla Royal Holloway University of London, and TU Braunschweig

MFCS 2017

Overview – The Problem

Decide the winning region / strategy of inclusion games

- Played over higher-order recursion schemes.
 - (Higher-order control-flow)
- A play generates a program trace.
- The program trace must belong to a regular specification.

Overview – Our Solution

We use

 ${\rm \circ}$ Concrete semantics of terms t

- Pointed ω -complete partial order (CPPO)
- Fixed point semantics via Kleene iteration
- \circ Infinite formula evaluates to "true" iff Player \circ can win from t
- Abstract-interpretation framework
 - Into a finite CPPO fixed point computable
 - Fixed-point transfer ensures exact abstraction
 - Gives a decision procedure for determining winner

Background

Verification Problem

The verification problem:

Given: Source code of a program P and a specification φ Question: Does runtime behaviour of P satisfy φ ?

Verification Problem

The verification problem:

- Given: Source code of a program P and a specification φ
- Question: Does runtime behaviour of P satisfy $\varphi?$

Language-theoretic approach:

$$\mathcal{L}_P = \text{possible program executions}$$

 $\mathcal{L}_{\varphi} =$ valid executions

Decide: $\mathcal{L}_P \subseteq \mathcal{L}_{\varphi}$

The Good and Bad

 $\mathcal{L}_P = \text{possible program executions}$ $\mathcal{L}_{\varphi} = \text{valid executions}$

The Good and Bad

 $\mathcal{L}_P = \text{possible program executions}$ $\mathcal{L}_{\varphi} = \text{valid executions}$ Good: \mathcal{L}_{φ} usually regular (easy) Bad: \mathcal{L}_P usually complicated...

The Good and Bad

 $\mathcal{L}_P = \text{possible program executions}$ $\mathcal{L}_{\varphi} = \text{valid executions}$ Good: \mathcal{L}_{φ} usually regular (easy) Bad: \mathcal{L}_P usually complicated...

Because of the bad:

- Problem is undecidable
- We need to approximate \mathcal{L}_P

Breaking down \mathcal{L}_P

A program has control-flow and data

$$\mathcal{L}_P = \mathcal{L}_{CF} \cap \mathcal{L}_{Data}$$

We know

- o \mathcal{L}_{CF} may have many manageable representations
 - Regular, context-free, higher-order...
- $\circ \mathcal{L}_{Data}$ can be arbitrary
 - Best handled using techniques from logic

Breaking down \mathcal{L}_P

A program has control-flow and data

$$\mathcal{L}_P = \mathcal{L}_{CF} \cap \mathcal{L}_{Data}$$

We know

o \mathcal{L}_{CF} may have many manageable representations

• Regular, context-free, higher-order...

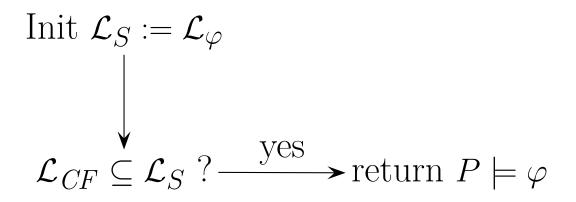
- $\circ \mathcal{L}_{Data}$ can be arbitrary
 - Best handled using techniques from logic

How to combine the two?

 ${\rm o}$ CEGAR loop [Podelski et al. since 2010]

Init $\mathcal{L}_S := \mathcal{L}_{\varphi}$

Init $\mathcal{L}_S := \mathcal{L}_{\varphi}$ $\mathcal{L}_{CF} \subseteq \mathcal{L}_S ?$



Init
$$\mathcal{L}_{S} := \mathcal{L}_{\varphi}$$

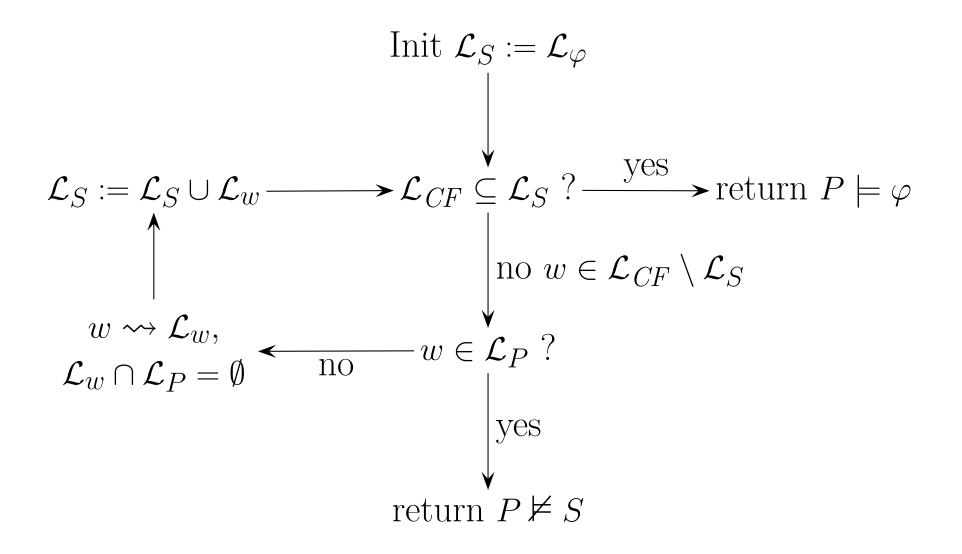
 \downarrow
 $\mathcal{L}_{CF} \subseteq \mathcal{L}_{S} ? \xrightarrow{\text{yes}} \text{return } P \models \varphi$
 \downarrow
 $\text{no } w \in \mathcal{L}_{CF} \setminus \mathcal{L}_{S}$
 $w \in \mathcal{L}_{P} ?$

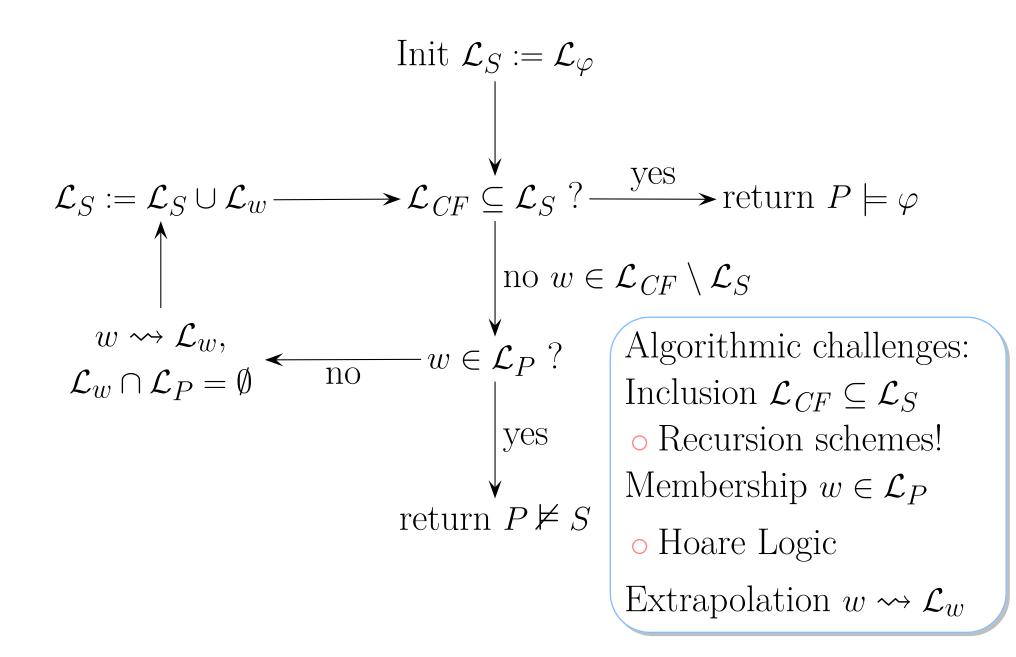
Init
$$\mathcal{L}_{S} := \mathcal{L}_{\varphi}$$

 $\mathcal{L}_{CF} \subseteq \mathcal{L}_{S} ? \xrightarrow{\text{yes}} \text{return } P \models \varphi$
 $\downarrow \text{no } w \in \mathcal{L}_{CF} \setminus \mathcal{L}_{S}$
 $w \in \mathcal{L}_{P} ?$
 $\downarrow \text{yes}$
 $\text{return } P \nvDash S$

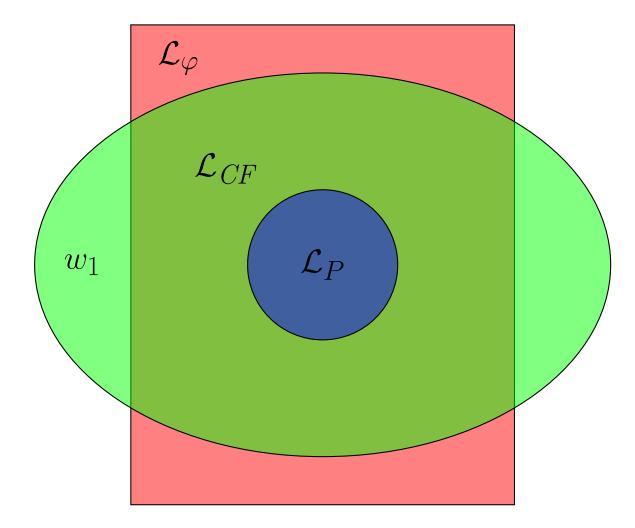
Init
$$\mathcal{L}_{S} := \mathcal{L}_{\varphi}$$

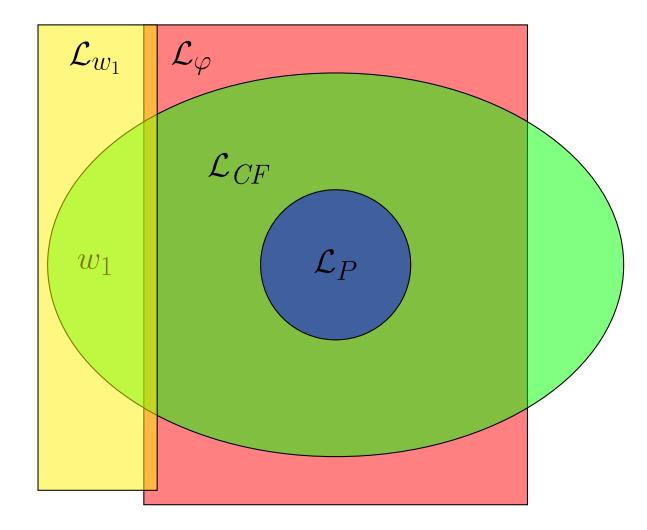
 $\mathcal{L}_{CF} \subseteq \mathcal{L}_{S} ? \xrightarrow{\text{yes}} \text{return } P \models \varphi$
 $w \rightsquigarrow \mathcal{L}_{w},$
 $\mathcal{L}_{w} \cap \mathcal{L}_{P} = \emptyset \qquad \qquad w \in \mathcal{L}_{P} ?$
 yes
return $P \nvDash S$

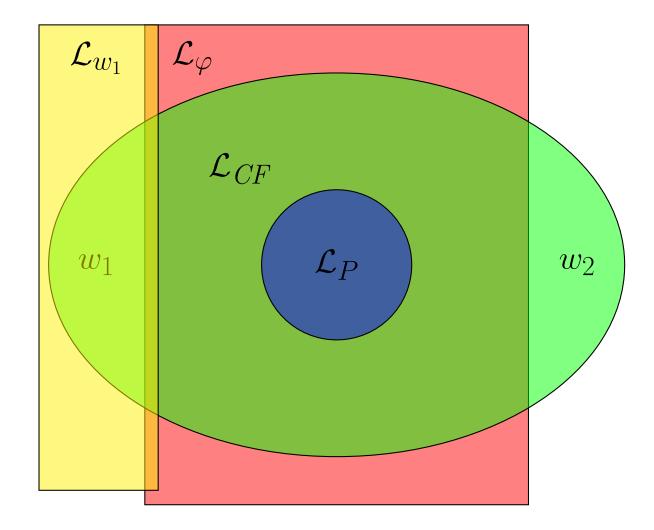














Language Synthetic Synthesis

Synthesis

Why write a bad program and check it's ok?

• Better to generate a correct program!

The synthesis problem:

Given: Template of a program P and a specification φ Question: Is there an instantiation P' that satisfies φ ?

Synthesis

Why write a bad program and check it's ok?

• Better to generate a correct program!

The synthesis problem:

Given: Template of a program P and a specification φ Question: Is there an instantiation P' that satisfies φ ? Approach:

• Language-theoretic synthesis

• CEGAR loop

Types of Non-determinism

Model the control-flow as a Higher-order Recursion Scheme

Demonic

Program input:

• handle all possiblities.

def F(): x = read() if x == 0: G() else: H() becomes

 $F = rd(x,0) \ G \ \wedge rd(x,1) \ H$

Angelic Program branch: o choose best. def F(): if ???: G() else: H() becomes $F = G \vee H$

Language-Theoretic Synthesis

Model as a higher-order two player perfect information game

- \circ Player \Box uncontrollable non-determinism
- ${\rm o}$ Player ${\rm o}$ controllable non-determinism

Is there a strategy s for \circ such that

$$\mathcal{L}_{G@s} \subseteq \mathcal{L}_{\varphi}$$

I.e. when Player \circ uses s all generated words are in \mathcal{L}_{φ}

Language-Theoretic Synthesis

Model as a higher-order two player perfect information game

- \circ Player \Box uncontrollable non-determinism
- ${\rm o}$ Player ${\rm o}$ controllable non-determinism

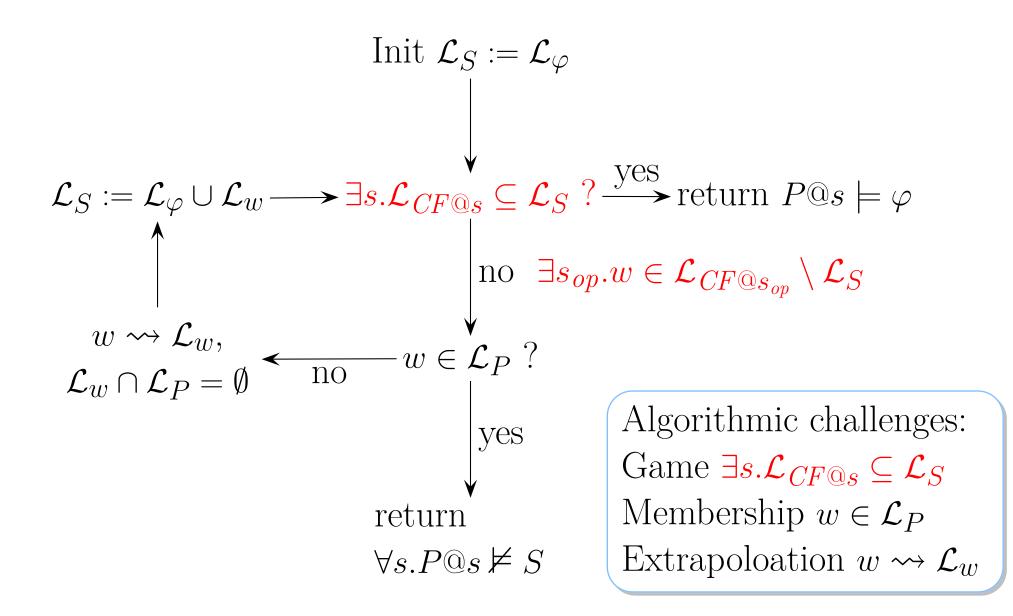
Is there a strategy s for \circ such that

$$\mathcal{L}_{G@s} \subseteq \mathcal{L}_{\varphi}$$

I.e. when Player \circ uses *s* all generated words are in \mathcal{L}_{φ} Replace the inclusion check

$$\mathcal{L}_G \subseteq \mathcal{L}_S$$

with strategy synthesis.



Higher-Order Inclusion Games

Higher-Order Games: Input

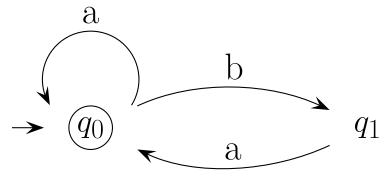
Given a

• Higher-Order Recursion Scheme

• Ownership partition of non-terminals

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

• Finite automaton \mathcal{A} over terminals $(\{a, b\})$



Safety Games

We study safety games:

Can Player \circ avoid generating a word $w \notin \mathcal{L}_{\mathcal{A}}$?

Example Play

$$S_{\circ} = F_{\circ} \ G_{\Box}$$

$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$

$$G_{\Box} \ x = x \land b \ x$$

Example Play

$$S_{\circ} = F_{\circ} G_{\Box}$$

$$F_{\circ} f = a (F_{\circ} f) \lor a (f b)$$

$$S_{\circ}$$

$$G_{\Box} x = x \land b x$$

 F_{\circ}

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

 F_{\circ}

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

a

 F_{\circ}

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

a

 F_{\circ}

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

a

a

 G_{\Box}

$$S_{\circ} = F_{\circ} \ G_{\Box}$$

$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$

$$G_{\Box} \ x = x \land b \ x$$

a

a

$$S_{\circ} = F_{\circ} \ G_{\Box}$$

$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$

$$G_{\Box} \ x = x \land b \ x$$

$$a$$

$$G_{\Box}$$

a

a

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

a

a

$$S_{\circ} = F_{\circ} \ G_{\Box}$$
$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$
$$G_{\Box} \ x = x \land b \ x$$

$$S_{\circ} = F_{\circ} \ G_{\Box}$$

$$F_{\circ} \ f = a \ (F_{\circ} \ f) \lor a \ (f \ b)$$

$$G_{\Box} \ x = x \land b \ x$$

$$a$$

$$b$$

Since $aabb \notin \overline{\Sigma^* bb \Sigma^*}$ Player \circ loses this play.

Results

Theorem

Given a higher-order game G and regular specification \mathcal{A} , determining the winning of G wrt \mathcal{A} is (k+1)-EXPTIME-complete for an order-k scheme.

Such a result is already known

- \circ Determinize \mathcal{A}
- Product with G
- $\circ \Rightarrow$ standard safety game over higher-order recursion schemes.
 - Solvable by e.g. [Serre]

Our Approach

We provide a new approach

- ${\rm o}$ Develop a concrete semantics $[\![S]\!]$ of G wrt ${\cal A}$
 - infinite CPPO: monotone boolean formulas and continuous (higher-order) functions between them.
- Give a framework for exact abstract interpretation
- Abstract into an abstract semantics over a finite CPPO
- Compute the abstract semantics by simple Kleene iteration

Related Work

Similar approaches have been studied in the literature.

- Models/domains:
 - Walukiewicz & Salvati
 - Melliès & Grellois
 - Hofmann, Chen & Ledent
- Abstract interpretation:
 - Abramsky & Hankin
 - Ramsay
 - Hofmann, Chen & Ledent

Boolean formula representing game

 $S = a \lor b$ $\llbracket S \rrbracket = a \lor b$

A proposition w is true iff $w \notin \mathcal{L}_{\mathcal{A}}$.

Boolean formula representing game

$$S = a \lor b$$
$$[S] = a \lor b$$

A proposition w is true iff $w \notin \mathcal{L}_{\mathcal{A}}$. Formulas may be infinite:

 $\llbracket S \rrbracket = (w_1 \lor w_2) \land (w_3 \lor w_4 \lor (w_4 \land \cdots$

Boolean formula representing game

 $S = a \lor b$ $\llbracket S \rrbracket = a \lor b$

A proposition w is true iff $w \notin \mathcal{L}_{\mathcal{A}}$. Formulas may be infinite:

 $\llbracket S \rrbracket = (w_1 \lor w_2) \land (w_3 \lor w_4 \lor (w_4 \land \cdots$

The semantics of a function is given as a function

 $F: \tau_1 \to \tau_2$ $\llbracket F \rrbracket \in D_{\tau_1} \to D_{\tau_2}$

Solution Sketch: Fixed Points

We compute the semantics via recursive equations

 $F = \lambda x.a \ (F \ x)$

$$\begin{bmatrix} F \end{bmatrix} = \llbracket \lambda x.a \ (F \ x) \rrbracket \\ = \lambda x.\llbracket a \rrbracket \llbracket F \rrbracket x$$

The semantics $\llbracket F \rrbracket$ is

• A function

• A fixed point of the above recursive equations

Once we know $\llbracket F \rrbracket$, $\llbracket G \rrbracket$, ..., computing the semantics of a term is easy

 $\llbracket F \ a \rrbracket = \llbracket F \rrbracket \llbracket a \rrbracket$

Theorem

The following are equivalent

• Player • wins from t : o

 $\circ \llbracket t \rrbracket$ is true under $\mathcal{L}_{\mathcal{A}}$

"True under $\mathcal{L}_{\mathcal{A}}$ "

• a proposition w is true iff $w \notin \mathcal{L}_{\mathcal{A}}$.

We can't compute infinite formulas.

- $_{\rm O}$ We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration

We can't compute infinite formulas.

- ${}_{\rm O}$ We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration

The number of propositions $w \in \Sigma^*$ is infinite

- ${\color{black}\circ}$ We abstract $\alpha(w)$ into a finite domain
- Therefore only finitely many boolean formulas
 - Fixed point computation terminates

We can't compute infinite formulas.

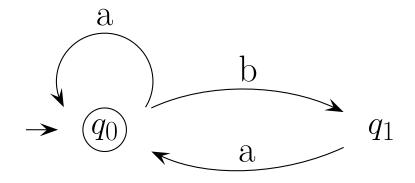
- ${}_{\rm O}$ We need semantics in a finite domain
 - Semantics is computable via simple Kleene iteration

The number of propositions $w \in \Sigma^*$ is infinite

- ${\color{black}\circ}$ We abstract $\alpha(w)$ into a finite domain
- Therefore only finitely many boolean formulas
 - Fixed point computation terminates
- $_{\rm O}$ We show the abstraction is precise
 - This involves defining what precise means
 - Our abstraction is exact not approximate
 - No false positives!

We abstract w by the set of states of \mathcal{A} from which w is accepted

$$\alpha(w) = \{q \mid q \xrightarrow{w} q_f\}$$



Here

$$\alpha(aba) = \{q_0, q_1\}$$

Solution Sketch: Correctness

Truth of propositions:

- $\circ w$ true iff $w \notin \mathcal{L}_{\mathcal{A}}$
- $\circ \alpha(w)$ true iff $q_0 \notin \alpha(w)$

The abstraction is precise:

Theorem

 α (Concrete semantics) = Abstract semantics

We can compute in the finite domain!

Solution Sketch: Finishing

Complexity:

- The complexity is (k+1)-EXPTIME-complete for an orderk scheme
- ${\scriptstyle \circ}$ We need a second abstraction into an optimised domain

Winning region and strategy

- For any term $\llbracket t \rrbracket$ is computable in "linear time".
- \circ Winning strategy for Player \circ
 - Always choose moves that stay in the winning region

Conclusion

We have

- Defined and motivated higher-order inclusion games
- Shown (k + 1)-EXPTIME-completeness
- Given a solution based on semantics in CPPOs
- Used exact abstract interpretation to obtain an effective (and optimised) solution

Future work

- Categories?
- More powerful winning conditions