
Domains for Higher-Order Games

Matthew Hague, Roland Meyer, Sebastian Muskalla
Royal Holloway University of London, and TU Braunschweig

MFCS 2017



Overview – The Problem

Decide the winning region / strategy of inclusion games
Played over higher-order recursion schemes.

(Higher-order control-flow)
A play generates a program trace.
The program trace must belong to a regular specification.



Overview – Our Solution

We use
Concrete semantics of terms t

Pointed ω-complete partial order (CPPO)
Fixed point semantics via Kleene iteration
Infinite formula evaluates to “true” iff Player ◦ can win
from t

Abstract-interpretation framework
Into a finite CPPO – fixed point computable
Fixed-point transfer ensures exact abstraction
Gives a decision procedure for determining winner



Background



Verification Problem

The verification problem:
Given: Source code of a program P and a specification φ

Question: Does runtime behaviour of P satisfy φ?



Verification Problem

The verification problem:
Given: Source code of a program P and a specification φ

Question: Does runtime behaviour of P satisfy φ?
Language-theoretic approach:

LP = possible program executions
Lφ = valid executions
Decide: LP ⊆ Lφ



The Good and Bad

LP = possible program executions
Lφ = valid executions



The Good and Bad

LP = possible program executions
Lφ = valid executions

Good: Lφ usually regular (easy)
Bad: LP usually complicated…



The Good and Bad

LP = possible program executions
Lφ = valid executions

Good: Lφ usually regular (easy)
Bad: LP usually complicated…

Because of the bad:
Problem is undecidable
We need to approximate LP



Breaking down LP

A program has control-flow and data
LP = LCF ∩ LData

We know
LCF may have many manageable representations

Regular, context-free, higher-order…
LData can be arbitrary

Best handled using techniques from logic



Breaking down LP

A program has control-flow and data
LP = LCF ∩ LData

We know
LCF may have many manageable representations

Regular, context-free, higher-order…
LData can be arbitrary

Best handled using techniques from logic
How to combine the two?

CEGAR loop [Podelski et al. since 2010]



CEGAR Loop

Init LS := Lφ



CEGAR Loop

Init LS := Lφ

LCF ⊆ LS ?



CEGAR Loop

Init LS := Lφ

LCF ⊆ LS ? return P |= φ
yes



CEGAR Loop

Init LS := Lφ

LCF ⊆ LS ? return P |= φ

w ∈ LP ?

yes

no w ∈ LCF \ LS



CEGAR Loop

Init LS := Lφ

LCF ⊆ LS ? return P |= φ

w ∈ LP ?

return P ⊭ S

yes

no w ∈ LCF \ LS

yes



CEGAR Loop

Init LS := Lφ

LCF ⊆ LS ? return P |= φ

w⇝ Lw,

Lw ∩ LP = ∅
w ∈ LP ?

return P ⊭ S

yes

no w ∈ LCF \ LS

yes
no



CEGAR Loop

Init LS := Lφ

LS := LS ∪ Lw LCF ⊆ LS ? return P |= φ

w⇝ Lw,

Lw ∩ LP = ∅
w ∈ LP ?

return P ⊭ S

yes

no w ∈ LCF \ LS

yes
no



CEGAR Loop

Init LS := Lφ

LS := LS ∪ Lw LCF ⊆ LS ? return P |= φ

w⇝ Lw,

Lw ∩ LP = ∅
w ∈ LP ?

return P ⊭ S

yes

no w ∈ LCF \ LS

yes
no

Algorithmic challenges:
Inclusion LCF ⊆ LS

Recursion schemes!
Membership w ∈ LP

Hoare Logic
Extrapolation w⇝ Lw



CEGAR Illustration

Lφ

LP

LCF



CEGAR Illustration

Lφ

LP

LCF

w1



CEGAR Illustration

Lφ

LP

LCF

w1

Lw1



CEGAR Illustration

Lφ

LP

LCF

w1

Lw1

w2



CEGAR Illustration

Lφ

LP

LCF

w1

Lw1

w2

Lw2



Language Synthetic Synthesis



Synthesis

Why write a bad program and check it’s ok?
Better to generate a correct program!

The synthesis problem:
Given: Template of a program P and a specification φ

Question: Is there an instantiation P ′ that satisfies φ?



Synthesis

Why write a bad program and check it’s ok?
Better to generate a correct program!

The synthesis problem:
Given: Template of a program P and a specification φ

Question: Is there an instantiation P ′ that satisfies φ?
Approach:

Language-theoretic synthesis
CEGAR loop



Types of Non-determinism
Model the control-flow as a Higher-order Recursion Scheme
Demonic
Program input:

handle all possiblities.
def F():

x = read()
if x == 0:

G()
else:

H()

becomes
F = rd(x, 0) G ∧ rd(x, 1) H

Angelic
Program branch:

choose best.
def F():

if ???:
G()

else:
H()

becomes
F = G ∨H



Language-Theoretic Synthesis

Model as a higher-order two player perfect information game
Player □ – uncontrollable non-determinism
Player ◦ – controllable non-determinism

Is there a strategy s for ◦ such that
LG@s ⊆ Lφ

I.e. when Player ◦ uses s all generated words are in Lφ



Language-Theoretic Synthesis

Model as a higher-order two player perfect information game
Player □ – uncontrollable non-determinism
Player ◦ – controllable non-determinism

Is there a strategy s for ◦ such that
LG@s ⊆ Lφ

I.e. when Player ◦ uses s all generated words are in Lφ

Replace the inclusion check
LG ⊆ LS

with strategy synthesis.



CEGAR Loop

Init LS := Lφ

LS := Lφ ∪ Lw ∃s.LCF@s ⊆ LS ? return P@s |= φ

w⇝ Lw,

Lw ∩ LP = ∅
w ∈ LP ?

return
∀s.P@s ⊭ S

yes

no ∃sop.w ∈ LCF@sop \ LS

yes
no

Algorithmic challenges:
Game ∃s.LCF@s ⊆ LS

Membership w ∈ LP

Extrapoloation w⇝ Lw



Higher-Order Inclusion Games



Higher-Order Games: Input

Given a
Higher-Order Recursion Scheme
Ownership partition of non-terminals

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

Finite automaton A over terminals ({a, b})

q0 q1

a
b

a



Safety Games

We study safety games:

Can Player ◦ avoid generating a word w /∈ LA ?



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

S◦



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

S◦



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

F◦

G□



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

F◦

G□



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

F◦

G□



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

F◦

G□



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

a

G□

b



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

a

G□

b



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

a

b

b



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

a

b

b



Example Play

S◦ = F◦ G□
F◦ f = a (F◦ f ) ∨ a (f b)

G□ x = x ∧ b x

a

a

b

b

Since aabb /∈ Σ∗bbΣ∗ Player ◦ loses this play.



Results

Theorem
Given a higher-order game G and regular specifi-
cation A, determining the winning of G wrt A is
(k+1)-EXPTIME-complete for an order-k scheme.

Such a result is already known
Determinize A

Product with G

⇒ standard safety game over higher-order recursion
schemes.

Solvable by e.g. [Serre]



Our Approach

We provide a new approach
Develop a concrete semantics JSK of G wrt A

infinite CPPO: monotone boolean formulas and contin-
uous (higher-order) functions between them.

Give a framework for exact abstract interpretation
Abstract into an abstract semantics over a finite CPPO
Compute the abstract semantics by simple Kleene iteration



Related Work

Similar approaches have been studied in the literature.
Models/domains:

Walukiewicz & Salvati
Melliès & Grellois
Hofmann, Chen & Ledent

Abstract interpretation:
Abramsky & Hankin
Ramsay
Hofmann, Chen & Ledent



Solution Sketch: Concrete Semantics

Boolean formula representing game
S = a ∨ bJSK = a ∨ b

A proposition w is true iff w /∈ LA.



Solution Sketch: Concrete Semantics

Boolean formula representing game
S = a ∨ bJSK = a ∨ b

A proposition w is true iff w /∈ LA.
Formulas may be infinite:JSK = (w1 ∨ w2) ∧ (w3 ∨ w4 ∨ (w4 ∧ · · ·



Solution Sketch: Concrete Semantics

Boolean formula representing game
S = a ∨ bJSK = a ∨ b

A proposition w is true iff w /∈ LA.
Formulas may be infinite:JSK = (w1 ∨ w2) ∧ (w3 ∨ w4 ∨ (w4 ∧ · · ·
The semantics of a function is given as a function

F : τ1 → τ2JF K ∈ Dτ1 → Dτ2



Solution Sketch: Fixed Points
We compute the semantics via recursive equations

F = λx.a (F x)

JF K = Jλx.a (F x)K
= λx.JaK JF K x

The semantics JF K is
A function
A fixed point of the above recursive equations

Once we know JF K, JGK, …, computing the semantics of a
term is easy JF aK = JF KJaK



Solution Sketch: Concrete Semantics

Theorem
The following are equivalent

Player ◦ wins from t : oJtK is true under LA

“True under LA”
a proposition w is true iff w /∈ LA.



Solution Sketch: Abstraction
We can’t compute infinite formulas.

We need semantics in a finite domain
Semantics is computable via simple Kleene iteration



Solution Sketch: Abstraction
We can’t compute infinite formulas.

We need semantics in a finite domain
Semantics is computable via simple Kleene iteration

The number of propositions w ∈ Σ∗ is infinite
We abstract α(w) into a finite domain
Therefore only finitely many boolean formulas

Fixed point computation terminates



Solution Sketch: Abstraction
We can’t compute infinite formulas.

We need semantics in a finite domain
Semantics is computable via simple Kleene iteration

The number of propositions w ∈ Σ∗ is infinite
We abstract α(w) into a finite domain
Therefore only finitely many boolean formulas

Fixed point computation terminates
We show the abstraction is precise

This involves defining what precise means
Our abstraction is exact not approximate
No false positives!



Solution Sketch: Abstraction

We abstract w by the set of states of A from which w is
accepted

α(w) = {q | q w−→ qf}

q0 q1

a
b

a

Here
α(aba) = {q0, q1}



Solution Sketch: Correctness

Truth of propositions:
w true iff w /∈ LA

α(w) true iff q0 /∈ α(w)

The abstraction is precise:
Theorem

α(Concrete semantics) = Abstract semantics

We can compute in the finite domain!



Solution Sketch: Finishing

Complexity:
The complexity is (k+1)-EXPTIME-complete for an order-
k scheme
We need a second abstraction into an optimised domain

Winning region and strategy
For any term JtK is computable in “linear time”.
Winning strategy for Player ◦

Always choose moves that stay in the winning region



Conclusion

We have
Defined and motivated higher-order inclusion games
Shown (k + 1)-EXPTIME-completeness
Given a solution based on semantics in CPPOs
Used exact abstract interpretation to obtain an effective
(and optimised) solution

Future work
Categories?
More powerful winning conditions


