Language-Theoretic Synthesis & Summaries for Context-Free Games

Lukáš Holík¹, Roland Meyer², and Sebastian Muskalla²

1 Brno University of Technology, holik@fit.vutbr.cz 2 TU Braunschweig, {roland.meyer, s.muskalla}@tu-braunschweig.de

Verification problem:

Given: Source code of program P and specification φ . Question: Does runtime behavior of P satisfy φ ?

Verification problem:

Given: Source code of program P and specification φ . Question: Does runtime behavior of P satisfy φ ?

Language-theoretic approach:

$$\mathcal{L}_P = \mathsf{possible} \ \mathsf{program} \ \mathsf{executions}$$

 $\mathcal{L}_{\varphi} = \mathsf{valid}$ executions

Decide: $\mathcal{L}_P \subseteq \mathcal{L}_{\varphi}$

$$\mathcal{L}_P = \mathsf{possible} \ \mathsf{program} \ \mathsf{executions}$$

 $\mathcal{L}_{\varphi} = \mathsf{valid} \ \mathsf{executions}$

 $\mathcal{L}_{P}=$ possible program executions $\mathcal{L}_{arphi}=$ valid executions

Good: \mathcal{L}_{φ} usually easy (regular) Bad: \mathcal{L}_{P} usually not even context free $\mathcal{L}_P = {\sf possible program executions}$ $\mathcal{L}_{arphi} = {\sf valid executions}$

Good: \mathcal{L}_{φ} usually easy (regular) Bad: \mathcal{L}_{P} usually not even context free

- ^L Problem is undecidable
- $\stackrel{l}{\rightarrow}$ Need to approximate \mathcal{L}_P

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data}$$

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

$\mathcal{L}_{\textit{CF}}$ is context free

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

 $\mathcal{L}_{CF} \text{ is context free} \\ \mathcal{L}_{Data} \text{ is anything: } Var \text{ is infinite and } \mathcal{L}_x \text{ is arbitrary}$

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

 \mathcal{L}_{CF} is context free \mathcal{L}_{Data} is anything: *Var* is infinite and \mathcal{L}_{x} is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory Handle data using techniques from logic

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

 \mathcal{L}_{CF} is context free \mathcal{L}_{Data} is anything: *Var* is infinite and \mathcal{L}_{x} is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory Handle data using techniques from logic

Need to combine them

Semantics:

$$\mathcal{L}_{P} = \mathcal{L}_{CF} \cap \mathcal{L}_{Data} = \mathcal{L}_{CF} \cap \bigcap_{x \in Var} \mathcal{L}_{x}$$

 \mathcal{L}_{CF} is context free \mathcal{L}_{Data} is anything: *Var* is infinite and \mathcal{L}_{x} is arbitrary

Lessons in life:

Handle control flow using techniques from automata theory Handle data using techniques from logic

Need to combine them

CEGAR loop [Podelski et al. since 2010]

Init
$$\mathcal{L}_{\mathcal{S}} := \mathcal{L}_{\varphi}$$

$$\mathsf{Init} \ \mathcal{L}_{\mathcal{S}} := \mathcal{L}_{\varphi}$$

$$\downarrow$$

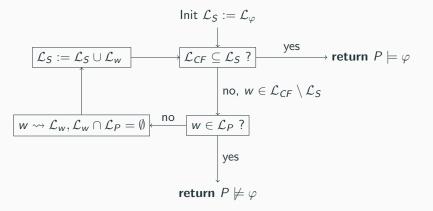
$$\mathcal{L}_{CF} \subseteq \mathcal{L}_{\mathcal{S}} ?$$

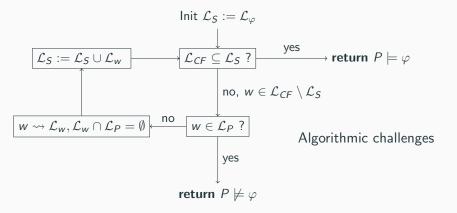
$$\begin{array}{c} \operatorname{Init} \ \mathcal{L}_{\mathcal{S}} := \mathcal{L}_{\varphi} \\ & \downarrow & \\ \hline \mathcal{L}_{\mathcal{CF}} \subseteq \mathcal{L}_{\mathcal{S}} \end{array} \end{array} \text{yes} \quad \text{return } P \models \varphi$$

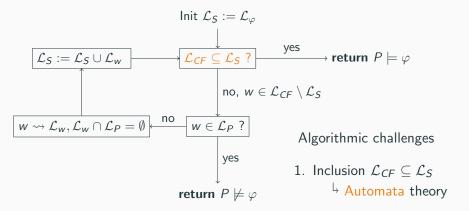
$$\begin{array}{c} \text{Init } \mathcal{L}_{\mathcal{S}} := \mathcal{L}_{\varphi} \\ & \downarrow & \text{yes} \\ \hline \mathcal{L}_{CF} \subseteq \mathcal{L}_{\mathcal{S}} ? & \longrightarrow \text{return } P \models \varphi \\ & \downarrow & \text{no, } w \in \mathcal{L}_{CF} \setminus \mathcal{L}_{\mathcal{S}} \\ \hline & w \in \mathcal{L}_{P} ? \end{array}$$

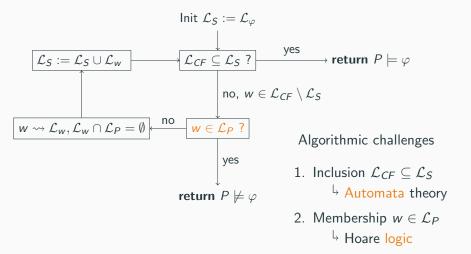
Init
$$\mathcal{L}_{S} := \mathcal{L}_{\varphi}$$

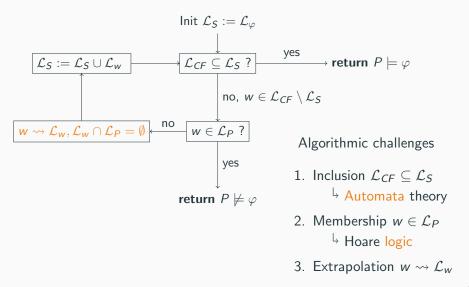
 \downarrow yes
 $\mathcal{L}_{CF} \subseteq \mathcal{L}_{S}$? return $P \models \varphi$
 \downarrow no, $w \in \mathcal{L}_{CF} \setminus \mathcal{L}_{S}$
 $w \in \mathcal{L}_{P}$?
 \downarrow yes
return $P \not\models \varphi$

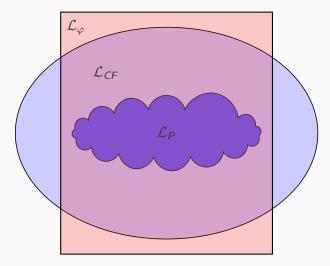


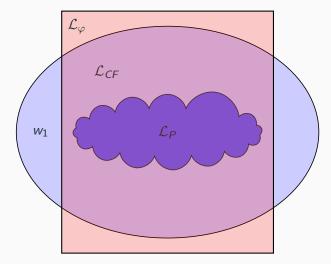


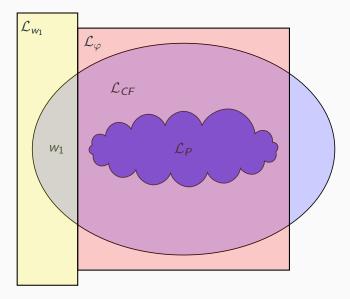


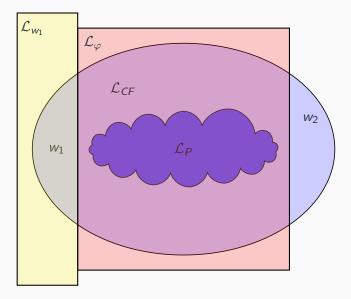


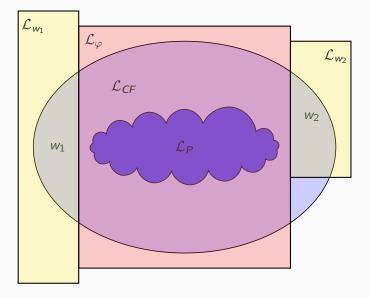


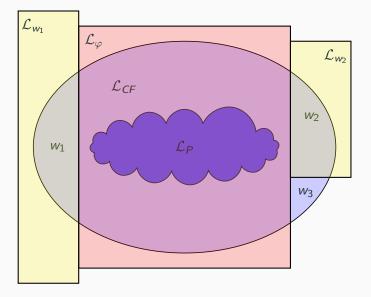


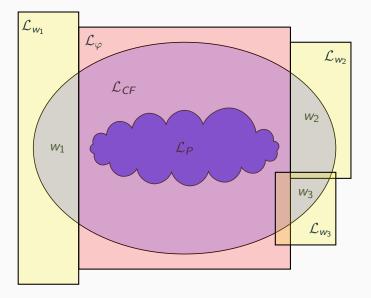






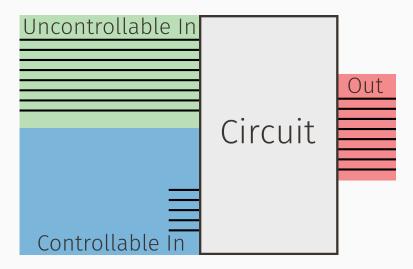




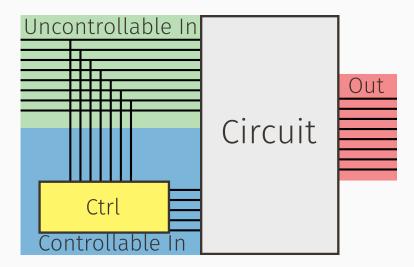


Language-Theoretic Synthesis

Synthesis



Synthesis



Synthesis problem:

Given: Program template T and specification φ . Decide: Is there an instantiation T@i of T satisfying φ ? Synthesis problem:

Given: Program template T and specification φ . Decide: Is there an instantiation T@i of T satisfying φ ?

Approach:

Language-theoretic synthesis CEGAR loop

Model the control flow of a template as a grammar

Two types of non-determinism

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable non-determinism

proc F() if (x == 0) G() else H() $F \rightarrow \operatorname{read}(x,0)G$ $| \operatorname{read}(x,1)H$

Model the control flow of a template as a grammar

Two types of non-determinism

Demonic / Uncontrollable non-determinism

Angelic / Controllable non-determinism

proc F()	proc F()	
if (x == 0)	if ???	
G()	G()	
else	else	
H()	Н()	

 $F \rightarrow \operatorname{read}(x,0)G \qquad F \rightarrow G$ $| \operatorname{read}(x,1)H \qquad | H$

Model as a (context-free) two player perfect information game

Model as a (context-free) two player perfect information game

 $\mathsf{Player} \, \bigcirc \, \mathsf{represents} \, \, \mathsf{uncontrollable} \, \, \mathsf{non-determinism}$

Model as a (context-free) two player perfect information game

Player ○ represents uncontrollable non-determinism Player □ represents controllable non-determinism

Model as a (context-free) two player perfect information game

Is there a strategy s for player \Box to resolve the controllable non-determinism so that

 $\mathcal{L}(G@s) \subseteq \mathcal{L}(A)$?

Model as a (context-free) two player perfect information game

Is there a strategy s for player \Box to resolve the controllable non-determinism so that

 $\mathcal{L}(G@s) \subseteq \mathcal{L}(A)$?

From language-theoretic verification to synthesis:

Replace the inclusion check $\mathcal{L}(G) \subseteq \mathcal{L}(A)$ in the CEGAR loop by a strategy synthesis

$$\begin{array}{c} \operatorname{Init} \mathcal{L}_{S} := \mathcal{L}_{\varphi} \\ \downarrow & \downarrow & \downarrow & \downarrow \\ \hline \mathcal{L}_{S} := \mathcal{L}_{S} \cup \mathcal{L}_{w} \\ \hline \exists s : \mathcal{L}(CF@s) \subseteq \mathcal{L}_{S} ? \\ \hline & \downarrow & \downarrow & \downarrow \\ \hline & & \downarrow & \downarrow & \downarrow \\ \hline & & & \downarrow & \downarrow \\ \hline & & & & \downarrow & \downarrow \\ \hline & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & & \downarrow \\ \hline & & & & & \downarrow \\ \hline$$

Context-Free Games

Input:

Context-free grammar with ownership partitioning of the non-terminals

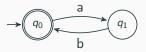
$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon \ Y_{\Box} o & bX \end{array}$$

Input:

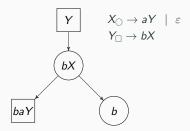
Context-free grammar with ownership partitioning of the non-terminals

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon \ Y_{\Box} o & bX \end{array}$$

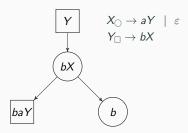
Finite automaton over terminals T_G



Game arena:

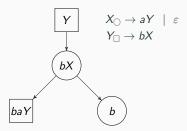


Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

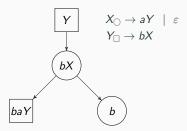
Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

Arcs: Left derivations $wX\gamma \Rightarrow_L w\eta\gamma$ if $X \rightarrow \eta \in P_G$

Game arena:

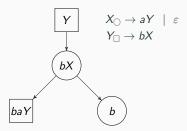


Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

Arcs: Left derivations $wX\gamma \Rightarrow_L w\eta\gamma$ if $X \rightarrow \eta \in P_G$

Ownership: Owner of $wX\gamma$ is the owner of X

Game arena:



Vertices: Sentential forms $\vartheta = (N_G \cup T_G)^*$

Arcs: Left derivations $wX\gamma \Rightarrow_L w\eta\gamma$ if $X \rightarrow \eta \in P_G$

Ownership: Owner of $wX\gamma$ is the owner of X

^L Play = Sequence of left derivations

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$

Non-Inclusion game: Derive a terminal word $w \notin \mathcal{L}(A)$

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation

Non-Inclusion game:

Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps

Inclusion game:

Derive a terminal word $w \in \mathcal{L}(A)$ or infinite derivation

└→ Safety Game

Non-Inclusion game:

Derive a terminal word $w \notin \mathcal{L}(A)$ after finitely many steps

└→ Reachability game

Here:

Consider inclusion game for player prover \Box Consider non-inclusion game for player refuter \bigcirc

Context-free games - Algorithms

State-of-the-art in verification:

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

State-of-the-art in synthesis:

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

$Problem \setminus Algorithm$	Saturation	Summarization
Verification		
Synthesis		

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification		[SP78] [RHS95]
Synthesis		

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis		

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

$Problem \setminus Algorithm$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis	[C02] [MSS05] [HO09]	

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

${\sf Problem} \ \backslash \ {\sf Algorithm}$	Saturation	Summarization
Verification	[BEM97] [FWW97]	[SP78] [RHS95]
Synthesis	[C02] [MSS05] [HO09]	???

14

Saturation

Compute state space of a pushdown Stack content represented as a regular language

Summarization

Compute effect of function calls as input output relation Stack content not represented Used more often in SVComp

State-of-the-art in synthesis: No summaries for games

${\sf Problem} \setminus {\sf Algorithm}$	Saturation	Summarization	
Verification	[BEM97] [FWW97]	[SP78] [RHS95]	
Synthesis	[C02] [MSS05] [HO09]	??? Next	1

14

How to decide which player wins the game?

Fixed-point iteration over a suitable summary domain

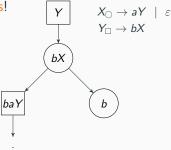
Now:

- 1. Explain & define domain
- 2. Explain fixed-point iteration

Formulas over the Transition Monoid

How to decide whether refuter can win from a given position?

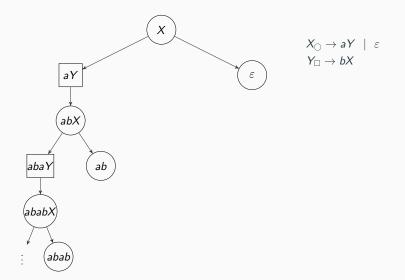
Consider the tree of plays!



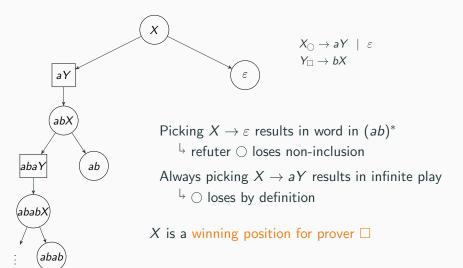
Refuter wins non-inclusion in $(ab)^*$ by picking $X \to \varepsilon$

Y is a winning position for refuter \bigcirc

The tree of plays - Example



The tree of plays - Example



Problem:

Tree is usually infinite

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important \rightsquigarrow Replace inner nodes of refuter by \lor

Problem:

Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important

 \rightsquigarrow Replace inner nodes of refuter by \lor

 \rightsquigarrow Replace inner nodes of prover by \wedge

Problem:

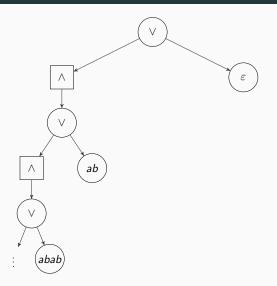
Tree is usually infinite

Observation 1:

Labels of inner nodes do not matter for inclusion Only ownership is important \rightsquigarrow Replace inner nodes of refuter by \lor \rightsquigarrow Replace inner nodes of prover by \land

Understand tree as (infinite) positive Boolean formula over words

Formulas - Example



Remaining problems:

- 1. Formulas are *still* infinite
- 2. Even the set of atomic propositions T_{G}^{*} is infinite
- L Tackle 2. first

The words are not important — only the state changes matter

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

 $w \sim_A v$ iff

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

> $w\sim_A v$ iff $orall q,q'\in Q$:

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

$$\begin{array}{ccc} & w \sim_{\mathcal{A}} v \\ \text{iff} & \forall q,q' \in Q: \quad q \xrightarrow{w} q' \quad \text{iff} \quad q \xrightarrow{v} q' \end{array}$$

The words are not important — only the state changes matter

Define equivalence relation \sim_A such that words are equivalent iff they induce the same state changes on A

$$w \sim_{\mathcal{A}} v$$
iff $\forall q, q' \in Q : q \xrightarrow{w} q'$ iff $q \xrightarrow{v} q'$

 M_A is the set of all equivalence classes [w] of \sim_A T_G^* is partitioned into equivalence classes of \sim_A Represent equivalence classes by boxes:

$$\mathsf{box}(w) = \left\{ (q,q') \in Q \times Q \; \middle| \; q \stackrel{w}{
ightarrow} q'
ight\} \in \mathcal{P}(Q \times Q)$$

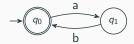
Represent equivalence classes by boxes:

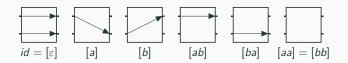
$$\mathsf{box}(w) = \left\{ (q,q') \in Q \times Q \; \middle| \; q \stackrel{w}{
ightarrow} q'
ight\} \in \mathcal{P}(Q \times Q)$$

Boxes correspond to procedure summaries for programs (in a precise sense)

Transition monoid - Example

$$\mathsf{box}(w) = \left\{ (q,q') \in Q \times Q \mid q \stackrel{w}{\to} q' \right\}$$

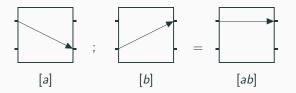




All other boxes represent empty equivalence classes

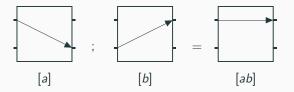
Relational composition of boxes

Boxes can be composed using relational composition ;



Relational composition of boxes

Boxes can be composed using relational composition ;

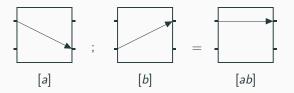


Monoids are isomorphic:

$$(M_A, ..., [\varepsilon]) \cong (\underbrace{box(T_G^*)}_{\subseteq \mathcal{P}(Q \times Q)}, ; , box(\varepsilon))$$

Relational composition of boxes

Boxes can be composed using relational composition ;



Monoids are isomorphic:

$$(M_A, ..., [\varepsilon]) \cong (\underbrace{box(T_G^*)}_{\subseteq \mathcal{P}(Q \times Q)}, ; box(\varepsilon))$$

 \downarrow Up to $|M_A| \le 2^{|Q|^2}$ equivalence classes

Previously: (Infinite) positive Boolean formulas over words

Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A

Down to finitely many atomic propositions

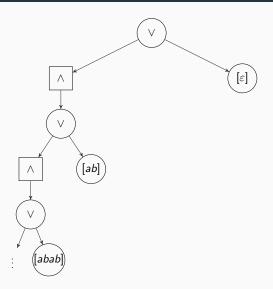
Previously: (Infinite) positive Boolean formulas over words Now: (Infinite) positive Boolean formulas over M_A

Down to finitely many atomic propositions

Remaining problem:

Formulas themselves are infinite

Formulas - Example



Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F: 2^{M_A} \rightarrow \{0, 1\}$

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

In the example:

Infinite formula: $[\varepsilon] \lor ([ab] \lor ([abab] \lor ...))$ Note: [ab] = [abab] = [ababab] = ...Finite formula: $[\varepsilon] \lor [ab]$

Every infinite formula over M_A is logically equivalent (under suitable evaluation semantics) to some finite formula

Infinite formulas define functions $F : 2^{M_A} \rightarrow \{0, 1\}$ All such functions can be represented by finite formulas

Restrict to finite positive Boolean formulas over M_A

In the example:

Infinite formula: $[\varepsilon] \lor ([ab] \lor ([abab] \lor ...))$ Note: [ab] = [abab] = [ababab] = ...Finite formula: $[\varepsilon] \lor [ab]$

How to compute these finite formulas in general?

Fixed-Point Iteration

Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations Solve using Kleene iteration Problem:

How to compute the formulas?

Fixed-point iteration:

Translate the grammar into a system of equations Solve using Kleene iteration

Domain:

Finite positive Boolean formulas over M_A (up to \Leftrightarrow) Partial order: Implication \Rightarrow Least element: *false*

Iteration:

Nr.
$$F_X$$
 F_Y

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y_{\Box} o & bX & \end{array}$$

Iteration:

Nr.
$$F_X$$
 F_Y 0falsefalse

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

Nr.	F _X	F _Y
0	false	false
1	[ε]	false

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Iteration:

	Nr.	F _X	F _Y
	0	false	false
	1	[ε]	false
ε	2	[ε]	$[b] = [b]; [\varepsilon]$

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX & \end{array}$$

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [\varepsilon]$	[b]

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & \ Y_{\Box} o & bX & \end{array}$$

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [arepsilon]$	[b]
4	$[ab] \vee [\varepsilon]$	$[b]; ([ab] \lor [arepsilon])$

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [arepsilon]$	[<i>b</i>]
4	$[ab] \lor [\varepsilon]$	$[b];([ab] \lor [arepsilon])$
		$=$ [bab] \vee [b]

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y \ Y_{\Box} o & bX \end{array}$$

Nr.	F _X	F _Y
0	false	false
1	[ε]	false
2	[ε]	$[b] = [b]; [\varepsilon]$
3	$[ab] \lor [arepsilon]$	[b]
4	$[ab] \lor [arepsilon]$	$[b]; ([ab] \lor [\varepsilon])$ $= [bab] \lor [b]$ $\Leftrightarrow [b]$

Grammar

$$egin{array}{rcl} X_{igodot} o & aY & | & arepsilon & Y_{\Box} o & bX & \end{array}$$

Winning Regions

Define the evaluation φ so that

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$

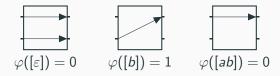
Define the evaluation φ so that

 $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by

$$arphi: M_A
ightarrow \{0,1\}$$
 $[w]
ightarrow \left\{ egin{array}{ccc} 1 & (q_0,q_f)
ot\in \mathsf{box}(w) & ext{for all } q_f \in Q_f \\ 0 & ext{else} \end{array}
ight.$

Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by



Define the evaluation φ so that $\varphi([w]) = 1$ iff $w \notin \mathcal{L}(A)$ iff $[w] \subseteq \overline{\mathcal{L}(A)}$ by

$$\varphi: M_A \rightarrow \{0,1\}$$

$$[w] \mapsto \begin{cases} 1 \quad (q_0,q_f) \notin box(w) \text{ for all } q_f \in Q_f \\ 0 \quad \text{else} \end{cases}$$

$$\varphi([\varepsilon]) = 0 \qquad \varphi([b]) = 1 \qquad \varphi([ab]) = 0$$

Sentential form $\alpha \in \vartheta$ is called rejecting if $\varphi(F_{\alpha}) = 1$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_w = [w]$ with $\varphi([w]) = 1$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position $w \in \overline{\mathcal{L}(A)}$ has formula $F_w = [w]$ with $\varphi([w]) = 1$ $\Rightarrow \overline{\mathcal{L}(A)} \cap W^{\subseteq} = \emptyset$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position
$$w \in \overline{\mathcal{L}(A)}$$
 has formula $F_w = [w]$ with $\varphi([w]) = 1$

$$\Rightarrow \overline{\mathcal{L}(A)} \cap W^{\subseteq} = \emptyset$$

Show: If the current position is non-rejecting and it is the turn of

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position
$$w \in \overline{\mathcal{L}(A)}$$
 has formula $F_w = [w]$ with $\varphi([w]) = 1$

$$\Rightarrow \overline{\mathcal{L}(A)} \cap W^{\subseteq} = \emptyset$$

Show: If the current position is non-rejecting and it is the turn of

(1) Prover: There is a move to a non-rejecting position,

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position
$$w \in \overline{\mathcal{L}(A)}$$
 has formula $F_w = [w]$ with $\varphi([w]) = 1$

$$\Rightarrow \overline{\mathcal{L}(A)} \cap W^{\subseteq} = \emptyset$$

Show: If the current position is non-rejecting and it is the turn of

Prover: There is a move to a non-rejecting position,
 Refuter: All moves go to non-rejecting positions.

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

Proof

Position
$$w \in \overline{\mathcal{L}(A)}$$
 has formula $F_w = [w]$ with $\varphi([w]) = 1$

$$\Rightarrow \overline{\mathcal{L}(A)} \cap W^{\subseteq} = \emptyset$$

Show: If the current position is non-rejecting and it is the turn of

 $(1)\ {\sf Prover:}\ {\sf There}\ {\sf is}\ {\sf a}\ {\sf move}\ {\sf to}\ {\sf a}\ {\sf non-rejecting}\ {\sf position},$

(2) Refuter: All moves go to non-rejecting positions.

Since the inclusion game is a safety game, staying in W^{\subseteq} suffices. 31

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0)

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [*ab*], [ε] contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [ab], $[\varepsilon]$ contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$ $\downarrow X$ is non-rejecting

Theorem

The set of non-rejecting positions

$$W^{\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 0 \}$$

is the winning region of prover \Box for the inclusion game.

In the example, starting from X:

Both [ab], $[\varepsilon]$ contain (q_0, q_0) $\downarrow \varphi([ab]) = 0, \varphi([\varepsilon]) = 0$ $\downarrow \varphi(F_X) = \varphi([ab] \lor [\varepsilon]) = 0$ $\downarrow X$ is non-rejecting

Indeed, prover wins inclusion from X

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

 $\Rightarrow \mathcal{L}(A) \cap W^{\not\subseteq} = \emptyset$

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

$$\Rightarrow \mathcal{L}(A) \cap W^{\not\subseteq} = \emptyset$$

Show: If the current position is rejecting and it is the turn of

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

$$\Rightarrow \mathcal{L}(A) \cap W^{\not\subseteq} = \emptyset$$

Show: If the current position is rejecting and it is the turn of (1) Refuter: There is a move to a rejecting position,

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

$$\Rightarrow \mathcal{L}(A) \cap W^{\not\subseteq} = \emptyset$$

Show: If the current position is rejecting and it is the turn of(1) Refuter: There is a move to a rejecting position,(2) Prover: All moves go to rejecting positions.

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

Proof

Position $w \in \mathcal{L}(A)$ has formula $F_w = [w]$ with $\varphi([w]) = 0$

$$\Rightarrow \mathcal{L}(A) \cap W^{\not\subseteq} = \emptyset$$

Show: If the current position is rejecting and it is the turn of

(1) Refuter: There is a move to a rejecting position,

(2) Prover: All moves go to rejecting positions.

Not sufficient to win reachability game, need to minimize distance to $\overline{\mathcal{L}(A)}$ in every step.

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0)

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0) $\downarrow \varphi(F_Y) = \varphi([b]) = 1$

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0)

$$\stackrel{{\scriptstyle \ }}{\scriptstyle \downarrow} \varphi(F_{\mathsf{Y}}) = \varphi([b]) = 1$$

 \downarrow Y is rejecting

Theorem

The set of rejecting positions

$$W^{\not\subseteq} = \{ \alpha \in \vartheta \mid \varphi(F_{\alpha}) = 1 \}$$

is the winning region of refuter \bigcirc for the non-inclusion game.

In the example, starting from Y:

[b] does not contain (q_0, q_0)

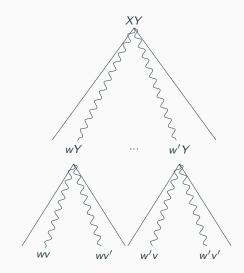
$$\downarrow \varphi(F_{\mathbf{Y}}) = \varphi([b]) = 1$$

 \downarrow Y is rejecting

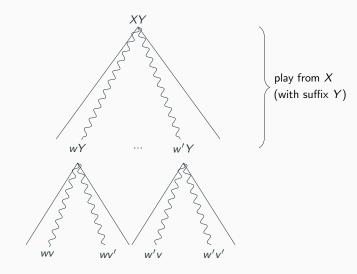
Indeed, refuter wins non-inclusion from Y

How to define the composition operator ; that replaces concatenation . in the system of equations?

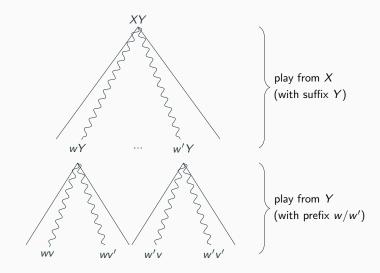
Plays from XY decompose:

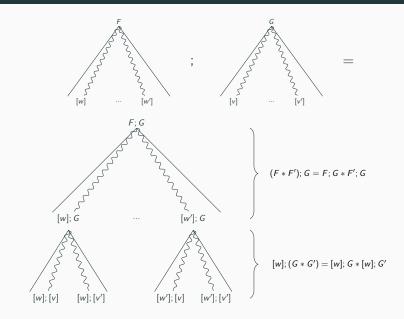


Plays from XY decompose:



Plays from XY decompose:





Complexity & Performance

(1) Set $F_X = false$ for all $X \in N$

Set F_X = false for all X ∈ N
 Do until F^{old}_X ⇔ F^{new}_X for all X ∈ N:

F = rhs(F)

(1) Set
$$F_X = false$$
 for all $X \in N$
(2) Do until $F_X^{old} \Leftrightarrow F_X^{new}$ for all $X \in N$:

F = rhs(F)

(3) Compute F_{α} , and return *true* iff $\varphi(F_{\alpha}) = 1$

(1) Set
$$F_X = false$$
 for all $X \in N$
(2) Do until $F_X^{old} \Leftrightarrow F_X^{new}$ for all $X \in N$:

$$F = rhs(F)$$

(3) Compute F_{α} , and return *true* iff $\varphi(F_{\alpha}) = 1$

Compose solutions F_X for non-terminals to obtain the solutions for all sentential forms $\alpha = \alpha_1 \dots \alpha_k \in \vartheta$: $F_{\alpha} = F_{\alpha_1}; \dots; F_{\alpha_k}$

(1) Set
$$F_X = false$$
 for all $X \in N$
(2) Do until $F_X^{old} \Leftrightarrow F_X^{new}$ for all $X \in N$:

$$F = rhs(F)$$

(3) Compute F_{α} , and return *true* iff $\varphi(F_{\alpha}) = 1$

Compose solutions F_X for non-terminals to obtain the solutions for all sentential forms $\alpha = \alpha_1 \dots \alpha_k \in \vartheta$: $F_{\alpha} = F_{\alpha_1}; \dots; F_{\alpha_k}$

Solve system once and decide game for any position α

Theorem

1. Deciding non-inclusion games is 2EXPTIME-complete.

Theorem

- 1. Deciding non-inclusion games is 2EXPTIME-complete.
- 2. The algorithm solves non-inclusion games in

$$\mathcal{O}\left(|\mathbf{G}|^2 \cdot 2^{2^{|\mathcal{Q}|^{c_1}}} + |\boldsymbol{\alpha}| \cdot 2^{2^{|\mathcal{Q}|^{c_2}}}\right)$$

where $c_1, c_2 \in \mathbb{N}$ are constants.

Theorem

- 1. Deciding non-inclusion games is 2EXPTIME-complete.
- 2. The algorithm solves non-inclusion games in

$$\mathcal{O}\left(|\mathbf{G}|^2 \cdot 2^{2^{|\mathcal{Q}|^{c_1}}} + |\boldsymbol{\alpha}| \cdot 2^{2^{|\mathcal{Q}|^{c_2}}}\right)$$

where $c_1, c_2 \in \mathbb{N}$ are constants.

3. Hardness by reduction from acceptance in alternating Turing machines with exponential space.

Related Work

Cachat [C02]:

Related Work

Cachat [C02]:

Consider pushdown system with ownership partitioning of control states

Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

Consider pushdown system with ownership partitioning of control states

Can one player enforce a configuration such that the stack content is accepted by an alternating finite automaton (AFA)?

Solve by saturating the transitions of the AFA

Saturated AFA accepts the winning region

EXPTIME

^L Our game **can be reduced** to Cachat

Consider pushdown system with ownership partitioning and priorities of control states

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph On push, one player guesses the effect of the push

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph On push, one player guesses the effect of the push Other player decides to verify the guess or skip it

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

Consider pushdown system with ownership partitioning and priorities of control states

Pushdown parity game

Reduce to a parity game on a finite graph On push, one player guesses the effect of the push

Other player decides to verify the guess or skip it

EXPTIME

Similar technique **can be applied** to our problem

Muscholl, Schwentick, Segoufin [MSS05]:

Consider context-free grammar

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_G \cup T_G$?

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_G \cup T_G$?

Undecidable

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_G \cup T_G$?

Undecidable

2EXPTIME for left-to-right strategies

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_G \cup T_G$?

Undecidable

2EXPTIME for left-to-right strategies Similar to our game

Consider context-free grammar

One player picks position that should be replaced Other player picks rule

Can one player enforce a sentential form in a regular language over $N_G \cup T_G$?

Undecidable

2EXPTIME for left-to-right strategies Similar to our game Hardness proof **carries over**

Comparison of 2EXPTIME *algorithms:*

Input	Computation							
Our algorithm								
System of equations	Р	Fixed-point iteration	2EXP					
Reduction to Cachat [C02]								
Determinized automaton	EXP	Saturation	EXP					
Idea of Walukiewicz [W96/01]								
Finite reachability game	2EXP	Saturation	Р					
		1						

guaranteed blow-up

may be lucky

We have implemented and compared:

Our algorithm with naive Kleene iteration Our algorithm with worklist-based Kleene iteration Reduction to Cachat's pushdown games

Problems with Cachat's algorithm:

Automaton A needs to be determinized

└→ Guaranteed blow-up

Algorithmic tricks for Cachat (worklist, \dots) not suitable for the instances generated by the reduction

Performance

	naive Kleene		worklist Kleene		Cachat	
Q / N / T	avg. time	% timeout	avg. time	% timeout	avg. time	% timeout
5/5/5	65.2	2	0.8	0	94.7	0
5/ 5/10	5.4	4	7.4	0	701.7	0
5/10/ 5	13.9	0	0.3	0	375.7	0
5/ 5/15	6.0	0	1.1	0	1618.6	0
5/10/10	32.0	2	122.1	0	2214.4	0
5/15/ 5	44.5	0	0.2	0	620.7	0
5/ 5/20	3.4	0	1.4	0	3434.6	4
5/10/15	217.7	0	7.4	0	5263.0	16
10/ 5/ 5	8.8	2	0.6	0	2737.8	2
10/ 5/10	9.0	6	69.8	0	6484.9	66
15/ 5/ 5	30.7	0	0.2	0	5442.4	52
10/10/ 5	9.7	0	0.2	0	7702.1	92
10/15/15	252.3	0	1.9	0	n/a	100
10/15/20	12.9	0	1.8	0	n/a	100

Experiments executed on i7-6700K, 4GHz, times in milliseconds, timeout 10 seconds

Future Work

Synthesis for systems with branching behavior (trees)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Solver technology for systems of equations (Newton iteration)

Synthesis for systems with branching behavior (trees)

Games on higher-order systems

Solver technology for systems of equations (Newton iteration)

Applications in hardware synthesis

Thank you!

Questions?

References

[BEM97]: M. Heizmann, J. Hoenicke, and A. Podelski. *Nested interpolants.* POPL 2010

[BEM97]: A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to model-checking. CONCUR 1997

[FWW97]: A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model checking pushdown systems. ENTCS 1997 [C02]: Th. Cachat.

Symbolic strategy synthesis for games on pushdown graphs. ICALP 2002

[HO09]: M. Hague and C.-H. L. Ong. Winning regions of pushdown parity games: A saturation method. CONCUR 2009

[SP78]: M. Sharir and A. Pnueli.

Two approaches to interprocedural data flow analysis. 1978

[RHS95]: T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via graph reachability. POPL 1995

[MSS05]: A. Muscholl, T. Schwentick, and L. Segoufin. Active context-free games. 2002

[W96/01]: I. Walukiewicz. *Pushdown processes: Games and model-checking.* 1996 / IC 2001