On the Upward/Downward Closures of Petri Nets

Mohammed Faouzi Atig ${ }^{1}$, Roland Meyer ${ }^{2}$, Sebastian Muskalla ${ }^{2}$ and Prakash Saivasan²

August 25, MFCS 2017, Aalborg
1 Uppsala University, Sweden mohamed_faouzi.atigait.uu.se
2 TU Braunschweig, Germany
\{roland.meyer, s.muskalla, p.saivasan\}atu-bs.de

Goal

Goal
Study the upward and downward closures of Petri net coverability languages

Goal

Goal

Study the upward and downward closures of Petri net coverability languages

Why?

Petri nets are an important model for concurrent systems
Upward and downward closures are useful approximations for verification purposes

Goal

Goal

Study the upward and downward closures of Petri net coverability languages

Upward/Downward closures in general
Good:
Always regular

Goal

Goal

Study the upward and downward closures of Petri net coverability languages

Upward/Downward closures in general
Good:
Always simply regular

Goal

Goal
 Study the upward and downward closures of Petri net coverability languages

Upward/Downward closures in general
Good:
Always simply regular
Bad:
Representations might be not be effectively computable or very large

Goal

Goal

Study the upward and downward closures of Petri net coverability languages

Here:

Closures effectively regular

Want to construct finite state automata (FSA) as representations

Goal

Goal

Study the upward and downward closures of Petri net coverability languages

Here:

Closures effectively regular

Want to construct finite state automata (FSA) as representations
4 Time needed for the construction?
\checkmark Size of the minimal FSAs?

Petri Net Coverability Languages and their Closures

(Labeled) Petri Nets

(Labeled) Petri Nets

(Labeled) Petri Nets

(Labeled) Petri Nets

M_{0}

M_{f}

(Labeled) Petri Nets

M_{0}

$$
\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
2^{3}
\end{array}\right)
$$

M_{f}

(Labeled) Petri Nets

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad\left[t_{0} t_{1} t_{1} t_{2} t_{2} t_{2} t_{2}\right\rangle$
M_{0}
$\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 2^{3}\end{array}\right)$
M_{f}

(Labeled) Petri Nets

$$
N=(\underbrace{\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{f}\right\}}_{\text {places } P}, \underbrace{\left\{t_{0}, t_{1}, t_{2}, t_{f}\right\}}_{\text {transitions } T}, F)
$$

$\left(\begin{array}{c}\left(\begin{array}{c}1 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right) \\ \| \\ M_{0}\end{array} \quad\left[t_{0} t_{1} t_{1} t_{2} t_{2} t_{2} t_{2} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f}\right\rangle \quad\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 2^{3}\end{array}\right)\right.$

(Labeled) Petri Nets

$$
N=(\underbrace{\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{f}\right\}}_{\text {places } P}, \underbrace{\left\{t_{0}, t_{1}, t_{2}, t_{f}\right\}}_{\text {transitions } T}, F)
$$

$$
\begin{gathered}
\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right) \\
\| \\
M_{0}
\end{gathered} \underset{\left.t_{0} t_{1} t_{1} t_{2} t_{2} t_{2} t_{2} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f} t_{f}\right\rangle}{\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
8
\end{array}\right)}\left(\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
2^{3}
\end{array}\right)
$$

(Labeled) Petri Nets

(Labeled) Petri Nets

Coverability Language

$\left(N, M_{0}, M_{f}\right)$ Petri net with initial and final marking Coverability language

$$
\mathcal{L}\left(N, M_{0}, M_{f}\right)=\left\{\lambda(\sigma) \mid M_{0}[\sigma\rangle M, M \geqslant M_{f}\right\}
$$

Coverability Language

$\left(N, M_{0}, M_{f}\right)$ Petri net with initial and final marking Coverability language

$$
\mathcal{L}\left(N, M_{0}, M_{f}\right)=\left\{\lambda(\sigma) \mid M_{0}[\sigma\rangle M, M \geqslant M_{f}\right\}
$$

In the example: $\quad \mathcal{L}\left(N, M_{0}, M_{f}\right)=\left\{a^{8}\right\}$

Upward and Downward Closure

Subword relation

$$
\begin{array}{lll}
v \preceq w & \text { iff } & v \text { obtained from } w \text { by deleting letters } \\
& \text { iff } & w \text { obtained from } v \text { by inserting letters }
\end{array}
$$

Upward and Downward Closure

Subword relation

$$
\begin{array}{ccc}
v \preceq w & \text { iff } \quad v \text { obtained from } w \text { by deleting letters } \\
& \text { iff } \quad w \text { obtained from } v \text { by inserting letters }
\end{array}
$$

Upward closure

$$
\mathcal{L} \uparrow=\{w \mid \exists v \in \mathcal{L}: v \preceq w\}
$$

Upward and Downward Closure

Subword relation

$$
\begin{array}{ccc}
v \preceq w & \text { iff } \quad v \text { obtained from } w \text { by deleting letters } \\
& \text { iff } \quad w \text { obtained from } v \text { by inserting letters }
\end{array}
$$

Upward closure

$$
\mathcal{L} \uparrow=\{w \mid \exists v \in \mathcal{L}: v \preceq w\}
$$

Downward closure

$$
\mathcal{L} \downarrow=\{w \mid \exists v \in \mathcal{L}: w \preceq v\}
$$

Upward and Downward Closure

Subword relation

$$
v \preceq w \quad \text { iff } \quad v \text { obtained from } w \text { by deleting letters }
$$ iff w obtained from v by inserting letters

Upward closure

$$
\mathcal{L} \uparrow=\{w \mid \exists v \in \mathcal{L}: v \preceq w\}
$$

Downward closure

$$
\mathcal{L} \downarrow=\{w \mid \exists v \in \mathcal{L}: w \preceq v\}
$$

In the example: $\quad \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow=\left\{a^{k} \mid k \geqslant 8\right\}$

$$
\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow=\left\{a^{k} \mid k \leqslant 8\right\}
$$

Computing the Upward Closure

Computing the Upward Closure

Computing the Upward Closure
Given: Petri net (N, M_{0}, M_{f}).
Compute: FSA A with $\mathcal{L}(A)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$.

Computing the Upward Closure

> | Computing the Upward Closure | |
| :--- | :--- |
| Given: | Petri net $\left(N, M_{0}, M_{f}\right)$. |
| Compute: | FSA A with $\mathcal{L}(A)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ |

Theorem

Upper bound: One can compute an FSA of doubly
exponential size representing the upward closure in doubly exponential time.

Lower bound: This is optimal.

Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the upward closure in doubly exponential time.

Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the upward closure in doubly exponential time.

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space (and doubly exponential time).

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space (and doubly exponential time).

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P=[1 . . \ell]$.

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P=[1 . . \ell]$.
Consider i-bounded computations: Allow negative values on the places $[i+1 . . \ell]$

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P=[1 . . \ell]$.
Consider i-bounded computations: Allow negative values on the places $[i+1 . . \ell]$

Define $f(i)$ upper bound on the length of an i-bounded, i-covering computation from an arbitrary initial marking

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P=[1 . . \ell]$.
Consider i-bounded computations: Allow negative values on the places $[i+1 . . \ell]$

Define $f(i)$ upper bound on the length of an i-bounded, i-covering computation from an arbitrary initial marking Prove $f(\ell) \leqslant 2^{2^{\mathcal{O}(n \cdot \log n)}}$

Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P=[1 . . \ell]$.
Consider i-bounded computations: Allow negative values on the places $[i+1 . . \ell]$

Define $f(i)$ upper bound on the length of an i-bounded, i-covering computation from an arbitrary initial marking Prove $f(\ell) \leqslant 2^{2^{\mathcal{O}(n \cdot \log n)}}$

Show $f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)$

Computing the Upward Closure - Upper Bound

$$
f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)
$$

Take an arbitrary ($i+1$)-bounded, $(i+1)$-covering computation

Computing the Upward Closure - Upper Bound

$$
f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)
$$

Take an arbitrary ($i+1$)-bounded, $(i+1)$-covering computation $1^{\text {st }}$ case: Values on all places $[1 . . i+1]$ bounded by $2^{n} \cdot f(i)$:

Computing the Upward Closure - Upper Bound

$$
f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)
$$

Take an arbitrary ($i+1$)-bounded, $(i+1)$-covering computation $1^{\text {st }}$ case: Values on all places [1..i +1] bounded by $2^{n} \cdot f(i)$:

Identify repetitions

Computing the Upward Closure - Upper Bound

$$
f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)
$$

Take an arbitrary ($i+1$)-bounded, $(i+1)$-covering computation $1^{\text {st }}$ case: Values on all places $[1 . . i+1]$ bounded by $2^{n} \cdot f(i)$:

Identify repetitions
Delete loops

Computing the Upward Closure - Upper Bound

$$
f(i+1) \leqslant\left(2^{n} f(i)\right)^{i+1}+f(i)
$$

Take an arbitrary ($i+1$)-bounded, $(i+1)$-covering computation $1^{\text {st }}$ case: Values on all places $[1 . . i+1]$ bounded by $2^{n} \cdot f(i)$:

Identify repetitions
Delete loops
L Obtain new computation of length at most $\left(2^{n} f(i)\right)^{i+1}$

Computing the Upward Closure - Upper Bound

$2^{\text {nd }}$ case: Some place, say $i+1$, exceeds $2^{n} \cdot f(i)$:

Computing the Upward Closure - Upper Bound

$2^{\text {nd }}$ case: Some place, say $i+1$, exceeds $2^{n} \cdot f(i)$:
Treat first part as in $1^{\text {st }}$ case

Computing the Upward Closure - Upper Bound

$2^{\text {nd }}$ case: Some place, say $i+1$, exceeds $2^{n} \cdot f(i)$:
Treat first part as in $1^{\text {st }}$ case
Replace second part by i-covering, i-bounded computation of length $\leqslant f(i)$

Computing the Upward Closure - Upper Bound

$2^{\text {nd }}$ case: Some place, say $i+1$, exceeds $2^{n} \cdot f(i)$:
Treat first part as in $1^{\text {st }}$ case
Replace second part by i-covering, i-bounded computation of length $\leqslant f(i)$

Computing the Upward Closure - Upper Bound

What do we need to change?

Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words
$1^{\text {st }}$ case: Deleting loops creates a subword \checkmark

Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words
$1^{\text {st }}$ case: Deleting loops creates a subword \checkmark
$2^{\text {nd }}$ case: Replacing second part of the computation x

Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words
$1^{\text {st }}$ case: Deleting loops creates a subword \checkmark
$2^{\text {nd }}$ case: Replacing second part of the computation x
\checkmark handle with care

Computing the Upward Closure - Upper Bound

Finally:
The minimal words of $\mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ have a computation of length $\leqslant f(\ell) \leqslant 2^{2 \text { O(n. } \cdot \log n)}$.

Computing the Upward Closure - Upper Bound

Finally:
The minimal words of $\mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ have a computation of length $\leqslant f(\ell) \leqslant 2^{2^{\mathcal{O}(n \cdot \log n)}}$.

FSA can simulate the net for $f(\ell)$ steps to accept them (and their upward-closure)

Computing the Upward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the upward closure
cannot be represented by an FSA of less than doubly
exponential size.

Computing the Upward Closure - Lower Bound

> Lemma (Lower Bound)
> There is a family of Petri nets such that the upward closure cannot be represented by an FSA of less than doubly exponential size.

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.
In the proof, a Petri net of size polynomial in n simulates a counter machine with counter values bounded by $2^{2^{n}}$
(including zero tests!)

Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.
In the proof, a Petri net of size polynomial in n simulates a counter machine with counter values bounded by $2^{2^{n}}$

(including zero tests!)

Using this idea, we construct for each $n \in \mathbb{N}$ a Petri net with

$$
\mathcal{L}\left(N(n), M_{0}, M_{f}\right)=\left\{a^{2^{2^{n}}}\right\}
$$

Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)

Petri net reachability is EXPSPACE-hard.
In the proof, a Petri net of size polynomial in n simulates a counter machine with counter values bounded by $2^{2^{n}}$
(including zero tests!)
Using this idea, we construct for each $n \in \mathbb{N}$ a Petri net with

$$
\mathcal{L}\left(N(n), M_{0}, M_{f}\right)=\left\{a^{2^{2^{n}}}\right\}
$$

We obtain

$$
\mathcal{L}\left(N(n), M_{0}, M_{f}\right) \uparrow=\left\{a^{k} \mid k \geqslant 2^{2^{n}}\right\}
$$

Computing the Downward Closure

Computing the Downward Closure

Computing the Downward Closure
Given: \quad Petri net $\left(N, M_{0}, M_{f}\right)$.
Compute: \quad FSA A with $\mathcal{L}(A)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$.

Computing the Downward Closure

> | Computing the Downward Closure | |
| :--- | :--- |
| Given: | Petri net $\left(N, M_{0}, M_{f}\right)$. |
| Compute: | FSA A with $\mathcal{L}(A)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$. |

Theorem

Upper bound: One can compute an FSA of non-primitive recursive size representing the downward closure (in non-primitive recursive time).

Lower bound: This is optimal.

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size representing the downward closure.

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
 One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT

Its language is a subset of the downward closure, $\mathcal{L}\left(N, M_{0}, M_{f}\right) \subseteq \mathcal{L}(K M T) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT

Its language is a subset of the downward closure,
$\mathcal{L}\left(N, M_{0}, M_{f}\right) \subseteq \mathcal{L}(K M T) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$
$\mathcal{L}(K M T) \downarrow=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$

Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT

Its language is a subset of the downward closure,
$\mathcal{L}\left(N, M_{0}, M_{f}\right) \subseteq \mathcal{L}(K M T) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$
$\mathcal{L}(K M T) \downarrow=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$
Its size might be non-primitive recursive

Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size.

Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size. Inductive construction from [Mayr, Meyer 1981], adapted to labeled Petri nets:

$$
\begin{aligned}
& \forall n, x \in \mathbb{N} \exists\left(N(n), M_{0}^{(x)}, M_{f}\right) \text { polynomial in }(n+x) \text { such that } \\
& \mathcal{L}\left(N(n), M_{0}^{(x)}, M_{f}\right)=\left\{a^{k} \mid k \leqslant \operatorname{Acker}(n, x)\right\}=\mathcal{L}\left(N(n), M_{0}^{(x)}, M_{f}\right) \downarrow
\end{aligned}
$$

Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to labeled Petri nets:
$\forall n, x \in \mathbb{N} \exists\left(N(n), M_{0}^{(x)}, M_{f}\right)$ polynomial in ($n+x$) such that $\mathcal{L}\left(N(n), M_{0}^{(x)}, M_{f}\right)=\left\{a^{k} \mid k \leqslant \operatorname{Acker}(n, x)\right\}=\mathcal{L}\left(N(n), M_{0}^{(x)}, M_{f}\right) \downarrow$

SRE in Downward Closure

Simple Regular Expression

Simple regular expression

$$
\begin{aligned}
\text { sre }:: & =p \text { । sre }+ \text { sre } \\
p::= & a \mid(a+\varepsilon) \text { । } \Gamma^{*} \text { । p.p } \\
& \text { where } \Gamma \subseteq \Sigma
\end{aligned}
$$

Known:
Downward and upward closures can be described by SREs

SRE in Downward Closure

SRE in Downward Closure
Given: SRE sre, Petri net $\left(N, M_{0}, M_{f}\right)$.
Decide: $\quad \mathcal{L}(s r e) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$?

SRE in Downward Closure

```
SRE in Downward Closure
Given: SRE sre, Petri net \(\left(N, M_{0}, M_{f}\right)\).
Decide: \(\quad \mathcal{L}(s r e) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow\) ?
```


Theorem

SRE in Downward Closure is EXPSPACE-complete.

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.
SRE is a choice among products

$$
\text { sre }::=p \text { । sre }+ \text { sre }
$$

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.
SRE is a choice among products

$$
\text { sre }::=p \text { । sre }+ \text { sre }
$$

Show inclusion for each product separately

$$
p::=a|(a+\varepsilon)| \Gamma^{*} \mid p . p
$$

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.
SRE is a choice among products

$$
\text { sre }::=p \text { । sre }+ \text { sre }
$$

Show inclusion for each product separately

$$
p::=a|(a+\varepsilon)| \Gamma^{*} \mid p . p
$$

Problem: Need to enforce that for each word in Γ^{*}, a covering computation exists

SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable

SRE in Downward Closure - Upper Bound

> [Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable

Theorem (Demri 2013)

The Simultaneous Unboundedness Problem for Petri Nets is EXPSPACE-complete.

SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable

Theorem (Demri 2013)

The Simultaneous Unboundedness Problem for Petri Nets is EXPSPACE-complete.

Simultaneous Unboundedness Problem for Petri Nets Given: Petri net N, marking M_{0}, set of places $X \subseteq P$ Decide: $\forall n \in \mathbb{N} \exists M_{0}[\sigma\rangle M$ with $M(p) \geqslant n \forall p \in X$?

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.
Handle each product p separately

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.
Handle each product p separately
For each expression Γ^{*} in p, add a place that tracks
occurrence of all symbols in 「
(also track the rest of p)

SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.
Handle each product p separately
For each expression Γ^{*} in p, add a place that tracks
occurrence of all symbols in 「
(also track the rest of p)
Check whether the places for the 「* are simultaneously
unbounded

SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)

SRE in Downward Closure is EXPSPACE-hard.

SRE in Downward Closure - Lower Bound

> Lemma (Lower Bound)
> SRE in Downward Closure is EXPSPACE-hard.
> Proof.

SRE in Downward Closure - Lower Bound

> Lemma (Lower Bound)
> SRE in Downward Closure is EXPSPACE-hard.
> Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

SRE in Downward Closure - Lower Bound

```
Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.
Proof.
```

Coverability for (unlabeled) Petri nets is EXPSPACE-hard
Label all transitions by ε

SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
 SRE in Downward Closure is EXPSPACE-hard.
 Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard
Label all transitions by ε
Note: $\mathcal{L}\left(N, M_{0}, M_{f}\right)=\{\varepsilon\}$ iff M_{f} coverable, \emptyset else

SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)

SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard
Label all transitions by ε
Note: $\mathcal{L}\left(N, M_{0}, M_{f}\right)=\{\varepsilon\}$ iff M_{f} coverable, \emptyset else $\mathcal{L}\left(\emptyset^{*}\right)=\{\varepsilon\} \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow$ iff M_{f} coverable

SRE in Upward Closure

SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net $\left(N, M_{0}, M_{f}\right)$.
Decide: $\quad \mathcal{L}($ sre $) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$?

SRE in Upward Closure

```
SRE in Upward Closure
Given: SRE sre, Petri net \(\left(N, M_{0}, M_{f}\right)\).
Decide: \(\quad \mathcal{L}(s r e) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow\) ?
```


Theorem

SRE in Upward Closure is EXPSPACE-complete.

SRE in Upward Closure

```
SRE in Upward Closure
Given: SRE sre, Petri net (N,M0, Mf).
Decide: }\quad\mathcal{L}(sre)\subseteq\mathcal{L}(N,MO,Mf)\uparrow 
```


Theorem

SRE in Upward Closure is EXPSPACE-complete.

Note:
Lower bound (EXPSPACE-hardness) as for SRE in Downward Closure

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
SRE sre is a choice among products p

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
SRE sre is a choice among products p
Check inclusion $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ for each product

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
SRE sre is a choice among products p
Check inclusion $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ for each product
For each product, compute its minimal word:

$$
\begin{aligned}
\min (a) & =a & \min \left(p . p^{\prime}\right) & =\min (p) \cdot \min \left(p^{\prime}\right) \\
\min (a+\varepsilon) & =\varepsilon & \min \left(\Gamma^{*}\right) & =\varepsilon
\end{aligned}
$$

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
SRE sre is a choice among products p
Check inclusion $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ for each product
For each product, compute its minimal word:

$$
\begin{aligned}
\min (a) & =a & & \min \left(p . p^{\prime}\right)
\end{aligned}=\min (p) \cdot \min \left(p^{\prime}\right)
$$

We have $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ iff $\min (p) \in \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$

SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
SRE sre is a choice among products p
Check inclusion $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ for each product
For each product, compute its minimal word:

$$
\begin{aligned}
\min (a) & =a & & \min \left(p . p^{\prime}\right)
\end{aligned}=\min (p) \cdot \min \left(p^{\prime}\right)
$$

We have $\mathcal{L}(p) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$ iff $\min (p) \in \mathcal{L}\left(N, M_{0}, M_{f}\right) \uparrow$
Check this using a coverability query in a modified net

Being Downward/Upward closed

Being DC/UC

Being Downward/Upward Closed
Given: Petri net $\left(N, M_{0}, M_{f}\right)$.
Decide: $\quad \mathcal{L}\left(N, M_{0}, M_{f}\right)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow / \uparrow$?

Being DC/UC

Being Downward/Upward Closed
Given: Petri net $\left(N, M_{0}, M_{f}\right)$.
Decide: $\quad \mathcal{L}\left(N, M_{0}, M_{f}\right)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow / \uparrow$?

Theorem

Being DC and Being UC are decidable.

Being DC/UC

> | Being Downward/Upward Closed |
| :--- |
| Given: |
| Decidi \quad Pet $\left(N, M_{0}, M_{f}\right)$. |
| $\mathcal{L}\left(N, M_{0}, M_{f}\right)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow / \uparrow$? |

Theorem

Being DC and Being UC are decidable.

Note:
$\mathcal{L} \subseteq \mathcal{L} \uparrow$ and $\mathcal{L} \subseteq \mathcal{L} \downarrow$ always hold

Being DC/UC

> | Being Downward/Upward Closed |
| :--- |
| Given: |
| Decidi net $\left(N, M_{0}, M_{f}\right)$. |
| Decin, $\left.M_{0}, M_{f}\right)=\mathcal{L}\left(N, M_{0}, M_{f}\right) \downarrow / \uparrow$? |

Theorem

Being DC and Being UC are decidable.

Note:
$\mathcal{L} \subseteq \mathcal{L} \uparrow$ and $\mathcal{L} \subseteq \mathcal{L} \downarrow$ always hold
$\mathcal{L} \uparrow$ and $\mathcal{L} \downarrow$ are effectively regular

REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net $\left(N, M_{0}, M_{f}\right)$, FSA A.
Decide: $\quad \mathcal{L}(A) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right)$?

REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net $\left(N, M_{0}, M_{f}\right)$, FSA A.
Decide: $\quad \mathcal{L}(A) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right)$?

Theorem

Regular lang. included in PN coverability lang. is decidable.

REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net $\left(N, M_{0}, M_{f}\right)$, FSA A.
Decide: $\quad \mathcal{L}(A) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right)$?

Theorem

Regular lang. included in PN coverability lang. is decidable.

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net $\left(N, M_{0}\right)$ and FSA A.
$\mathcal{T}(A) \subseteq \mathcal{T}\left(N, M_{0}\right)$ is decidable.

Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net $\left(N^{\prime}, M_{0}\right)$ and FSA B.
$\mathcal{T}(B) \subseteq \mathcal{T}\left(N^{\prime}, M_{0}\right)$ is decidable

Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net $\left(N^{\prime}, M_{0}\right)$ and FSA B.
$\mathcal{T}(B) \subseteq \mathcal{T}\left(N^{\prime}, M_{0}\right)$ is decidable
where $\mathcal{T}(B)=\left\{w \mid q_{0} \xrightarrow{w} q\right.$ for some state $\left.q\right\}$,

$$
\mathcal{T}\left(N^{\prime}, M_{0}\right)=\left\{w \mid M_{0}[\sigma\rangle M \text { for some } M \text { and } \sigma, \lambda(\sigma)=w\right\} .
$$

Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net $\left(N^{\prime}, M_{0}\right)$ and FSA B.
$\mathcal{T}(B) \subseteq \mathcal{T}\left(N^{\prime}, M_{0}\right)$ is decidable
where $\mathcal{T}(B)=\left\{w \mid q_{0} \xrightarrow{w} q\right.$ for some state $\left.q\right\}$,

$$
\mathcal{T}\left(N^{\prime}, M_{0}\right)=\left\{w \mid M_{0}[\sigma\rangle M \text { for some } M \text { and } \sigma, \lambda(\sigma)=w\right\} .
$$

Lemma

$$
\mathcal{L}(A) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \text { iff } \mathcal{T}(A . a) \subseteq \mathcal{T}\left(N . a, M_{0}\right) .
$$

Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)

Given Petri net $\left(N^{\prime}, M_{0}\right)$ and FSA B.
$\mathcal{T}(B) \subseteq \mathcal{T}\left(N^{\prime}, M_{0}\right)$ is decidable
where $\mathcal{T}(B)=\left\{w \mid q_{0} \xrightarrow{w} q\right.$ for some state $\left.q\right\}$,

$$
\mathcal{T}\left(N^{\prime}, M_{0}\right)=\left\{w \mid M_{0}[\sigma\rangle M \text { for some } M \text { and } \sigma, \lambda(\sigma)=w\right\} .
$$

Lemma

$$
\mathcal{L}(A) \subseteq \mathcal{L}\left(N, M_{0}, M_{f}\right) \text { iff } \mathcal{T}(A . a) \subseteq \mathcal{T}\left(N . a, M_{0}\right) .
$$

where a fresh letter
A.a reduced FSA for $\mathcal{L}(A)$. a
$N . a=N$ plus a-labeled transition t_{f} consuming M_{f}

BPP Nets

Results

	Petri nets
Compute UC	Doubly exponential*
Compute DC	Non-prim. rec.*
SRE in DC	EXPSPACE-compl.
SRE in UC	EXPSPACE-compl.
Being DC/UC	Decidable

* : Time for construction \& size of minimal FSA

BPP Nets - Negative Example

In a BPP net, each transition consumes at most one token.

BPP Nets - Positive Example

In a BPP net, each transition consumes at most one token.

Results

	Petri nets
Compute UC	Doubly exponential*
Compute DC	Non-prim. rec.*
SRE in DC	EXPSPACE-compl.
SRE in UC	EXPSPACE-compl.
Being DC/UC	Decidable

*: Time for construction \& size of minimal FSA

Results

	Petri nets	BPP nets
Compute UC	Doubly exponential*	Exponential*
Compute DC	Non-prim. rec.*	Exponential*
SRE in DC	EXPSPACE-compl.	NP-compl.
SRE in UC	EXPSPACE-compl.	NP-compl.
Being DC/UC	Decidable	

*: Time for construction \& size of minimal FSA

Results

	Petri nets	BPP nets	Techniques for	
			upper bound	lower bound
Compute UC	Doubly exponential*	Exponential* *	Unfoldings	Initial ex.
Compute DC	Non-prim. rec.*	Exponential*	Unfoldings	Initial ex.
SRE in DC	EXPSPACE-compl.	NP-compl.	Presburger	Coverability
SRE in UC	EXPSPACE-compl.	NP-compl.	Coverability	Coverability
Being DC/UC	Decidable			

*: Time for construction \& size of minimal FSA

Thank you!

Questions?

