On the Upward/Downward Closures of Petri Nets

Mohammed Faouzi Atig1, Roland Meyer2, Sebastian Muskalla2 and Prakash Saivasan2

August 25, MFCS 2017, Aalborg

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se
2 TU Braunschweig, Germany
{roland.meyer, s.muskalla, p.saivasan}@tu-bs.de
Goal

Study the *upward and downward closures* of *Petri net* coverability languages
Goal

Study the **upward and downward closures of Petri net coverability languages**

Why?

Petri nets are an important **model for concurrent systems**

Upward and downward closures are useful **approximations for verification purposes**
Goal

Study the **upward and downward closures of Petri net coverability languages**

Upward/Downward closures in general

Good:

- Always regular
Goal

Study the upward and downward closures of Petri net coverability languages

Upward/Downward closures in general

Good:

Always simply regular
Goal

Study the upward and downward closures of Petri net coverability languages

Upward/Downward closures in general

Good:

Always simply regular

Bad:

Representations might be not be effectively computable or very large
Goal

Study the upward and downward closures of Petri net coverability languages

Here:

- Closures effectively regular
- Want to construct finite state automata (FSA) as representations
Goal

Study the upward and downward closures of Petri net coverability languages

Here:

Closures effectively regular
Want to construct finite state automata (FSA) as representations
▷ Time needed for the construction?
▷ Size of the minimal FSAs?
Petri Net Coverability Languages and their Closures
\[(Labeled) \text{ Petri Nets}\]

\[
N = \left(\begin{array}{c}
\{p_0, p_1, p_2, p_3, p_f\}, \{t_0, t_1, t_2, t_f\}, F \\
\text{places } P \\
\text{transitions } T
\end{array} \right)
\]
(Labeled) Petri Nets

\[N = \left(\begin{array}{c} \{p_0, p_1, p_2, p_3, p_f\} \\ \text{places } P \\ \{t_0, t_1, t_2, t_f\}, F \\ \text{transitions } T \end{array} \right) \]

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
\| \\
M_0
\end{pmatrix}
\]
(Labeled) Petri Nets

\[N = \left(\begin{array}{c} \{p_0, p_1, p_2, p_3, p_f\}, \{t_0, t_1, t_2, t_f\}, F \end{array} \right) \]

\[M_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ \| \\ M_0 \end{pmatrix} \]

\[[t_0] \]
(Labeled) Petri Nets

\[N = \left(\begin{array}{c}
\{p_0, p_1, p_2, p_3, p_f\}, \\
\{t_0, t_1, t_2, t_f\}, F
\end{array} \right) \]

\[\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} \quad [t_0] \quad \begin{pmatrix}
0 \\
0 \\
0 \\
2^3 \\
M_f
\end{pmatrix} \]
(Labeled) Petri Nets

\[N = \left(\begin{array}{c}
\{ p_0, p_1, p_2, p_3, p_f \}, \{ t_0, t_1, t_2, t_f \}, F \\
\end{array} \right) \]

\[M_0 = \begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0 \\
\end{pmatrix}, \quad M_f = \begin{pmatrix}
0 \\
0 \\
0 \\
2^3 \\
\end{pmatrix} \]
(Labeled) Petri Nets

A Petri net is a directed graph with two types of nodes: places (circles) and transitions (squares). Edges connect places to transitions. Places can hold tokens, which are represented by dots. Transitions can be enabled (indicated by a black dot) and can fire, changing the number of tokens in the connected places.

The net in the image is labeled with places p_0, t_0, p_1, t_1, p_2, t_2, p_3, t_f, and a final place p_f.

The Petri net is mathematically described by the set N:

$$N = \left(\{ p_0, p_1, p_2, p_3, p_f \}, \{ t_0, t_1, t_2, t_f \}, F \right)$$

Where F represents the firing function, which determines when transitions can fire.

The firing function can be represented by a matrix M_0.

$$M_0 = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

And the final marking M_f can be represented as:

$$M_f = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2^3 \end{pmatrix}$$
Petri Nets

\[N = \left(\begin{array}{c} \{ p_0, p_1, p_2, p_3, p_f \} \setminus \{ t_0, t_1, t_2, t_f \}, F \\ \text{places } P \\ \text{transitions } T \end{array} \right) \]

\[\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \left[t_0 t_1 t_2 t_2 t_f t_f t_f t_f t_f t_f t_f t_f \right] \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 2^3 \end{pmatrix} \]

\[M_0 \]

\[p_f \]
(Labeled) Petri Nets

\[
N = \left(\begin{array}{c}
\{p_0, p_1, p_2, p_3, p_f\}, \\
\{t_0, t_1, t_2, t_f\}, F
\end{array} \right)
\]

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix} \begin{pmatrix}
t_0 \\
t_1 \\
t_2 \\
t_f \\
t_f \\
t_f \\
t_f \\
t_f
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
8
\end{pmatrix} \geq \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
2^3
\end{pmatrix}
\]

\[
M_0 \|
\end{pmatrix}
\]

\[
M_f
\]

\[
= \begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\begin{pmatrix}
t_0 \\
t_1 \\
t_2 \\
t_f \\
t_f \\
t_f \\
t_f \\
t_f
\end{pmatrix} \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
8
\end{pmatrix} \geq \begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
2^3
\end{pmatrix}
\]

\[
M_0 \|
\end{pmatrix}
\]

\[
M_f
\]
(Labeled) Petri Nets

\[N = \left(\{a\}, \{p_0, p_1, p_2, p_3, p_f\}, \{t_0, t_1, t_2, t_f\}, F, \lambda \right) \]

\[\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} t_0 t_1 t_2 t_2 t_2 t_f t_f t_f t_f t_f t_f \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} \geq \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \]

\[M_0 \]

\[M_f \]
(Labeled) Petri Nets

\[N = (\{a\}, \{p_0, p_1, p_2, p_3, p_f\}, \{t_0, t_1, t_2, t_f\}, F, \lambda) \]

\[
\begin{pmatrix}
1 \\
0 \\
0 \\
0 \\
\end{pmatrix}
\begin{pmatrix}
t_0 & t_1 & t_2 & t_f \\
\end{pmatrix}
\triangleq \lambda
\begin{pmatrix}
0 \\
0 \\
0 \\
8 \\
\end{pmatrix}
\begin{pmatrix}
0 \\
0 \\
0 \\
2^3 \\
\end{pmatrix}
\]

\[\varepsilon e e e e e a a a a a a a a = a^8 \]

\[M_0 \]

\[M_f \]
Coverability Language

(N, M_0, M_f) Petri net with initial and final marking

Coverability language

$$L(N, M_0, M_f) = \{ \lambda(\sigma) \mid M_0[\sigma]M, M \geq M_f \}$$
Coverability Language

(N, M_0, M_f) Petri net with initial and final marking

Coverability language

$$\mathcal{L}(N, M_0, M_f) = \{ \lambda(\sigma) \mid M_0[\sigma]M, M \geq M_f \}$$

In the example:

$$\mathcal{L}(N, M_0, M_f) = \{a^8\}$$
Subword relation

\[v \leq w \text{ iff } v \text{ obtained from } w \text{ by deleting letters} \]
\[\text{iff } w \text{ obtained from } v \text{ by inserting letters} \]
Upward and Downward Closure

Subword relation

\[v \preceq w \quad \text{iff} \quad v \text{ obtained from } w \text{ by deleting letters} \]

\[\text{iff} \quad w \text{ obtained from } v \text{ by inserting letters} \]

Upward closure

\[\mathcal{L}^\uparrow = \{ w \mid \exists v \in \mathcal{L} : v \preceq w \} \]
Subword relation

\[v \preceq w \iff v \text{ obtained from } w \text{ by deleting letters} \]
\[\iff w \text{ obtained from } v \text{ by inserting letters} \]

Upward closure

\[\mathcal{L}^\uparrow = \{ w \mid \exists v \in \mathcal{L} : v \preceq w \} \]

Downward closure

\[\mathcal{L}^\downarrow = \{ w \mid \exists v \in \mathcal{L} : w \preceq v \} \]
Upward and Downward Closure

Subword relation

\(v \leq w \) iff \(v \) obtained from \(w \) by deleting letters

iff \(w \) obtained from \(v \) by inserting letters

Upward closure

\[\mathcal{L}^{\uparrow} = \{ w \mid \exists v \in \mathcal{L} : v \leq w \} \]

Downward closure

\[\mathcal{L}^{\downarrow} = \{ w \mid \exists v \in \mathcal{L} : w \leq v \} \]

In the example:

\[\mathcal{L}(N, M_0, M_f)^{\uparrow} = \{ a^k \mid k \geq 8 \} \]

\[\mathcal{L}(N, M_0, M_f)^{\downarrow} = \{ a^k \mid k \leq 8 \} \]
Computing the Upward Closure
Computing the Upward Closure

Given: Petri net \((N, M_0, M_f)\).

Compute: FSA \(A\) with \(\mathcal{L}(A) = \mathcal{L}(N, M_0, M_f)^\uparrow\).
Computing the Upward Closure

| Given: | Petri net \((N, M_0, M_f)\). |
| Compute: | FSA \(A\) with \(L(A) = L(N, M_0, M_f)\)↑. |

Theorem

Upper bound: *One can compute an FSA of doubly exponential size representing the upward closure in doubly exponential time.*

Lower bound: *This is optimal.*
Lemma (Upper Bound)

One can compute an FSA of \textit{doubly exponential size} for the upward closure in \textit{doubly exponential time}.
Lemma (Upper Bound)

One can compute an FSA of doubly exponential size for the upward closure in doubly exponential time.

Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).
Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).
Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P = [1..\ell]$.
Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P = [1..\ell]$.

Consider *i*-bounded computations: Allow negative values on the places $[i+1..\ell]$.
Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P = [1..\ell]$.

Consider *i-bounded computations*: Allow negative values on the places $[i + 1..\ell]$.

Define $f(i)$ upper bound on the length of an i-bounded, i-covering computation from an arbitrary initial marking.
Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P = [1..\ell]$.

Consider *i-bounded computations*: Allow negative values on the places $[i + 1..\ell]$.

Define $f(i)$ upper bound on the length of an i-bounded, i-covering computation from an arbitrary initial marking.

Prove $f(\ell) \leq 2^{2^{O(n \cdot \log n)}}$
Theorem (Rackoff 1978)

Petri net coverability can be solved using exponential space (and doubly exponential time).

Assume places are ordered, $P = [1..\ell]$.

Consider \textit{i-bounded computations}: Allow negative values on the places $[i + 1..\ell]$.

Define $f(i)$ upper bound on the length of an \textit{i-bounded}, \textit{i-covering} computation from an arbitrary initial marking.

Prove $f(\ell) \leq 2^{2^{\mathcal{O}(n \cdot \log n)}}$

Show $f(i + 1) \leq (2^n f(i))^{i+1} + f(i)$.
Computing the Upward Closure - Upper Bound

\[f(i + 1) \leq (2^n f(i))^{i+1} + f(i) \]

Take an arbitrary \((i + 1)\)-bounded, \((i + 1)\)-covering computation
Computing the Upward Closure - Upper Bound

\[f(i + 1) \leq (2^n f(i))^{i+1} + f(i) \]

Take an arbitrary \((i + 1)\)-bounded, \((i + 1)\)-covering computation

1st case: Values on all places \([1..i + 1]\) bounded by \(2^n \cdot f(i)\):

\[2^n f(i) \]
Computing the Upward Closure - Upper Bound

\[f(i + 1) \leq (2^n f(i))^{i+1} + f(i) \]

Take an arbitrary \((i + 1)\)-bounded, \((i + 1)\)-covering computation

1st case: Values on all places \([1..i + 1]\) bounded by \(2^n \cdot f(i)\):

Identify repetitions
Computing the Upward Closure - Upper Bound

\[f(i + 1) \leq (2^n f(i))^{i+1} + f(i) \]

Take an arbitrary \((i + 1)\)-bounded, \((i + 1)\)-covering computation

1st case: Values on all places \([1..i + 1]\) bounded by \(2^n \cdot f(i)\):

- Identify repetitions
- Delete loops
Computing the Upward Closure - Upper Bound

\[f(i + 1) \leq (2^n f(i))^{i+1} + f(i) \]

Take an arbitrary \((i + 1)\)-bounded, \((i + 1)\)-covering computation

1\(^{st}\) case: Values on all places \([1..i + 1]\) bounded by \(2^n \cdot f(i)\):

- Identify **repetitions**
- Delete **loops**

\[\downarrow \text{ Obtain new computation of length at most } (2^n f(i))^{i+1} \]
2nd case: Some place, say $i + 1$, exceeds $2^n \cdot f(i)$:
2nd case: Some place, say $i + 1$, exceeds $2^n \cdot f(i)$:

Treat first part as in 1st case
2nd case: Some place, say $i + 1$, exceeds $2^n \cdot f(i)$:

Treat first part as in 1st case

Replace second part by i-covering, i-bounded computation of length $\leq f(i)$
2nd case: Some place, say $i + 1$, exceeds $2^n \cdot f(i)$:

Treat first part as in 1st case

Replace second part by i-covering, i-bounded computation of length $\leq f(i)$
What do we need to change?
What do we need to change?

Definition of $f(i)$: upper bound on the length of a i-bounded, i-covering computations from an arbitrary initial marking that generate all minimal words
What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓
Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$:
upper bound on the length of a i-bounded, i-covering computations from an arbitrary initial marking that generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation ✗
Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of $f(i)$: upper bound on the length of a i-bounded, i-covering computations from an arbitrary initial marking that generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation ✗

handle with care
Finally:
The minimal words of $\mathcal{L}(N, M_0, M_f) \uparrow$ have a computation of length $\leq f(\ell) \leq 2^{O(n \cdot \log n)}$.
Finally:
The minimal words of $\mathcal{L}(N, M_0, M_f) \uparrow$ have a computation of length $\leq f(\ell) \leq 2^{O(n \cdot \log n)}$.

FSA can simulate the net for $f(\ell)$ steps to accept them (and their upward-closure)
Lemma (Lower Bound)

There is a family of Petri nets such that the upward closure cannot be represented by an FSA of less than doubly exponential size.
Lemma (Lower Bound)

There is a family of Petri nets such that the upward closure cannot be represented by an FSA of less than doubly exponential size.

Theorem (Lipton 1976)

Petri net reachability is EXPSPACE-hard.
Computing the Upward Closure - Lower Bound

<table>
<thead>
<tr>
<th>Theorem (Lipton 1976)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petri net reachability is EXPSPACE-hard.</td>
</tr>
</tbody>
</table>
Theorem (Lipton 1976)

Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a counter machine with counter values bounded by 2^{2^n} (including zero tests!)
Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)

Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a counter machine with **counter values bounded by** 2^{2^n} (including zero tests!)

Using this idea, we construct for each $n \in \mathbb{N}$ a Petri net with

$$\mathcal{L}(N(n), M_0, M_f) = \left\{ a^{2^{2^n}} \right\}.$$
Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)

Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in \(n \) simulates a counter machine with *counter values bounded by \(2^{2^n} \) (including zero tests!)

Using this idea, we construct for each \(n \in \mathbb{N} \) a Petri net with

\[
\mathcal{L}(N(n), M_0, M_f) = \left\{ a^{2^n} \right\}.
\]

We obtain

\[
\mathcal{L}(N(n), M_0, M_f)^\uparrow = \left\{ a^k \mid k \geq 2^{2^n} \right\}.
\]
Computing the Downward Closure
Computing the Downward Closure

Given: Petri net (N, M_0, M_f).
Compute: FSA A with $\mathcal{L}(A) = \mathcal{L}(N, M_0, M_f) \downarrow$.
Computing the Downward Closure

Given: Petri net \((N, M_0, M_f)\).
Compute: FSA \(A\) with \(L(A) = L(N, M_0, M_f) \downarrow\).

Theorem

Upper bound: One can compute an FSA of non-primitive recursive size representing the downward closure (in non-primitive recursive time).

Lower bound: This is optimal.
Lemma (Upper Bound)

One can compute an FSA of *non-primitive recursive size* representing the downward closure.
Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.
Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The **Karp-Miller tree (coverability graph)** of the Petri net can be seen as finite automaton KMT.
Lemma (Upper Bound)

One can compute an FSA of \textit{non-primitive recursive size} representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT.

Its language is a subset of the downward closure,
\[\mathcal{L}(N, M_0, M_f) \subseteq \mathcal{L}(KMT) \subseteq \mathcal{L}(N, M_0, M_f) \downarrow \]
Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT.

Its language is a subset of the downward closure,

$\mathcal{L}(N, M_0, M_f) \subseteq \mathcal{L}(KMT) \subseteq \mathcal{L}(N, M_0, M_f) \downarrow$

$\mathcal{L}(KMT) \downarrow = \mathcal{L}(N, M_0, M_f) \downarrow$
Lemma (Upper Bound)

One can compute an FSA of non-primitive recursive size representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net can be seen as finite automaton KMT

Its language is a subset of the downward closure,

\[\mathcal{L}(N, M_0, M_f) \subseteq \mathcal{L}(KMT) \subseteq \mathcal{L}(N, M_0, M_f) \downarrow \]

\[\mathcal{L}(KMT) \downarrow = \mathcal{L}(N, M_0, M_f) \downarrow \]

Its size might be non-primitive recursive
Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size.
Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to labeled Petri nets:

\[
\forall n, x \in \mathbb{N} \ \exists \ (N(n), M_0^{(x)}, M_f) \text{ polynomial in } (n + x) \text{ such that } \\
\mathcal{L}(N(n), M_0^{(x)}, M_f) = \left\{ a^k \mid k \leq Acker(n, x) \right\} = \mathcal{L}(N(n), M_0^{(x)}, M_f) \downarrow
\]
Lemma (Lower Bound)

There is a family of Petri nets such that the downward closure cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to labeled Petri nets:

\[\forall n, x \in \mathbb{N} \ \exists (N(n), M_0^{(x)}, M_f) \text{ polynomial in } (n + x) \text{ such that} \]

\[\mathcal{L}(N(n), M_0^{(x)}, M_f) = \{ a^k \mid k \leq \text{Acker}(n, x) \} = \mathcal{L}(N(n), M_0^{(x)}, M_f) \downarrow \]
SRE in Downward Closure
Simple regular expression

\[sre ::= p \mid sre + sre \]
\[p ::= a \mid (a + \varepsilon) \mid \Gamma^* \mid p.p \]

where \(\Gamma \subseteq \Sigma \)

Known:

Downward and upward closures can be described by SREs
SRE in Downward Closure

Given: SRE \(sre \), Petri net \((N, M_0, M_f) \).

Decide: \(\mathcal{L}(sre) \subseteq \mathcal{L}(N, M_0, M_f) \downarrow \) ?
SRE in Downward Closure

Given: SRE \(sre \), Petri net \((N, M_0, M_f)\).
Decide: \(\mathcal{L}(sre) \subseteq \mathcal{L}(N, M_0, M_f) \downarrow \) ?

Theorem

\(SRE \) in Downward Closure is \textsc{EXPSPACE-complete}. \(\)
<table>
<thead>
<tr>
<th>Lemma (Upper Bound)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRE in Downward Closure can be solved in EXPSPACE.</td>
</tr>
</tbody>
</table>
Lemma (Upper Bound)

*SRE in Downward Closure can be *solved in* EXPSPACE.*

SRE is a choice among **products**

\[
sre ::= p \mid sre + sre
\]
Lemma (Upper Bound)

SRE in Downward Closure can be solved in \textit{EXPSPACE}.

SRE is a choice among products

\[
sre ::= p \mid sre + sre
\]

Show inclusion for each product separately

\[
p ::= a \mid (a + \varepsilon) \mid \Gamma^* \mid p.p
\]
Lemma (Upper Bound)

SRE in Downward Closure can be solved in \textit{EXPSPACE}.

SRE is a choice among \textit{products}

\[
sre ::= p \mid sre + sre
\]

Show inclusion for each product separately

\[
p ::= a \mid (a + \varepsilon) \mid \Gamma^* \mid p.p
\]

Problem: Need to enforce that for \textit{each word in }\Gamma^*, a covering computation exists
[Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable
[Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable

Theorem (Demri 2013)

The Simultaneous Unboundedness Problem for Petri Nets is EXPSPACE-complete.
[Zetzsche 2015]: Downward closures computable iff a certain unboundedness problem decidable

Theorem (Demri 2013)

The Simultaneous Unboundedness Problem for Petri Nets is \(\text{EXPSPACE-complete} \).

Simultaneous Unboundedness Problem for Petri Nets

Given: Petri net \(N \), marking \(M_0 \), set of places \(X \subseteq P \)

Decide: \(\forall n \in \mathbb{N} \) \(\exists M_0[\sigma]M \) with \(M(p) \geq n \forall p \in X \)?
Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately
Lemma (Upper Bound)

\textit{SRE in Downward Closure can be solved in EXPSPACE.}

Handle each product p separately

For each expression Γ^* in p, add a place that \textit{tracks occurrence of all symbols in } Γ
(also track the rest of p)
Lemma (Upper Bound)

SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ^* in p, add a place that **tracks occurrence of all symbols in Γ**
(also track the rest of p)

Check whether the places for the Γ^* are **simultaneously unbounded**
Lemma (Lower Bound)

SRE in Downward Closure is EXPSPACE-hard.
Lemma (Lower Bound)

SRE in Downward Closure is \textsc{EXPSPACE-hard}.

Proof.
Lemma (Lower Bound)

SRE in Downward Closure is **EXPSPACE-hard**.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard.
Lemma (Lower Bound)

SRE in Downward Closure is EXPSPACE-hard.

Proof.

- **Coverability** for (unlabeled) Petri nets is EXPSPACE-hard.
- Label all transitions by ε.

Lemma (Lower Bound)

SRE in Downward Closure is \textbf{EXPSPACE-hard}.

Proof.

- \textbf{Coverability} for (unlabeled) Petri nets is \textbf{EXPSPACE-hard}
- Label all transitions by ε
- Note: $\mathcal{L}(N, M_0, M_f) = \{\varepsilon\}$ iff M_f coverable, \emptyset else
Lemma (Lower Bound)

SRE in Downward Closure is \textit{EXPSPACE-hard}.

Proof.

\textbf{Coverability} for (unlabeled) Petri nets is \textit{EXPSPACE-hard}

Label all transitions by ε

Note: $\mathcal{L}(N, M_0, M_f) = \{\varepsilon\}$ iff M_f coverable, \emptyset else

$\mathcal{L}(\emptyset^*) = \{\varepsilon\} \subseteq \mathcal{L}(N, M_0, M_f) \downarrow$ iff M_f coverable
SRE in Upward Closure
SRE in Upward Closure

Given: SRE sre, Petri net (N, M_0, M_f).
Decide: $\mathcal{L}(sre) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow$?
SRE in Upward Closure

Given: SRE sre, Petri net \((N, M_0, M_f)\).
Decide: \(L(sre) \subseteq L(N, M_0, M_f)\uparrow\) ?

Theorem

SRE in Upward Closure is \textit{EXPSPACE-complete}.
SRE in Upward Closure

Given: SRE \(sre \), Petri net \((N, M_0, M_f)\).
Decide: \(\mathcal{L}(sre) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \) ?

Theorem

SRE in Upward Closure is EXPSPACE-complete.

Note:

Lower bound (EXPSPACE-hardness) as for SRE in Downward Closure
Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.
Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p
Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.

SRE \(sre \) is a choice among products \(p \)

Check inclusion \(\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \) for each product
Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion $\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f)$ for each product

For each product, compute its minimal word:

\[
\begin{align*}
\min(a) &= a \\
\min(p \cdot p') &= \min(p) \cdot \min(p') \\
\min(a + \varepsilon) &= \varepsilon \\
\min(\Gamma^*) &= \varepsilon
\end{align*}
\]
Lemma (Upper Bound)

SRE in Upward Closure can be solved in EXPSPACE.

SRE \(sre \) is a choice among products \(p \)

Check inclusion \(\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \) for each product

For each product, compute its minimal word:

\[
\begin{align*}
\min(a) &= a \\
\min(p.p') &= \min(p).\min(p') \\
\min(a + \varepsilon) &= \varepsilon \\
\min(\Gamma^*) &= \varepsilon
\end{align*}
\]

We have \(\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \iff \min(p) \in \mathcal{L}(N, M_0, M_f) \uparrow \)
SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)

\(SRE \) in Upward Closure can be \textit{solved in EXPSPACE}.

SRE \(sre \) is a choice among products \(p \)

Check inclusion \(\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \) for each product

For each product, compute its \textit{minimal word}:

\[
\begin{align*}
\min(a) &= a \\
\min(p.p') &= \min(p).\min(p') \\
\min(a + \varepsilon) &= \varepsilon \\
\min(\Gamma^*) &= \varepsilon
\end{align*}
\]

We have \(\mathcal{L}(p) \subseteq \mathcal{L}(N, M_0, M_f) \uparrow \) \textit{iff} \(\min(p) \in \mathcal{L}(N, M_0, M_f) \uparrow \)

Check this using a \textit{coverability query} in a modified net
Being Downward/Upward closed
Being Downward/Upward Closed

Given: Petri net \((N, M_0, M_f)\).

Decide: \(\mathcal{L}(N, M_0, M_f) = \mathcal{L}(N, M_0, M_f) \downarrow / \uparrow \ ?\)
Being DC/UC

Being Downward/Upward Closed

Given: Petri net \((N, M_0, M_f)\).

Decide: \(\mathcal{L}(N, M_0, M_f) = \mathcal{L}(N, M_0, M_f) \downarrow / \uparrow \ ?\)

Theorem

Being DC and Being UC are \textit{decidable}.
Being DC/UC

Being Downward/Upward Closed

Given: Petri net \((N, M_0, M_f)\).

Decide: \(L(N, M_0, M_f) = L(N, M_0, M_f) \downarrow / \uparrow \) ?

Theorem

Being DC and Being UC are **decidable**.

Note:

\[L \subseteq L \uparrow \textrm{ and } L \subseteq L \downarrow \] always hold
Being DC/UC

Being Downward/Upward Closed

Given: Petri net \((N, M_0, M_f)\).

Decide: \(\mathcal{L}(N, M_0, M_f) = \mathcal{L}(N, M_0, M_f) \downarrow / \uparrow \ ?\)

Theorem

Being DC and Being UC are decidable.

Note:

\[\mathcal{L} \subseteq \mathcal{L} \uparrow \text{ and } \mathcal{L} \subseteq \mathcal{L} \downarrow \text{ always hold} \]

\[\mathcal{L} \uparrow \text{ and } \mathcal{L} \downarrow \text{ are effectively regular} \]
Regular lang. included in PN coverability lang.

Given: Petri net \((N, M_0, M_f)\), FSA \(A\).
Decide: \(\mathcal{L}(A) \subseteq \mathcal{L}(N, M_0, M_f)\) ?
Regular lang. included in PN coverability lang.

Given: Petri net \((N, M_0, M_f)\), FSA \(A\).

Decide: \(\mathcal{L}(A) \subseteq \mathcal{L}(N, M_0, M_f)\) ?

Theorem

Regular lang. included in PN coverability lang. is \textit{decidable}.
Regular lang. included in PN coverability lang.

Given: Petri net \((N, M_0, M_f)\), FSA A.
Decide: \(\mathcal{L}(A) \subseteq \mathcal{L}(N, M_0, M_f)\) ?

Theorem

Regular lang. included in PN coverability lang. is **decidable**.

Theorem (Jancar, Esparza, Moller 1999)

Given Petri net \((N, M_0)\) and FSA A.

\(\mathcal{T}(A) \subseteq \mathcal{T}(N, M_0)\) is decidable.
Theorem (Jancar, Esparza, Moller 1999)

Given Petri net \((N', M_0)\) and FSA \(B\).

\[T(B) \subseteq T(N', M_0) \text{ is decidable} \]
Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)

Given Petri net \((N', M_0)\) and FSA \(B\).

\(\mathcal{T}(B) \subseteq \mathcal{T}(N', M_0)\) is decidable

where \(\mathcal{T}(B) = \{w \mid q_0 \xrightarrow{w} q \text{ for some state } q\}\),

\(\mathcal{T}(N', M_0) = \{w \mid M_0[\sigma]M \text{ for some } M \text{ and } \sigma, \lambda(\sigma) = w\}\).
Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)

Given Petri net (N', M_0) and FSA B.

$T(B) \subseteq T(N', M_0)$ is decidable

where $T(B) = \{ w \mid q_0 \xrightarrow{w} q \text{ for some state } q \}$,

$T(N', M_0) = \{ w \mid M_0[\sigma]M \text{ for some } M \text{ and } \sigma, \lambda(\sigma) = w \}$.

Lemma

$\mathcal{L}(A) \subseteq \mathcal{L}(N, M_0, M_f)$ iff $T(A.a) \subseteq T(N.a, M_0)$.
Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)

Given Petri net \((N', M_0)\) and FSA \(B\).

\(T(B) \subseteq T(N', M_0)\) is decidable

where \(T(B) = \{ w \mid q_0 \xrightarrow{w} q \text{ for some state } q \}\),

\(T(N', M_0) = \{ w \mid M_0[\sigma]M \text{ for some } M \text{ and } \sigma, \lambda(\sigma) = w \}\).

Lemma

\(\mathcal{L}(A) \subseteq \mathcal{L}(N, M_0, M_f)\) iff \(T(A.a) \subseteq T(N.a, M_0)\).

where \(a\) a fresh letter

\(A.a\) reduced FSA for \(\mathcal{L}(A).a\)

\(N.a = N\) plus \(a\)-labeled transition \(t_f\) consuming \(M_f\)
BPP Nets
Results

<table>
<thead>
<tr>
<th></th>
<th>Petri nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute UC</td>
<td>Doubly exponential*</td>
</tr>
<tr>
<td>Compute DC</td>
<td>Non-prim. rec.*</td>
</tr>
<tr>
<td>SRE in DC</td>
<td>EXPSPACE-compl.</td>
</tr>
<tr>
<td>SRE in UC</td>
<td>EXPSPACE-compl.</td>
</tr>
<tr>
<td>Being DC/UC</td>
<td>Decidable</td>
</tr>
</tbody>
</table>

*: Time for construction & size of minimal FSA
In a **BPP net**, each transition consumes at most one token.
In a BPP net, each transition consumes at most one token.
<table>
<thead>
<tr>
<th>Petri nets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute UC</td>
<td>Doubly exponential*</td>
</tr>
<tr>
<td>Compute DC</td>
<td>Non-prim. rec.*</td>
</tr>
<tr>
<td>SRE in DC</td>
<td>EXPSPACE-compl.</td>
</tr>
<tr>
<td>SRE in UC</td>
<td>EXPSPACE-compl.</td>
</tr>
<tr>
<td>Being DC/UC</td>
<td>Decidable</td>
</tr>
</tbody>
</table>

*: Time for construction & size of minimal FSA
Results

<table>
<thead>
<tr>
<th></th>
<th>Petri nets</th>
<th>BPP nets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute UC</td>
<td>Doubly exponential*</td>
<td>Exponential*</td>
</tr>
<tr>
<td>Compute DC</td>
<td>Non-prim. rec.*</td>
<td>Exponential*</td>
</tr>
<tr>
<td>SRE in DC</td>
<td>EXPSPACE-compl.</td>
<td>NP-compl.</td>
</tr>
<tr>
<td>SRE in UC</td>
<td>EXPSPACE-compl.</td>
<td>NP-compl.</td>
</tr>
<tr>
<td>Being DC/UC</td>
<td>Decidable</td>
<td></td>
</tr>
</tbody>
</table>

*: Time for construction & size of minimal FSA
Results

<table>
<thead>
<tr>
<th></th>
<th>Petri nets</th>
<th>BPP nets</th>
<th>Techniques for upper bound</th>
<th>Techniques for lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute UC</td>
<td>Doubly exponential*</td>
<td>Exponential*</td>
<td>Unfoldings</td>
<td>Initial ex.</td>
</tr>
<tr>
<td>Compute DC</td>
<td>Non-prim. rec.*</td>
<td>Exponential*</td>
<td>Unfoldings</td>
<td>Initial ex.</td>
</tr>
<tr>
<td>SRE in DC</td>
<td>EXPSPACE-compl.</td>
<td>NP-compl.</td>
<td>Presburger</td>
<td>Coverability</td>
</tr>
<tr>
<td>SRE in UC</td>
<td>EXPSPACE-compl.</td>
<td>NP-compl.</td>
<td>Coverability</td>
<td>Coverability</td>
</tr>
<tr>
<td>Being DC/UC</td>
<td>Decidable</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*: Time for construction & size of minimal FSA
Thank you!
Questions?