
On the Upward/Downward Closures of
Petri Nets

Mohammed Faouzi Atig1, Roland Meyer2, Sebastian Muskalla2 and
Prakash Saivasan2

August 25, MFCS 2017, Aalborg

1 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

2 TU Braunschweig, Germany
{roland.meyer, s.muskalla, p.saivasan}@tu-bs.de



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Why?
Petri nets are an important model for concurrent systems

Upward and downward closures are useful
approximations for verification purposes

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Upward/Downward closures in general

Good:
Always

simply

regular

Bad:
Representations might be not be effectively computable
or very large

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Upward/Downward closures in general

Good:
Always simply regular

Bad:
Representations might be not be effectively computable
or very large

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Upward/Downward closures in general

Good:
Always simply regular

Bad:
Representations might be not be effectively computable
or very large

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Here:
Closures effectively regular
Want to construct finite state automata (FSA) as
representations

↰

Time needed for the construction?

↰

Size of the minimal FSAs?

1



Goal

Goal
Study the upward and downward closures of Petri net
coverability languages

Here:
Closures effectively regular
Want to construct finite state automata (FSA) as
representations

↰

Time needed for the construction?

↰

Size of the minimal FSAs?

1



Petri Net Coverability Languages and
their Closures



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)

2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0
2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0⟩

2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0⟩


0
0
0
0
23



=

Mf
2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0t1t1⟩


0
0
0
0
23



=

Mf
2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0t1t1t2t2t2t2⟩


0
0
0
0
23



=

Mf
2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0t1t1t2t2t2t2tftftftftftftftf⟩


0
0
0
0
23



=

Mf
2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(

{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F

, λ

)


1
0
0
0
0



=

M0

[t0t1t1t2t2t2t2tftftftftftftftf⟩


0
0
0
0
23



=

Mf


0
0
0
0
8

 ⩾

2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(
{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F, λ
)


1
0
0
0
0



=

M0

[t0t1t1t2t2t2t2tftftftftftftftf⟩


0
0
0
0
23



=

Mf


0
0
0
0
8

 ⩾

2



(Labeled) Petri Nets

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

N =
(
{a},

{
p0,p1,p2,p3,pf

}︸ ︷︷ ︸
places P

,
{
t0, t1, t2, tf

}︸ ︷︷ ︸
transitions T

, F, λ
)


1
0
0
0
0



=

M0

[t0t1t1t2t2t2t2tftftftftftftftf⟩


0
0
0
0
23



=

Mf


0
0
0
0
8

 ⩾

7→
λ

εεεεεεεaaaaaaaa = a8

2



Coverability Language

(N,M0,Mf) Petri net with initial and final marking

Coverability language

L
(
N,M0,Mf

)
=

{
λ(σ)

∣∣ M0[σ⟩M,M ⩾ Mf
}

3



Coverability Language

(N,M0,Mf) Petri net with initial and final marking

Coverability language

L
(
N,M0,Mf

)
=

{
λ(σ)

∣∣ M0[σ⟩M,M ⩾ Mf
}

In the example: L
(
N,M0,Mf

)
=

{
a8
}

3



Upward and Downward Closure

Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

4



Upward and Downward Closure

Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

Upward closure

L↑= {w | ∃v ∈ L : v⪯ w}

4



Upward and Downward Closure

Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

Upward closure

L↑= {w | ∃v ∈ L : v⪯ w}

Downward closure

L↓= {w | ∃v ∈ L : w⪯ v}

4



Upward and Downward Closure

Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

Upward closure

L↑= {w | ∃v ∈ L : v⪯ w}

Downward closure

L↓= {w | ∃v ∈ L : w⪯ v}

In the example: L
(
N,M0,Mf

)
↑=

{
ak

∣∣ k ⩾ 8
}

L
(
N,M0,Mf

)
↓=

{
ak

∣∣ k ⩽ 8
}

4



Computing the Upward Closure



Computing the Upward Closure

Computing the Upward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↑.

5



Computing the Upward Closure

Computing the Upward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↑.

Theorem
Upper bound: One can compute an FSA of doubly
exponential size representing the upward closure in doubly
exponential time.

Lower bound: This is optimal.

5



Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the
upward closure in doubly exponential time.

6



Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the
upward closure in doubly exponential time.

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

6



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

Prove f(ℓ) ⩽ 22O(n·log n)

7



Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

Prove f(ℓ) ⩽ 22O(n·log n)

Show f(i+ 1) ⩽ (2nf(i))i+1 + f(i)
7



Computing the Upward Closure - Upper Bound

f(i+ 1) ⩽ (2nf(i))i+1 + f(i)

Take an arbitrary (i+ 1)-bounded, (i+ 1)-covering computation

8



Computing the Upward Closure - Upper Bound

f(i+ 1) ⩽ (2nf(i))i+1 + f(i)

Take an arbitrary (i+ 1)-bounded, (i+ 1)-covering computation
1st case: Values on all places [1..i+ 1] bounded by 2n · f(i):

Identify repetitions
Delete loops

↰

Obtain new computation of length at most (2nf(i))i+1

2nf(i)

8



Computing the Upward Closure - Upper Bound

f(i+ 1) ⩽ (2nf(i))i+1 + f(i)

Take an arbitrary (i+ 1)-bounded, (i+ 1)-covering computation
1st case: Values on all places [1..i+ 1] bounded by 2n · f(i):

Identify repetitions

Delete loops

↰

Obtain new computation of length at most (2nf(i))i+1

2nf(i)

8



Computing the Upward Closure - Upper Bound

f(i+ 1) ⩽ (2nf(i))i+1 + f(i)

Take an arbitrary (i+ 1)-bounded, (i+ 1)-covering computation
1st case: Values on all places [1..i+ 1] bounded by 2n · f(i):

Identify repetitions
Delete loops

↰

Obtain new computation of length at most (2nf(i))i+1

2nf(i)

8



Computing the Upward Closure - Upper Bound

f(i+ 1) ⩽ (2nf(i))i+1 + f(i)

Take an arbitrary (i+ 1)-bounded, (i+ 1)-covering computation
1st case: Values on all places [1..i+ 1] bounded by 2n · f(i):

Identify repetitions
Delete loops

↰

Obtain new computation of length at most (2nf(i))i+1

2nf(i)
⩽ (2nf(i))i+1

8



Computing the Upward Closure - Upper Bound

2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case
Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)

9



Computing the Upward Closure - Upper Bound

2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case

Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)

⩽ (2nf(i))i+1

9



Computing the Upward Closure - Upper Bound

2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case
Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)

⩽ (2nf(i))i+1

9



Computing the Upward Closure - Upper Bound

2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case
Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)

⩽ (2nf(i))i+1 ⩽ f(i)

9



Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care

10



Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care

10



Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care

10



Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care

10



Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care

10



Computing the Upward Closure - Upper Bound

Finally:
The minimal words of L

(
N,M0,Mf

)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .

11



Computing the Upward Closure - Upper Bound

Finally:
The minimal words of L

(
N,M0,Mf

)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .

FSA can simulate the net for f(ℓ) steps to accept them (and
their upward-closure)

11



Computing the Upward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the upward closure
cannot be represented by an FSA of less than doubly
exponential size.

12



Computing the Upward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the upward closure
cannot be represented by an FSA of less than doubly
exponential size.

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

12



Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

13



Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a
counter machine with counter values bounded by 22n

(including zero tests!)

13



Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a
counter machine with counter values bounded by 22n

(including zero tests!)

Using this idea, we construct for each n ∈ N a Petri net with

L
(
N(n),M0,Mf

)
=

{
a22

n}
.

13



Computing the Upward Closure - Lower Bound

Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a
counter machine with counter values bounded by 22n

(including zero tests!)

Using this idea, we construct for each n ∈ N a Petri net with

L
(
N(n),M0,Mf

)
=

{
a22

n}
.

We obtain

L
(
N(n),M0,Mf

)
↑=

{
ak

∣∣∣ k ⩾ 22n
}
.

13



Computing the Downward Closure



Computing the Downward Closure

Computing the Downward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↓.

14



Computing the Downward Closure

Computing the Downward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↓.

Theorem
Upper bound: One can compute an FSA of non-primitive
recursive size representing the downward closure (in
non-primitive recursive time).

Lower bound: This is optimal.

14



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

15



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive

15



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive

15



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive

15



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive

15



Computing the Downward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of non-primitive recursive size
representing the downward closure.

Proof Sketch.

The Karp-Miller tree (coverability graph) of the Petri net
can be seen as finite automaton KMT

Its language is a subset of the downward closure,
L
(
N,M0,Mf

)
⊆ L(KMT) ⊆ L

(
N,M0,Mf

)
↓

L(KMT)↓= L
(
N,M0,Mf

)
↓

Its size might be non-primitive recursive
15



Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

16



Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to
labeled Petri nets:

∀n, x ∈ N ∃
(
N(n),M(x)

0 ,Mf
)
polynomial in (n+ x) such that

L
(
N(n),M(x)

0 ,Mf
)
=

{
ak

∣∣∣ k ⩽ Acker(n, x)
}
= L

(
N(n),M(x)

0 ,Mf
)
↓

16



Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to
labeled Petri nets:

∀n, x ∈ N ∃
(
N(n),M(x)

0 ,Mf
)
polynomial in (n+ x) such that

L
(
N(n),M(x)

0 ,Mf
)
=

{
ak

∣∣∣ k ⩽ Acker(n, x)
}
= L

(
N(n),M(x)

0 ,Mf
)
↓

in0 tcp0 out0

strt0 tstrt0 cp0 tstp0 stp0

inn+1

strtn+1
ANn

inn

strtn

outn

stpntstrtn+1

tswpn+1

swpn+1

trestartn+1

tinn+1

tcpn+1

ttmpn+1 tmpn+1 tstpn+1 stpn+1

outn+1

16



SRE in Downward Closure



Simple Regular Expression

Simple regular expression

sre ::= p p sre+ sre
p ::= a p (a+ ε) p Γ∗ p p.p

where Γ ⊆ Σ

Known:

Downward and upward closures can be described by SREs

17



SRE in Downward Closure

SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?

18



SRE in Downward Closure

SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?

Theorem
SRE in Downward Closure is EXPSPACE-complete.

18



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

19



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

SRE is a choice among products

sre ::= p p sre+ sre

Show inclusion for each product separately

p ::= a p (a+ ε) p Γ∗ p p.p

Problem: Need to enforce that for each word in Γ∗, a
covering computation exists

19



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

SRE is a choice among products

sre ::= p p sre+ sre

Show inclusion for each product separately

p ::= a p (a+ ε) p Γ∗ p p.p

Problem: Need to enforce that for each word in Γ∗, a
covering computation exists

19



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

SRE is a choice among products

sre ::= p p sre+ sre

Show inclusion for each product separately

p ::= a p (a+ ε) p Γ∗ p p.p

Problem: Need to enforce that for each word in Γ∗, a
covering computation exists

19



SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable

20



SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable

Theorem (Demri 2013)
The Simultaneous Unboundedness Problem for Petri Nets is
EXPSPACE-complete.

20



SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable

Theorem (Demri 2013)
The Simultaneous Unboundedness Problem for Petri Nets is
EXPSPACE-complete.

Simultaneous Unboundedness Problem for Petri Nets
Given: Petri net N, marking M0, set of places X ⊆ P
Decide: ∀n ∈ N ∃M0[σ⟩M with M(p) ⩾ n∀p ∈ X?

20



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ∗ in p, add a place that tracks
occurrence of all symbols in Γ

(also track the rest of p)

Check whether the places for the Γ∗ are simultaneously
unbounded

21



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ∗ in p, add a place that tracks
occurrence of all symbols in Γ

(also track the rest of p)

Check whether the places for the Γ∗ are simultaneously
unbounded

21



SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ∗ in p, add a place that tracks
occurrence of all symbols in Γ

(also track the rest of p)

Check whether the places for the Γ∗ are simultaneously
unbounded

21



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

22



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable

22



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable

22



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable

22



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable

22



SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.

Proof.

Coverability for (unlabeled) Petri nets is EXPSPACE-hard

Label all transitions by ε

Note: L
(
N,M0,Mf

)
= {ε} iff Mf coverable, ∅ else

L(∅∗) = {ε} ⊆ L
(
N,M0,Mf

)
↓ iff Mf coverable

22



SRE in Upward Closure



SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

23



SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

Theorem
SRE in Upward Closure is EXPSPACE-complete.

23



SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

Theorem
SRE in Upward Closure is EXPSPACE-complete.

Note:
Lower bound (EXPSPACE-hardness) as for SRE in
Downward Closure

23



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

24



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

Check this using a coverability query in a modified net

24



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

Check this using a coverability query in a modified net

24



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

Check this using a coverability query in a modified net

24



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

We have L(p) ⊆ L
(
N,M0,Mf

)
↑ iff min(p) ∈ L

(
N,M0,Mf

)
↑

Check this using a coverability query in a modified net

24



SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

We have L(p) ⊆ L
(
N,M0,Mf

)
↑ iff min(p) ∈ L

(
N,M0,Mf

)
↑

Check this using a coverability query in a modified net
24



Being Downward/Upward closed



Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?

25



Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?

Theorem
Being DC and Being UC are decidable.

25



Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?

Theorem
Being DC and Being UC are decidable.

Note:

L ⊆ L↑ and L ⊆ L↓ always hold

L↑ and L↓ are effectively regular

25



Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?

Theorem
Being DC and Being UC are decidable.

Note:

L ⊆ L↑ and L ⊆ L↓ always hold

L↑ and L↓ are effectively regular

25



REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?

26



REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?

Theorem
Regular lang. included in PN coverability lang. is decidable.

26



REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?

Theorem
Regular lang. included in PN coverability lang. is decidable.

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N,M0) and FSA A.

T (A) ⊆ T (N,M0) is decidable.

26



Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

27



Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

27



Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
L(A) ⊆ L

(
N,M0,Mf

)
iff T (A.a) ⊆ T (N.a,M0).

27



Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
L(A) ⊆ L

(
N,M0,Mf

)
iff T (A.a) ⊆ T (N.a,M0).

where a fresh letter

A.a reduced FSA for L(A).a

N.a = N plus a-labeled transition tf consuming Mf 27



BPP Nets



Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
28



BPP Nets - Negative Example

In a BPP net, each transition consumes at most one token.

2

2

2

29



BPP Nets - Positive Example

In a BPP net, each transition consumes at most one token.

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2

30



Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA

31



Results

Petri nets BPP nets

Compute UC Doubly exponential∗ Exponential∗

Compute DC Non-prim. rec.∗ Exponential∗

SRE in DC EXPSPACE-compl. NP-compl.

SRE in UC EXPSPACE-compl. NP-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA

31



Results

Petri nets BPP nets
Techniques for

upper bound lower bound

Compute UC Doubly exponential∗ Exponential∗ Unfoldings Initial ex.

Compute DC Non-prim. rec.∗ Exponential∗ Unfoldings Initial ex.

SRE in DC EXPSPACE-compl. NP-compl. Presburger Coverability

SRE in UC EXPSPACE-compl. NP-compl. Coverability Coverability

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA

31



Thank you!

31



Questions?

31


	Petri Net Coverability Languages and their Closures
	Computing the Upward Closure
	Computing the Downward Closure
	SRE in Downward Closure
	SRE in Upward Closure
	Being Downward/Upward closed
	BPP Nets

