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Petri Net Coverability Languages and
their Closures
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Coverability Language

(N,M0,Mf) Petri net with initial and final marking

Coverability language

L
(
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)
=

{
λ(σ)

∣∣ M0[σ⟩M,M ⩾ Mf
}
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Coverability Language

(N,M0,Mf) Petri net with initial and final marking

Coverability language

L
(
N,M0,Mf

)
=

{
λ(σ)

∣∣ M0[σ⟩M,M ⩾ Mf
}

In the example: L
(
N,M0,Mf

)
=

{
a8
}
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Upward and Downward Closure

Subword relation

v⪯ w iff v obtained from w by deleting letters
iff w obtained from v by inserting letters

Upward closure

L↑= {w | ∃v ∈ L : v⪯ w}

Downward closure

L↓= {w | ∃v ∈ L : w⪯ v}

In the example: L
(
N,M0,Mf

)
↑=

{
ak

∣∣ k ⩾ 8
}

L
(
N,M0,Mf

)
↓=

{
ak

∣∣ k ⩽ 8
}
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Computing the Upward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↑.
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Computing the Upward Closure

Computing the Upward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↑.

Theorem
Upper bound: One can compute an FSA of doubly
exponential size representing the upward closure in doubly
exponential time.

Lower bound: This is optimal.
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Computing the Upward Closure - Upper Bound

Lemma (Upper Bound)
One can compute an FSA of doubly exponential size for the
upward closure in doubly exponential time.
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Computing the Upward Closure - Upper Bound

Theorem (Rackoff 1978)
Petri net coverability can be solved using exponential space
(and doubly exponential time).

Assume places are ordered, P = [1..ℓ].

Consider i-bounded computations: Allow negative values on
the places [i+ 1..ℓ]

Define f(i) upper bound on the length of an i-bounded,
i-covering computation from an arbitrary initial marking

Prove f(ℓ) ⩽ 22O(n·log n)

Show f(i+ 1) ⩽ (2nf(i))i+1 + f(i)
7
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1st case: Values on all places [1..i+ 1] bounded by 2n · f(i):

Identify repetitions
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↰

Obtain new computation of length at most (2nf(i))i+1
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2nd case: Some place, say i+ 1, exceeds 2n · f(i):

Treat first part as in 1st case
Replace second part by i-covering, i-bounded
computation of length ⩽ f(i)

2nf(i)
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Computing the Upward Closure - Upper Bound

What do we need to change?

Definition of f(i):
upper bound on the length of a i-bounded, i-covering
computations from an arbitrary initial marking that
generate all minimal words

1st case: Deleting loops creates a subword ✓

2nd case: Replacing second part of the computation 7

↰

handle with care
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Computing the Upward Closure - Upper Bound

Finally:
The minimal words of L

(
N,M0,Mf

)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .
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Computing the Upward Closure - Upper Bound

Finally:
The minimal words of L

(
N,M0,Mf

)
↑ have a computation of

length ⩽ f(ℓ) ⩽ 22O(n·log n) .

FSA can simulate the net for f(ℓ) steps to accept them (and
their upward-closure)
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Computing the Upward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the upward closure
cannot be represented by an FSA of less than doubly
exponential size.
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Theorem (Lipton 1976)
Petri net reachability is EXPSPACE-hard.

In the proof, a Petri net of size polynomial in n simulates a
counter machine with counter values bounded by 22n

(including zero tests!)

Using this idea, we construct for each n ∈ N a Petri net with

L
(
N(n),M0,Mf

)
=

{
a22

n}
.

We obtain

L
(
N(n),M0,Mf

)
↑=

{
ak

∣∣∣ k ⩾ 22n
}
.
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Computing the Downward Closure
Given: Petri net (N,M0,Mf).
Compute: FSA A with L(A) = L

(
N,M0,Mf

)
↓.

Theorem
Upper bound: One can compute an FSA of non-primitive
recursive size representing the downward closure (in
non-primitive recursive time).

Lower bound: This is optimal.
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representing the downward closure.
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Computing the Downward Closure - Lower Bound

Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to
labeled Petri nets:

∀n, x ∈ N ∃
(
N(n),M(x)

0 ,Mf
)
polynomial in (n+ x) such that

L
(
N(n),M(x)

0 ,Mf
)
=

{
ak

∣∣∣ k ⩽ Acker(n, x)
}
= L

(
N(n),M(x)

0 ,Mf
)
↓
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Lemma (Lower Bound)
There is a family of Petri nets such that the downward closure
cannot be represented by an FSA of primitive recursive size.

Inductive construction from [Mayr, Meyer 1981], adapted to
labeled Petri nets:
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=

{
ak
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}
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(
N(n),M(x)

0 ,Mf
)
↓
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Simple Regular Expression

Simple regular expression

sre ::= p p sre+ sre
p ::= a p (a+ ε) p Γ∗ p p.p

where Γ ⊆ Σ

Known:

Downward and upward closures can be described by SREs

17



SRE in Downward Closure

SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?
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SRE in Downward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↓ ?

Theorem
SRE in Downward Closure is EXPSPACE-complete.
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SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.
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SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
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SRE in Downward Closure - Upper Bound

[Zetzsche 2015]: Downward closures computable iff a certain
unboundedness problem decidable

Theorem (Demri 2013)
The Simultaneous Unboundedness Problem for Petri Nets is
EXPSPACE-complete.

Simultaneous Unboundedness Problem for Petri Nets
Given: Petri net N, marking M0, set of places X ⊆ P
Decide: ∀n ∈ N ∃M0[σ⟩M with M(p) ⩾ n∀p ∈ X?
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SRE in Downward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Downward Closure can be solved in EXPSPACE.

Handle each product p separately

For each expression Γ∗ in p, add a place that tracks
occurrence of all symbols in Γ

(also track the rest of p)

Check whether the places for the Γ∗ are simultaneously
unbounded
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SRE in Downward Closure - Lower Bound

Lemma (Lower Bound)
SRE in Downward Closure is EXPSPACE-hard.
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Note: L
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SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?
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SRE in Upward Closure

SRE in Upward Closure
Given: SRE sre, Petri net (N,M0,Mf).
Decide: L(sre) ⊆ L

(
N,M0,Mf

)
↑ ?

Theorem
SRE in Upward Closure is EXPSPACE-complete.

Note:
Lower bound (EXPSPACE-hardness) as for SRE in
Downward Closure
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SRE in Upward Closure - Upper Bound

Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.
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Lemma (Upper Bound)
SRE in Upward Closure can be solved in EXPSPACE.

SRE sre is a choice among products p

Check inclusion L(p) ⊆ L
(
N,M0,Mf

)
↑ for each product

For each product, compute its minimal word:

min(a) = a min(p.p′) = min(p).min(p′)
min(a+ ε) = ε min(Γ∗) = ε

Check this using a coverability query in a modified net
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Being DC/UC

Being Downward/Upward Closed
Given: Petri net (N,M0,Mf).
Decide: L

(
N,M0,Mf

)
= L

(
N,M0,Mf

)
↓ /↑ ?
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REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?
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REG-IN-PNCOV

Regular lang. included in PN coverability lang.
Given: Petri net (N,M0,Mf), FSA A.
Decide: L(A) ⊆ L

(
N,M0,Mf

)
?

Theorem
Regular lang. included in PN coverability lang. is decidable.

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N,M0) and FSA A.

T (A) ⊆ T (N,M0) is decidable.
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}
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T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
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)
iff T (A.a) ⊆ T (N.a,M0).
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Reducing to Trace Inclusion

Theorem (Jancar, Esparza, Moller 1999)
Given Petri net (N′,M0) and FSA B.

T (B) ⊆ T (N′,M0) is decidable

where T (B) =
{
w
∣∣∣ q0 w−→ q for some state q

}
,

T (N′,M0) = {w | M0[σ⟩M for some M and σ, λ(σ) = w}.

Lemma
L(A) ⊆ L

(
N,M0,Mf

)
iff T (A.a) ⊆ T (N.a,M0).

where a fresh letter

A.a reduced FSA for L(A).a

N.a = N plus a-labeled transition tf consuming Mf 27
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Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
28



BPP Nets - Negative Example

In a BPP net, each transition consumes at most one token.

2

2

2
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BPP Nets - Positive Example

In a BPP net, each transition consumes at most one token.

p0 t0

ε

p1 t1

ε

p2 t2

ε

p3 tf

a

pf

2 2 2
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Results

Petri nets

Compute UC Doubly exponential∗

Compute DC Non-prim. rec.∗

SRE in DC EXPSPACE-compl.

SRE in UC EXPSPACE-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Results

Petri nets BPP nets

Compute UC Doubly exponential∗ Exponential∗

Compute DC Non-prim. rec.∗ Exponential∗

SRE in DC EXPSPACE-compl. NP-compl.

SRE in UC EXPSPACE-compl. NP-compl.

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Results

Petri nets BPP nets
Techniques for

upper bound lower bound

Compute UC Doubly exponential∗ Exponential∗ Unfoldings Initial ex.

Compute DC Non-prim. rec.∗ Exponential∗ Unfoldings Initial ex.

SRE in DC EXPSPACE-compl. NP-compl. Presburger Coverability

SRE in UC EXPSPACE-compl. NP-compl. Coverability Coverability

Being DC/UC Decidable

∗ : Time for construction & size of minimal FSA
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Thank you!
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Questions?
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