On Boundedness in Depth in the π-Calculus*

Roland Meyer

University of Oldenburg
Roland.Meyer@informatik.uni-oldenburg.de

Abstract. We investigate the class P_{BD} of π-Calculus processes that are bounded in the function depth. First, we show that boundedness in depth has an intuitive characterisation when we understand processes as graphs: a process is bounded in depth if and only if the length of the simple paths is bounded. The proof is based on a new normal form for the π-Calculus called anchored fragments. Using this concept, we then show that processes of bounded depth have well-structured transition systems (WSTS). As a consequence, the termination problem is decidable for this class of processes. The instantiation of the WSTS framework employs a new well-quasi-ordering for processes in P_{BD}.

1 Introduction

Concurrent systems are known to be hard to design correctly. Dynamically reconfigurable systems add to concurrency the problem of changing connection structures between system components. To ensure the correct behaviour of systems, automatic verification techniques have proven useful. This automation comes with a tradeoff. To automate the analysis requires a decidable class of models, but to model the systems of interest requires an expressive class. We use the π-Calculus to model dynamically reconfigurable systems [17, 18]. The contribution of this paper is the up-to-now most expressive subclass of π-Calculus for which termination is decidable. The importance of termination for the π-Calculus has been recognised in [19, 5].

The class P_{BD} we propose contains the processes that are bounded in depth. The function depth measures the interdependence of restricted names in process terms. Boundedness in depth is a very liberal requirement as it turns out that all decidable subclasses of π-Calculus known so far are subclasses of P_{BD}: finitary agents [9], finite control processes [4], bounded processes [3], unique receiver and bounded input systems (up to bisimilarity) [2], finite handler processes [14], structurally stationary processes [14], and restriction-free processes [2].

But the definition of depth is difficult to grasp as the function refers to all processes in a congruence class. To provide an intuition to P_{BD}, we make use of the standard graph-theoretic interpretation of the π-Calculus [17, 18]. Our first main result states that boundedness in depth is equivalent to boundedness in the

* This work was supported by the German Research Council (DFG) as part of the Graduate School “TrustSoft” (GRK 1076/1).
length of the simple paths (i.e., without repetition of edges) in the graphs. The proof is based on a new normal form for processes called anchored fragments.

The decidability result for P_{BD} is obtained by viewing this class as an instance of well-structured transition systems (WSTS) [10, 1, 11]. WSTS are a framework for infinite state systems that generalises decidability results for particular models. Technically, a WSTS is a transition system with an ordering relation on the states which is compatible with the transition relation. Depending on the ordering, the compatibility, and decidability properties the framework yields decision procedures, e.g., for termination [10, 11] or simulation [1].

Our second main result is the instantiation of the WSTS framework for processes of bounded depth. As a consequence, we inherit the decision procedure for termination in [10, 11]. The technical contribution is a new ordering $\preceq_{P_{BD}}$ on processes which we show to be a well-quasi-ordering (wqo) (i.e., in every infinite sequence of processes two comparable processes can be found) for processes of bounded depth. In the proof, anchored fragments again play a vital role. Since the ordering $\preceq_{P_{BD}}$ is a simulation relation it is compatible with the reaction relation of the π-Calculus in a strong sense.

2 Preliminaries

The π-Calculus. We use a π-Calculus with parameterised recursion as proposed in [18]. Let the set $(a, b \in \mathcal{N})$ of names contain the channels and messages that occur in communications. A process consumes prefixes π to communicate with other processes or to perform silent actions. The prefixes are

$$\pi ::= \pi(b) | a(x) | \tau.$$

The output action $\pi(b)$ sends the name b on channel a. The input action $a(x)$ receives a name that replaces x on a. The τ symbol stands for a silent action.

To denote recursive processes we use process identifiers K, each defined by an equation $K(\tilde{x}) := P$. When the identifier is called, $K[\tilde{a}]$, it is replaced by the process P where the names \tilde{x} are replaced by \tilde{a}. More precisely, a substitution $\sigma = \{\tilde{a}/\tilde{x}\}$ is a function that maps the names in \tilde{x} to \tilde{a} and is the identity on all names not in \tilde{x}. The application of a substitution, $P\{\tilde{a}/\tilde{x}\}$, is defined in the standard way [18]. A π-Calculus process is a call to an identifier, $K[\tilde{a}]$, a choice process deciding between prefixes, $\bigwedge_{i \in I} \pi_i P_i$, a parallel composition of processes, $P_1 | P_2$, or the restriction of a name in a process, $\nu a P$:

$$P ::= K[\tilde{a}] | \bigwedge_{i \in I} \pi_i P_i | P_1 | P_2 | \nu a P.$$

The set of all processes is P. We abbreviate empty sums (with $I = \emptyset$) by 0 and arbitrary sums by M or N. By $\Pi_{i \in I} P_i$ we denote the parallel composition of several processes P_i with $i \in I$. The processes $K[\tilde{a}]$ and $\bigwedge_{i \in I \neq \emptyset} \pi_i P_i$ are called sequential. By $S(P)$ we refer to the set of sequential processes in P. The function
is defined inductively by $S(0) := \emptyset$, $S(K[\bar{a}]) := \{K[\bar{a}]\}$, $S(\Sigma_{i \in I \neq \emptyset} \pi_i \cdot P_i) := \{\Sigma_{i \in I \neq \emptyset} \pi_i \cdot P_i\}$, $S(P_1 \mid P_2) := S(P_1) \cup S(P_2)$, and $S(\nu a.P) := S(P)$.

The set action $a(b)$ and the restriction $\nu c.P$ bind b and c, respectively. The set of bound names in P is $\text{bn}(P)$. If we refer to the set of restricted names in P, $\text{rn}(P) \subseteq \text{bn}(P)$, we mean the restricted names that are not covered by prefixes. A name which occurs not bound in P is free and the set of free names in P is $\text{fn}(P)$. We permit α-conversion of bound names. Therefore, wlog. we assume $\text{bn}(P) \cap \text{fn}(P) = \emptyset$. Unless otherwise stated, we assume that a name is bound at most once in a process. In a defining equation $K(\bar{x}) := P$ we require $\text{fn}(P) \subseteq \bar{x}$. If a substitution $\{\bar{a} / \bar{x}\}$ is applied to a process P, we assume $\text{bn}(P) \cap (\bar{a} \cup \bar{x}) = \emptyset$.

The results achieved in this paper make heavy use of the structural congruence relation \equiv of processes. It is the smallest congruence where α-conversion of bound names is allowed, $+$ and $|$ are commutative and associative and have 0 as neutral element, and the following laws for restriction hold:

$$\begin{align*}
\nu x.\nu y.P & \equiv \nu y.\nu x.P & \nu x.0 & \equiv 0
\end{align*}$$

The latter law is called scope extrusion.

We distinguish two normal forms for processes. A process $\nu a.(P_1 \mid \ldots \mid P_n)$ where $\bar{a} \subseteq \text{fn}(P_1 \mid \ldots \mid P_n)$ and all P_i are sequential is in standard form [17]. Via structural congruence every process P can be rewritten as a process P_{sf} in standard form as follows. First, the scope of every restricted name not under a prefix is extruded over all processes composed in parallel. Then unused restricted names and empty sums are removed. Since all bound names are different and disjoint with the free names, α-conversion is not required. Thus, the rewriting does not change the sequential processes, $S(P) = S(\text{P}_{sf})$.

The restricted form [14] is based on the notion of fragments, i.e., processes where the scopes of restricted names are minimal:

$$F := K[\bar{a}] \mid \Sigma_{i \in I \neq \emptyset} \pi_i \cdot P_i \mid \nu a.(F_1 \mid \ldots \mid F_n),$$

where $a \in \text{fn}(F_i)$ for all i. The set of all fragments is $(F, G \in) \mathcal{P}_F$. Fragments that are sequential processes, $K[\bar{a}]$ or $\Sigma_{i \in I \neq \emptyset} \pi_i \cdot P_i$, are elementary and referred to by F_{e}. A process P_{ν} is in restricted form, if it is a parallel composition of fragments, $P_{\nu} = \Pi_{i \in I} F_i$. The set of fragments in P_{ν} is $\text{Frag}(P_{\nu}) := \bigcup_{i \in I} \{F_i\}$. The set of all processes in restricted form is \mathcal{P}_r.

To compute the restricted form $P_{\nu} \in \mathcal{P}_r$ of a process $P \in \mathcal{P}$, we minimise the scopes of all restricted names not under a prefix and remove processes congruent with 0, in particular unused restricted names. Again, this does not change the sequential processes, $S(P) = S(P_{\nu})$. The restricted form of a process is invariant under structural congruence up to rewriting of fragments: $P \equiv Q$ iff $P_{\nu} \equiv Q_{\nu}$, where \equiv is the smallest equivalence on processes in restricted form that permits (1) associativity and commutativity with regard to $|$ and (2) replacing fragments by structurally congruent ones, i.e., $F \mid P_{\nu} \equiv G \mid P_{\nu}$ if $F \equiv G$.

On Boundedness in Depth in the π-Calculus
The behaviour of π-Calculus processes is determined by the reaction relation \(\rightarrow \subseteq P \times P \) defined by the following rules:

\[
\begin{align*}
(Tau) & \quad \tau.P + M \rightarrow P \\
(React) & \quad (x.y).P + M \mid \sigma(z).Q + N \rightarrow P\{z/y\} \mid Q \\
(Const) & \quad K[\bar{a}] \rightarrow P[\bar{a}/\bar{x}], \text{ if } K(\bar{x}) := P \\
(Par) & \quad P \rightarrow P' \quad \frac{P | Q \rightarrow P' | Q}{P \rightarrow P'} \\
(Res) & \quad P \rightarrow P' \quad \frac{\nu a.P \rightarrow \nu a.P'}{\nu a.P \rightarrow \nu a.P'} \\
(Struct) & \quad P \rightarrow P' \quad \frac{P \rightarrow P' \quad Q \rightarrow Q'}{P \rightarrow P' \quad Q \rightarrow Q'}
\end{align*}
\]

By Reach(\(P \)) we denote the set of all processes reachable from \(P \) with the reaction relation. The reaction relation is image finite, i.e., for every process \(P \) there are up to structural congruence only finitely many \(Q \) with \(P \rightarrow Q \).

To relate a reachable fragment \(F \in \text{Frag}(\text{Reach}(P)) \) with the initial process \(P \), we recall that \(F \) consists of derivatives of \(P \) [14]. Derivatives are sequential subprocesses of \(P \) gained by removing prefixes as if they were communicated. Let \(P \) use \(n \in \mathbb{N} = \{0, 1, 2, \ldots \} \) recursive definitions \(K_i(\bar{x}_i) := P_i \). We define \(\text{derivatives}(P) := \text{der}(P) \cup \bigcup_{i=1}^{n} \text{der}(P_i) \), where \(\text{der}(0) := \emptyset, \text{der}(K[\bar{a}]) := \{K[\bar{a}]\}, \text{der}(\Sigma_{\in \varnothing} \pi_i P_i) := \{\Sigma_{\in \varnothing} \pi_i P_i\} \cup \bigcup_{i \in I} \text{der}(P_i), \text{der}(P_1 | P_2) := \text{der}(P_1) \cup \text{der}(P_2), \text{and } \nu a.P := \text{der}(P). \) Then every \(F \in \text{Frag}(\text{Reach}(P)) \) is structurally congruent with \(\nu \bar{a}.(\Pi_{i \in \varnothing} Q_i, \sigma_i) \), where \(Q_i \in \text{derivatives}(P) \) and \(\sigma_i : \text{fn}(Q_i) \rightarrow \text{fn}(P) \cup \bar{a} \).

To define the function \(\text{depth} \), we require the nesting of restrictions measured as follows: \(\text{nest}_{\nu}(K[\bar{a}]) := 0, \text{nest}_{\nu}(\Sigma_{\in \varnothing} \pi_i P_i) := 0, \text{nest}_{\nu}(P_1 | P_2) := \max\{\text{nest}_{\nu}(P_1), \text{nest}_{\nu}(P_2)\}, \text{and } \text{nest}_{\nu}(\nu a.P) := 1 + \text{nest}_{\nu}(P) \).

Definition 1. The depth of \(F \in P_{\mathcal{F}} \) is the minimal nesting of restrictions in all fragments in the congruence class: \(\text{depth}(F) := \min\{\text{nest}_{\nu}(F') \mid F' \equiv F\} \).

A process \(P \in P \) is bounded in depth, if there is \(k_D \in \mathbb{N} \) such that the depth of all reachable fragments is less or equal to \(k_D \), i.e.,

\[
\exists k_D \in \mathbb{N} : \forall Q \in \text{Reach}(P) : \forall F \in \text{Frag}(Q_{\nu}) : \text{depth}(F) \leq k_D.
\]

The set of all processes that are bounded in depth is \(P_{\text{BD}} \).

Well-Quasi-Orderings A quasi-ordering (qo) on a set of elements \(A \) is a reflexive and transitive relation \(\preceq_A \subseteq A \times A \). We also call \((A, \preceq_A) \) a qo. The qo \((A, \preceq_A) \) is a well-quasi-ordering (wqo), iff in every infinite sequence \((a_i)_{i \in \mathbb{N}} \) in \(A \) there are two comparable elements, i.e., there are indices \(i < j \) with \(a_i \preceq_A a_j \).

A result by Higman [13] lifts a wqo \(\preceq_A \) on a set of elements \(A \) to a wqo \(\preceq_A^{\nu} \) on the set of finite sequences \(A^* \). The ordering \(u \preceq_A^{\nu} v \) demands \(u \) to be a subsequence of \(v \) which is dominated elementwise wrt. \(\preceq_A \), i.e., \(u = (u_1, \ldots, u_m) \) and \(v = (v_1, \ldots, v_n) \) and there are \(1 \leq i_1 < \ldots < i_m \leq n \) such that \(u_k \preceq_A v_{i_k} \) for all \(1 \leq k \leq m \).
In Section 4 we define a qo on fragments. To prove it is a wqo, we relate it with a wqo on trees. Consider a qo \((A, \preceq_A)\). The trees over \(A\) are defined by \(T ::= a \mid (a, (T_1, \ldots, T_n))\), where \(a \in A\). The set of all trees over \(A\) is \(\mathcal{T}(A)\). The height of a tree is measured similar to the nesting of restrictions in fragments, \(\text{height}(a) := 0\) and \(\text{height}((a, (T_1, \ldots, T_n))) := 1 + \max \{\text{height}(T_i) \mid 1 \leq i \leq n\}\). For \(n \in \mathbb{N}\) we denote by \(\mathcal{T}(A)_n\) the trees of height less or equal to \(n\).

We use the rooted tree embedding \(\preceq_{\mathcal{T}(A)}\) as qo on the trees in \(\mathcal{T}(A)\). Intuitively, \(T_1 \preceq_{\mathcal{T}(A)} T_2\) if \(T_1\) is a subtree of \(T_2\) so that the levels of \(T_1\) are preserved in \(T_2\). In particular, the root of \(T_1\) is mapped to the root of \(T_2\) and the leaves in \(T_1\) are leaves in \(T_2\). Technically, the rooted tree embedding is defined by two rules. If \(a \preceq_A a'\) then \(a \preceq_{\mathcal{T}(A)} a'\) (Elem) and if \(a \preceq_A a'\) and \((T_1, \ldots, T_m) \preceq_{\mathcal{T}(A)} (T'_1, \ldots, T'_n)\) then \((a, (T_1, \ldots, T_m)) \preceq_{\mathcal{T}(A)} (a', (T'_1, \ldots, T'_n))\) (Comp). It is not hard to see that the relation \(\preceq_{\mathcal{T}(A)} \subseteq \mathcal{T}(A) \times \mathcal{T}(A)\) is a qo. It is a wqo on trees of bounded height.

Lemma 1. If \((A, \preceq_A)\) is a wqo then \((\mathcal{T}(A)_n, \preceq_{\mathcal{T}(A)}\) is a wqo for all \(n \in \mathbb{N}\).

3 A Characterisation of Boundedness in Depth

In this section, we interpret fragments \(F\) as hypergraphs \(\mathcal{G}[F]\). With this interpretation we call the process \(P \in \mathcal{P}\) bounded in the simple paths, iff there is \(k_{\text{Sim}} \in \mathbb{N}\) such that the length of the longest simple path in the hypergraphs of all reachable fragments is less or equal to \(k_{\text{Sim}}\), i.e.,

\[
\exists k_{\text{Sim}} \in \mathbb{N} : \forall Q \in \text{Reach}(P) : \forall F \in \text{Frag}(Q) : \text{lsp}(\mathcal{G}[F]) \leq k_{\text{Sim}},
\]

where \(\text{lsp}(\mathcal{G}[F])\) denotes the length of the longest simple path in \(\mathcal{G}[F]\). We prove that a process is bounded in depth if and only if it is bounded in the simple paths. Thus, processes in \(\mathcal{P}_{BD}\) can be intuitively understood as hypergraphs where the length of the simple paths is bounded.

The main technical contribution is the definition of anchored fragments. In this section, we use them to derive boundedness in depth from boundedness in the simple paths (Lemma 3). In Section 4 they help us prove that the given qo is a wqo. In particular we need that the nesting of restrictions in anchored fragments is bounded if the depth is (Corollary 1). Before we turn to anchored fragments, we make the interpretation of processes as hypergraphs precise.

3.1 The Graph-theoretic Interpretation of the \(\pi\)-Calculus

A hypergraph [12] is a graph where several vertices may be connected with one hyperedge, i.e., it is a tuple \(\mathcal{G} = (V, E, l, \text{inc})\), where \(V\) is a finite set of vertices, \(E\) is a finite set of hyperedges, \(l : V \rightarrow \mathcal{P}\) is a vertex labelling function, and
inc : E → ℙ(V) is an incidence function. In the graphical representation we draw a dot labelled by \(l(v) \) for each \(v \in V \) and a box labelled by \(e \) for every \(e \in E \). There is an arc between \(v \) and \(e \), if \(v \in \text{inc}(e) \). In our setting edges are names, \(E \subseteq N \). We also call hypergraphs graphs and hyperedges edges.

Two graphs \(G_1 \) and \(G_2 \) are equal, \(G_1 = G_2 \), if \(E_1 = E_2 \) and there is a bijection \(f : V_1 \to V_2 \) that is compatible with the labelling and the incidence functions. Hence, the identity of elements \(v \in V \) is not important and we can always assume \(V_1 \cap V_2 = \emptyset \).

A path in \(G \) is a finite sequence \(p = (v_1, e_1, \ldots, v_n, e_n, v_{n+1}) \) such that the edges \(e_i \) connect \(v_i \) and \(v_{i+1} \), i.e., \(v_i, v_{i+1} \in \text{inc}(e_i) \) for all \(i \). The length of \(p \), \(\text{length}(p) \), is the number of edges in \(p \). By \(\text{fe}(p) \) we refer to the first element in \(p, v_1 \). A path is simple, if \(e_i \neq e_j \) for all \(i \neq j \). By \(\text{lsp}(G) \) we denote the length of the longest simple path in \(G \). The set of all paths in \(G \) is \(\text{Paths}(G) \).

We require three operations on graphs. The disjoint union of \(G_1 \) and \(G_2 \), where \(E_1 \cap E_2 = \emptyset \), puts both graphs side by side. Formally, it is the graph \(G_1 \uplus G_2 := (V_1 \uplus V_2, E_1 \uplus E_2, l_1 \uplus l_2, \text{inc}_1 \uplus \text{inc}_2) \). The connect operator takes a graph \(G \) and a name \(a \notin E \). The result is the graph \(G \uplus a \), where \(a \) is added to \(E \). The new edge connects the processes that have \(a \) as a free name, i.e., \(G \uplus a := (V, E \uplus \{a\}, l, \text{inc} \uplus \{(a, V_a)\}) \), where \(V_a \subseteq V \) with \(v \in V_a \) iff \(a \in \text{fn}(l(v)) \). We define the application of a substitution \(\{a/x\} \) to \(G \) by \(G\{a/x\} := (V, E, l', \text{inc}) \), where \(l'(v) := l(v)[a/x] \) for all \(v \in V \).

The graph-theoretic interpretation (1) creates a vertex for every sequential process, (2) takes the restricted names not under prefixes as the edges, and (3) inserts an arc where a name is free in a process. Technically, it is the function \(G[-] \) defined by \(G[\emptyset] := (\emptyset, \emptyset, \emptyset, \emptyset) \), \(G[K[a]] := (\{v\}, \emptyset, \{v, K[a]\}) \), \(G[\Sigma_{i \in I \neq \emptyset} P_i]\) := \((\{v\}, \emptyset, \{v, \Sigma_{i \in I \neq \emptyset} P_i\}) \), \(G[P \mid Q] := G[P] \uplus G[Q] \), and \(G[\exists a.P] := G[P] \uplus a \) if \(a \in \text{fn}(P) \), \(G[P] \) otherwise.

Structurally congruent processes \(P_1 \equiv P_2 \) are mapped to equivalent hypergraphs \(G[P_1] \approx G[P_2] \). The relation \(\approx \) is the smallest equivalence on hypergraphs where replacement of vertex labels by structurally congruent processes is allowed, \((V \uplus \{v\}, E, l \uplus \{(v, P)\}, \text{inc}) \approx (V \uplus \{v\}, E, l \uplus \{(v, Q)\}, \text{inc}) \), if \(P \equiv Q \), and renaming of edges together with the attached processes is possible, \(G \uplus a \approx (G \{b/a\}) \uplus b \), if \(b \notin \text{fn}(l(v)) \) for all \(v \in V \). The equivalence \(\approx \) preserves the length of the longest simple path, \(G_1 \approx G_2 \) implies \(\text{lsp}(G_1) = \text{lsp}(G_2) \).

3.2 Anchored Fragments

By definition, all fragments under a restriction \(\nu a \) share the name \(a \). In anchored fragments, we demand that distinguished processes inside the fragments, the anchors, share the name \(a \). The corresponding function \(\text{anc} \) gives for a fragment \(F_{A_i} \) in \(\nu a.(F_{A_1} \mid \ldots \mid F_{A_n}) \) the process \(\text{anc}(F_{A_i}) = P \in S(F_{A_i}) \) that knows the name, i.e., \(a \in \text{fn}(P) \). When descending an anchored fragment \(F_A = \nu a.(F_{A_1} \mid \ldots \mid F_{A_n}) \) using the function \(\text{nest}_a \), this guarantees that the vertices labelled by the anchors \(\text{anc}(F_{A_i}) \) are connected via \(a \) in \(G[F_A] \).
Definition 2. The set of anchored fragments \((F_A, G_A) \in \mathcal{P}_A\) is defined by

\[
F_A := \forall a \in \text{fn} (\text{anc}(F_A)) \text{ for all } i, \text{ with } \text{anc}(K[\widetilde{a}]) := K[\widetilde{a}], \text{anc}(\Sigma_{i \in \pi} \pi_i P_i) := \Sigma_{i \in \pi} \pi_i P_i, \text{ and } \text{anc}(\nu a (F_A) \mid \ldots \mid F_A)) := \text{anc}(F_A).
\]

\[
\text{where } a \in \text{fn } (\text{anc}(F_A)) \text{ for all } i, \text{ with } \text{anc}(K[\widetilde{a}]) := K[\widetilde{a}], \text{anc}(\Sigma_{i \in \pi} \pi_i P_i) := \Sigma_{i \in \pi} \pi_i P_i, \text{ and } \text{anc}(\nu a (F_A) \mid \ldots \mid F_A)) := \text{anc}(F_A).
\]

Of course, anchored fragments are fragments. We now show that every fragment can be rewritten as an anchored fragment using structural congruence. In the proof, it is important that every sequential process inside a fragment can be chosen as the anchor.

Lemma 2. Consider \(F \in \mathcal{P}_F\) and a process \(P \in S(F)\). Then there is an anchored fragment \(F_A \in \mathcal{P}_A\) such that \(F_A \equiv F\), \(S(F_A) = S(F)\), and \(\text{anc}(F_A) = P\).

We explain the induction step in the proof of Lemma 2. Given fragment \(F\) we compute the standard form \(\nu a.(P_1 \mid \ldots \mid P_n)\). Since this does not change the sequential processes, one process \(P_3\) is the given process \(P\), wlog. \(P_1\). We split the set of names \(\tilde{a}\) into three subsets \(\tilde{a}_1, \tilde{a}_2, \tilde{a}_3\) as follows. A name \(a\) that is shared by \(P\) and \(P_2 | \ldots | P_n\), i.e., \(a \in \text{fn}(P) \cap \text{fn}(P_2 | \ldots | P_n)\), is in the set \(\tilde{a}_1\). A name which is only in the free names of \(P\) is in \(\tilde{a}_2\). The remaining names are in \(\tilde{a}_3\). Shrinking the scopes yields \(\nu \tilde{a}_1.(\nu \tilde{a}_2.P | \nu \tilde{a}_3.(P_2 | \ldots | P_n))\).

To transform \(\nu \tilde{a}_3.(P_2 | \ldots | P_n)\) into a parallel composition of anchored fragments, we compute the restricted form. It consists of several fragments, \((\nu \tilde{a}_3.(P_2 | \ldots | P_n))_\nu = G_1 | \ldots | G_m\). By construction, every \(G_i\) contains a process \(P_{A_i}\) sharing a name with \(P\). Since each \(G_i\) contains less processes than \(F\) we can apply the induction hypothesis. This yields anchored fragments \(G_A\), where \(\text{anc}(G_A) = F_A\), shares a name with \(P\). We now have \(\nu \tilde{a}_1.(\nu \tilde{a}_2.P | G_{A_1} | \ldots | G_{A_m})\). As the names in \(\tilde{a}_1\) are shared by different \(G_{A_i}\), we minimise their scopes to get the required anchored fragment.

Example 1. Let \(F = \nu b_1, b_2, b_3.a.(K[a, b_1] | L[a, b_2] | L[a, b_3])\). We construct the anchored fragment \(F_A\) that has \(K[a, b_1]\) as the anchor, \(\text{anc}(F_A) = K[a, b_1]\).

The fragment \(F\) already is in standard form. We split the set of names \(\{a, b_1, b_2, b_3\}\) into \(\tilde{a}_1 = \{a\}\), \(\tilde{a}_2 = \{b_1\}\), and \(\tilde{a}_3 = \{b_2, b_3\}\). We shrink the scopes of all \(\tilde{a}\) which gives \(\nu a.(\nu b_1.K[a, b_1] | \nu b_2, b_3.(L[a, b_2] | L[a, b_3]))\). The restricted form of \(\nu b_2, b_3.(L[a, b_2] | L[a, b_3])\) is \(\nu b_2.L[a, b_2] | \nu b_3.L[a, b_3]\). Both fragments, \(\nu b_2.L[a, b_2] \text{ and } \nu b_3.L[a, b_3]\), are also anchored fragments where the anchors share the name \(a\) with \(K[a, b_1]\). The scope of \(a\) is minimal. Our computation returns \(\nu a.(\nu b_1.K[a, b_1] | \nu b_2, b_3.L[a, b_2] | \nu b_3.L[a, b_3])\).

For anchored fragments \(F_A\), the nesting of restrictions corresponds to the length of a simple path \(p\) in the graph \(G[F_A]\), \(\text{nest}_\nu(F_A) = \text{length}(p)\) for some simple path \(p \in \text{Paths}(G[F_A])\). In the proof, we need that the first element of \(p\) is labelled by the anchor of \(F_A\), \(\text{ance}(p) = \text{anc}(F_A)\). We illustrate the construction of a suitable path \(p\) in the induction step. The idea is to extend a path \(p'\) that exists by the hypothesis by an edge and a vertex.
As $G \rightarrow G$ with a, the length of the simple paths is bounded, the depth is bounded as well.

Example 2. Consider $F_A = \nu a.(\nu b_1.K[a, b_1] | \nu b_2.L[a, b_2] | \nu b_3.L[a, b_3])$.

The figure to the left shows a simple path p in $G[F_A]$ with $\text{length}(p) = 2 = \text{nest}_\nu(F_A)$ and $l(fe(p)) = K[a, b_1] = \text{anc}(F_A)$. By the hypothesis, there is a simple path p' in $G[\nu b_3.L[a, b_3]]$ with $\text{length}(p') = 1 = \text{nest}_\nu(\nu b_3.L[a, b_3])$ and $l(fe(p')) = L[a, b_3] = \text{anc}(\nu b_3.L[a, b_3])$. This path is $p' = (L[a, b_1], b_3, L[a, b_3])$, depicted by dashed lines. As $G[\nu b_3.L[a, b_3]]$ is embedded in $G[F_A]$ (dotted line), p' is a path in $G[F_A]$. The anchor $L[a, b_3]$ and the anchor of F_A, $K[a, b_1]$, are connected with a. We define $p = (\text{anc}(F_A), a, p') = (K[a, b_1], a, L[a, b_3], b_3, L[a, b_3])$. It extends p' by the bold lines.

3.3 The Characterisation of Boundedness in Depth

Fragment F is structurally congruent with an anchored fragment F_A (Lemma 2). As $\text{depth}(F) \leq \text{nest}_\nu(F_A) = \text{length}(p)$ for some simple path p in $G[F_A]$ and as the length of the simple paths is bounded, the depth is bounded as well.

Lemma 3. If $P \in \mathcal{P}$ is bounded in the simple paths by k_{Sim} then P is bounded in depth by k_{Sim} as well.

It is easy to check that the length of the longest simple path in $G[F]$ is bounded by the nesting of restrictions in F as follows: $\text{ls}(G[F]) \leq 2^{\text{nest}_\nu(F)} - 1$. Let F be bounded in depth. There is a fragment $F_D \equiv F$ where the nesting of restrictions is minimal, $\text{nest}_\nu(F_D) = \min \{\text{nest}_\nu(F') \mid F' \equiv F\} = \text{depth}(F)$. Since the graphs of F and F_D are equivalent, $\text{ls}(G[F]) = \text{ls}(G[F_D])$ holds. The mentioned inequality and the choice of F_D yield the following lemma.

Lemma 4. If $P \in \mathcal{P}$ is bounded in depth by k_D then P is bounded in the simple paths by $2^{k_D} - 1$.

Combined, Lemma 3 and Lemma 4 prove our first main theorem.

Theorem 1. A process $P \in \mathcal{P}$ is bounded in depth if and only if it is bounded in the simple paths.

In the following section we understand anchored fragments as trees of bounded height. The boundedness is justified by the following corollary of Lemma 4.

Corollary 1. Let P be bounded in depth by k_D and $F_A \in \text{Frag}(\text{Reach}(P))$ then $\text{nest}_\nu(F_A) \leq 2^{k_D} - 1$.

4 The Transition Systems of \mathcal{P}_{BD} are Well-structured

Our second main result states that processes of bounded depth have well-structured transition systems (WSTS) [10, 1, 11]. A WSTS is a tuple (S, \sim, \leq),
where \((S, \leadsto)\) is an image finite \textit{transition system} and \(\preceq \subseteq S \times S\) is a wqo on the \textit{states} \((s, t) \in S\) which is required to be a \textit{simulation}. By definition, the relation \(s \preceq t\) is a simulation if state \(t\) imitates the transition behaviour of \(s\), i.e., \(s \preceq t\) and \(s \leadsto s'\) implies there is \(t'\) with \(t \leadsto t'\) and \(s' \preceq t'\). To instantiate the framework, we define a \(qo \preceq_{\mathcal{P}_{\text{BD}}}\) on processes and prove it \((1)\) to be a wqo on \textit{Reach} \((P)\) where \(P\) is bounded in depth (Section 4.1) and \((2)\) to be a simulation (Section 4.2). We conclude with a decision procedure for termination.

4.1 A Well-Quasi-Ordering for \(\mathcal{P}_{\text{BD}}\)

Our wqo \(\preceq_{\mathcal{P}_{\text{BD}}}\) on processes is derived from a wqo on fragments. The idea of the \textit{fragment ordering} \(\preceq_{\mathcal{F}}\) is to use the rooted tree embedding and close it under structural congruence. The leaves in Rule (Elem) correspond to elementary fragments: \(F_e \preceq_{\mathcal{F}} F_e\) (Rule \((1)\)). Fragment \(\nu a.(\Pi_{i \in I} F_i)\) is dominated by \(\nu a.\Pi_{i \in I} G_i \mid \Pi_{j \in J} G_j\) if the \(G_i\) dominate the \(F_i\). This mimics Rule (Comp). If \(F'\) is smaller than \(G'\) then every \(F \equiv F'\) is smaller than \(G \equiv G'\) (Rule \((3)\)).

Definition 3. The fragment ordering \(\preceq_{\mathcal{F}} \subseteq \mathcal{P}_{\mathcal{F}} \times \mathcal{P}_{\mathcal{F}}\) is defined by:

\[
\begin{align*}
(1) & \quad F_e \preceq_{\mathcal{F}} F_e \\
(2) & \quad F_i \preceq_{\mathcal{F}} G_i \text{ for all } i \in I \\
(3) & \quad F \equiv G' \preceq_{\mathcal{F}} G \iff F \preceq_{\mathcal{F}} G.
\end{align*}
\]

Reflexivity of \(\preceq_{\mathcal{F}}\) is immediate, transitivity follows from Lemma 8. To relate the fragment ordering \(\preceq_{\mathcal{F}}\) with the rooted tree embedding \(\preceq_{\mathcal{T}(A)}\), we interpret fragments \(F\) as (syntax) trees \(T[F]\) as follows: an elementary fragment is a single leaf, \(T[F_e] := F_e\), a fragment \(\nu a.(F_1 \mid \ldots \mid F_n)\) is the tree \(T[\nu a.(F_1 \mid \ldots \mid F_n)] := \langle a, (T[F_1], \ldots, T[F_n]) \rangle\). If we assume that the set \(A\) contains the sequential processes and the restricted names in \(F\) that are not under prefixes, i.e., \(S(F) \cup \text{rn} (F) \subseteq A\), then \(T[F]\) is a tree over \(A\), \(T[F] \in T(A)\). If we furthermore assume that \(A\) is ordered by the identity, i.e., we consider the \(qo\) \((A, \text{id})\), then the rooted tree embedding implies the fragment ordering.

Lemma 5. Consider the \(qo\) \((A, \text{id})\). If \(T[F] \preceq_{\mathcal{T}(A)} T[G]\) then \(F \preceq_{\mathcal{F}} G\) for all fragments \(F, G \in \mathcal{P}_{\mathcal{F}}\).

To conclude \(\preceq_{\mathcal{F}}\) is a wqo from the fact that \(\preceq_{\mathcal{T}(A)}\) is a wqo with Lemma 5, \((A, \text{id})\) needs to be a wqo (cf. Lemma 1). This is the case if \(A\) is finite. Thus, we need fragments that consist of a finite set of sequential processes and a finite set of restricted names. The idea is to reuse restricted names in parallel compositions, i.e., here we relax the requirement that a name is bound at most once. For every \(i \in \mathbb{N}\) we define \(\text{con}_i : \mathcal{P}_{\mathcal{F}} \to \mathcal{P}_{\mathcal{F}}\) by \(\text{con}_i(F_e) := F_e\) and \(\text{con}_i(\nu a.(F_1 \mid \ldots \mid F_n)) := \nu a_i.(\text{con}_{i+1}(F_1)\{u_i/a\} \mid \ldots \mid \text{con}_{i+1}(F_n)\{u_i/a\})\), where wlog. \(u_i\) is fresh for \(F_1, \ldots, F_n\). Of course, \(F \equiv \text{con}_i(F)\) and the restricted names are determined by \(\text{nest}_i(F)\) since \(\text{rn} (\text{con}_i(F)) \subseteq \{u_i, \ldots, u_i+\text{nest}_i(F)\}\).
Example 3. Consider \(F_A = \nu a.(\nu b_1.K[a,b_1] \mid \nu b_2.L[a,b_2] \mid \nu b_3.L[a,b_3]) \). We compute \(\text{con}_0(F_A) = \nu a_0.\nu a_1.K[u_0,u_1] \mid \nu u_1.L[u_0,u_1] \mid \nu u_1.L[u_0,u_1] \). \(\diamond \)

Following the argumentation above, we now build particular anchors of fragments \(F_A \) that consist of named derivations where the restricted names are changed by \(\text{con}_0 \).

Lemma 6. Let \(F \in \text{Frag}(\text{Reach}(P)) \) for some \(P \in \mathcal{P} \). There is an anchored fragment \(F_A \equiv F \) with \(\text{rn}(F_A) \subseteq \{u_0, \ldots, u_{\text{nest}_u(F_A)}\} \) and \(\text{S}(F_A) \subseteq \{Q \sigma \mid Q \in \text{derivatives}(P) \) and \(\sigma : \text{fn}(Q) \rightarrow \text{fn}(P) \cup \{u_0, \ldots, u_{\text{nest}_u(F_A)}\} \).

Proof. Let \(F \in \text{Frag}(\text{Reach}(P)) \). We recalled that \(F \equiv \nu a.(Q_1 \sigma_1 \mid \ldots \mid Q_n \sigma_n) \) where \(Q_i \in \text{derivatives}(P) \) and \(\sigma_i : \text{fn}(Q_i) \rightarrow a \cup \text{fn}(P) \) in Section 2. We compute the restricted form, \((\nu a.(Q_1 \sigma_1 \mid \ldots \mid Q_n \sigma_n))_\nu =: F' \). It is a fragment \(F' \) according to \(\equiv \). For \(F' \) we compute \(F_A' \) with Lemma 2. We now have \(F \equiv F_A' \) and \(\text{S}(F_A') \subseteq \{Q \sigma \mid Q \in \text{derivatives}(P) \) and \(\sigma : \text{fn}(Q) \rightarrow a \cup \text{fn}(P) \).

With the function \(\text{con}_0 \) we change the restricted names: \(\text{con}_0(F_A') \equiv F_A' \) and \(\text{rn}(\text{con}_0(F_A')) \subseteq \{u_0, \ldots, u_{\text{nest}_u(F_A')}\} \). The renaming changes the set of sequential processes. They are now derivatives where the substitutions map into \(\text{fn}(P) \cup \{u_0, \ldots, u_{\text{nest}_u(F_A')}\} \). Thus, \(\text{con}_0(F_A') \) satisfies the requirements. \(\square \)

To see that \(\preceq_F \) is a wqo on the reachable fragments of \(P \in \mathcal{P}_BD \), let \(k_0 \) be a bound on the depth. We define the set \(A := \{u_0, \ldots, u_{2^{k_0}-1} \} \cup \{Q \sigma \mid Q \in \text{derivatives}(P) \) and \(\sigma : \text{fn}(Q) \rightarrow \text{fn}(P) \cup \{u_0, \ldots, u_{2^{k_0}-1} \} \). Obviously, \(A \) is finite and thus \((A, \text{id}) \) is a wqo.

Let \((F_i)_{i \in \mathbb{N}} \) be a sequence in \(\text{Frag}(\text{Reach}(P)) \). Every \(F_i \) is structurally congruent with an anchored fragment \(F_{A_i} \) in Lemma 6. Corollary 1 yields \(\text{nest}_u(F_{A_i}) \leq 2^{k_0} - 1 \). Thus \(T[F_{A_i}] \in T(A) \) with the set \(A \) we just defined. The height of \(T[F_{A_i}] \) is equal to the nesting of restrictions in \(F_{A_i} \). Thus, we have a sequence \((T[F_{A_i}])_{i \in \mathbb{N}} \) of trees in \(T(A)_{2^{k_0}-1} \). According to Lemma 1, \((T(A)_{2^{k_0}-1}, \preceq_{T(A)}) \) is a wqo and so there are \(i < j \) with \(T[F_{A_i}] \preceq_{T(A)} T[F_{A_j}] \). Since \(A \) is ordered by the identity, \(F_{A_i} \preceq_F F_{A_j} \) with Lemma 5. With Rule (3) we conclude \(F_i \preceq_F F_j \). The following lemma holds.

Lemma 7. Let \(P \in \mathcal{P}_BD \). Then \((\text{Frag}(\text{Reach}(P)), \preceq_F) \) is a wqo.

We define the quasi-order \(\preceq_{\mathcal{P}_BD} \) on \(\text{Reach}(P) \equiv \{[P \in F] \mid \text{P}_i \in \mathcal{G} \text{ for all } i \} \) if \(F_i \preceq_F G_i \) for all \(i \in I \). \(\mathcal{W}_F \) follows from Lemma 7 and Higman’s result.

Proposition 1. Let \(P \in \mathcal{P}_BD \). Then \((\text{Reach}(P)/\equiv, \preceq_{\mathcal{P}_BD}) \) is a wqo.

4.2 The Relation \(\preceq_{\mathcal{P}_BD} \) is a Simulation

In the proof that \(\preceq_{\mathcal{P}_BD} \) is a simulation, the following Lemma 8 is crucial. It relates the fragment ordering \(F \preceq_F G \) with the standard form of \(F \). This standard form is covered by \(G \) in a way that reveals \(\preceq_F \) is a simulation.

Lemma 8. For all \(F, G \in \mathcal{F}_x: F \preceq_F G \) if and only if \(F \equiv \nu a.(P_1 \mid \ldots \mid P_n) \) in standard form and \(G \equiv \nu a.(P_1 \mid \ldots \mid P_n \mid R) \) for some \(R \in \mathcal{P} \).
Let \([P] = [\Pi_{i \in I} F_i] \preceq_{\mathcal{P}_{BD}} [\Pi_{i \in I} G_i] = [Q] \), which means \(F_i \preceq_{\mathcal{P}} G_i \) for all \(i \in I \). With Lemma 8 we get \(\Pi_{i \in I} F_i \equiv \Pi_{i \in I} \nu u_i (P_{i_1} | \ldots | P_{i_n}) \). We extrude the names \(\nu u_i \) and check that \([P] \rightarrow [P'] \) implies \([Q] \rightarrow [Q'] \) with a case distinction. The direction from right to left in Lemma 8 yields \([P'] \preceq_{\mathcal{P}_{BD}} [Q'] \).

Proposition 2. The relation \(\preceq_{\mathcal{P}_{BD}} \) is a simulation on \(\mathcal{P}/\equiv \).

With Proposition 1, Proposition 2, and the fact that \(\rightarrow \) is image finite up to \(\equiv \), we conclude that processes of bounded depth have WSTS.

Theorem 2. Let \(P \in \mathcal{P}_{BD} \). Then \(\text{Reach}(P)/\equiv, \rightarrow, \preceq_{\mathcal{P}_{BD}} \) is a WSTS.

4.3 Decidability of Termination for \(\mathcal{P}_{BD} \)

The WSTS \((S, \rightarrow, \preceq)\) has a non-terminating computation from \(s_0 \in S \) iff an infinite sequence \(s_0 \leadsto s_1 \leadsto \ldots \) exists. If \(\leadsto \) is effectively computable and \(\preceq \) is decidable the following algorithm decides the termination problem [10, 11].

Let \(s_0 \in S \). We construct the finite reachability tree \(\text{FRT}(s_0) \). The root is labelled by \(s_0 \). For every node labelled by \(s \) in the tree, we create a new node for every successor \(t \) of \(s \). We connect the node labelled by \(s \) and the new node. If there is a node labelled by \(s' \) on the path from the root to the new node with \(s' \preceq t \), we label the new node by \(t \). Otherwise we label it by \(t \). We do not create successors for nodes \(t \). The idea is that \(t \) with \(s' \preceq t \) can simulate the behaviour of \(s' \) and thus repeat \(s' \leadsto \ldots \leadsto t \).

Proposition 3 [*10, 11]*. A WSTS \((S, \rightarrow, \preceq)\) has a non-terminating computation from \(s_0 \in S \) if and only if \(\text{FRT}(s_0) \) contains a node \(t^+ \). As \(\preceq \) is a wqo, the tree \(\text{FRT}(s_0) \) is finite and containment of \(t^+ \) is decidable.

The reaction relation is effectively computable and \(\preceq_{\mathcal{P}_{BD}} \) is decidable.

Corollary 2. For \(P \in \mathcal{P}_{BD} \) it is decidable whether there is a non-terminating computation starting from \([P] \).

Example 4. Let \(P_0 = \nu u_0. (\nu u_1.K[u_0, u_1] | \nu u_1.L[u_0, u_1] | \nu u_1.L[u_0, u_1]) \) with \(K(x, y) := K(x, y) | \nu z.L(z) \) and \(L(x, y) := \pi(y) \). Then \(\text{FRT}([P_0]) \) is

\[
\begin{align*}
[P_0] & \\
[P_1] & = [P_0] | \nu u_0. (\nu u_1.K[u_0, u_1] | \nu u_1.L[u_0, u_1]) \\
[P_2] & = \nu u_0. (\nu u_1.K[u_0, u_1] | \nu u_1.L[u_0, u_1]) \\
[P_3] & = \nu u_0. (\nu u_1.K[u_0, u_1] | \nu u_1.L[u_0, u_1]) \\
[P_4] & = \nu u_0. (\nu u_1.K[u_0, u_1] | \nu u_1.L[u_0, u_1])
\end{align*}
\]

The root of \(\text{FRT}([P_0]) \) is labelled by \([P_0] \). We have \([P_0] \rightarrow [P_1] \) and \([P_0] \rightarrow [P_2] \). Thus, we insert two new nodes. For the first node, \([P_3] \preceq_{\mathcal{P}_{BD}} [P_1] \) holds, so we label it by \([P_1]^+ \). Since \([P_3] \npreceq_{\mathcal{P}_{BD}} [P_2] \) does not hold, the second node is labelled by \([P_2] \). With \([P_2] \rightarrow [P_3] \) we construct a new node. As \([P_0] \npreceq_{\mathcal{P}_{BD}} [P_3] \) but \([P_2] \preceq_{\mathcal{P}_{BD}} [P_3] \), we label it by \([P_3]^+ \). The remaining nodes are constructed similarly with \([P_4] \preceq_{\mathcal{P}_{BD}} [P_3] \). The existence of \([P_1]^+ \) implies the system has a non-terminating computation from \([P_0] \).

\[\Diamond\]
5 Related Work and Conclusion

The interpretation of processes as graphs was proposed in [15, 16] and has been recalled in [17, 18] for the π-Calculus. We related the depth of a process P with a function on the graph $G_{\|P\|}$. We are not aware of similar results in the literature.

The proof required an intricate normal form called anchored fragments. In [6, 8] decidability of structural congruence relations was investigated. The authors proposed normal forms related with the restricted form in [14]. The standard form of processes is due to [17]. Anchored fragments are more stringent than the normal forms above, and thus reveal more information about the connection structure of process terms.

Finkel generalised the coverability graph procedure for Petri nets to what he called WSTS [10]. He presented algorithms to decide termination and boundedness problems in the general setting. Abdulla et. al. generalised decidability results of temporal properties and simulation relations for lossy channel systems to their notion of WSTS [1]. Both definitions were unified in [11]. This paper is the first to instantiate the WSTS framework for the π-Calculus. Compatibility with the reaction relation required a non-trivial ordering \preceq_{PBD}.

Based on a translation of π-Calculus into multisets, orderings on processes defined by multiset containment relations were studied in [7]. We considered the more intricate wqos, i.e., \preceq_{PBD} needed to be well-behaved under reaction.

In [19, 5] type systems for the π-Calculus were presented that ensure termination of well-typed processes. We observe that terminating processes are always bounded in depth due to the finite number of reachable processes. Furthermore, our result is more general in that we instantiate the WSTS framework for P_{BD} and then derive decidability of termination as a corollary. To turn our decidability result into a practical procedure, approximations on \preceq_{PBD} should be developed to prune the finite reachability tree.

References