

TCS

Dr. Jürgen Koslowski

Einführung in die Logik, Übungsklausur 2023-07-17

Aufgabe 1 [12 PUNKTE]

1. [6 PUNKTE] Wandeln Sie die Formel

$$A = \neg \Big(\neg s \to \big((p \lor q) \land r \big) \Big)$$

in eine möglichst kleine erfüllungsäquivalente KNF in Mengenschreibweise um, indem Sie geschickt(!) eine Tseitin-Transformation einsetzen.

2. [6 PUNKTE] Zeigen Sie mit Hilfe der graphischen Resolutionsmethode (mit Streichung von Klauseln), bei der pro Schritt alle Resolventen mit einer bestimmten Variablen gebildet werden, die Unerfüllbarkeit von

$$\Gamma = \{ p \lor q \lor r, \neg q, \neg p \lor q \lor r \lor s, q \lor r \lor \neg s, q \lor \neg r \}$$

Verwenden Sie zwecks leichterer Korrektur die Reihenfolge q, r, p, s.

Lösungsvorschlag:

1. Elimination der Implikation und der führende Negationen liefert

$$A \vDash \neg s \land \neg ((p \lor q) \land r)$$

Der Hauptjunktor ist \wedge und bei $\neg s$ handelt es sich bereits um eine Klausel. Insofern ist nur $\neg((p \lor q) \land r)$ zu behandeln. Wieder ist die führende Negation zu entfernen:

$$B := \neg (p \lor q) \lor \neg r$$

hat eine echte binäre Teilformel:

$$t_0 \leftrightarrow p \lor q$$

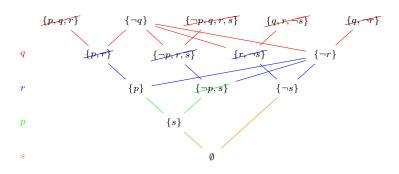
Das liefert

$$\textit{Tst}(B) := \{\neg t_0, \neg r\}\{p, q, \neg t_0\}, \{\neg p, t_0\}, \{\neg q, t_0\} \in \mathsf{KNF}$$

Insgesamt ist A also erfüllungsäquivalent zu

$$\{\neg s\}\{\neg t_0, \neg r\}\{p, q, \neg t_0\}, \{\neg p, t_0\}, \{\neg q, t_0\}$$

2.



Aufgabe 2 [12 PUNKTE]

Anwendung des Davis-Putnam-Verfahrens: Wenden Sie nach Möglichkeit die Unit- oder die Pure-Literal-Regel an, bevor sie zur Splitting-Regel greifen:

- (a) [6 PUNKTE] $\{p \land q, q \rightarrow r\} \models r$
- (b) [6 PUNKTE] Die Klauselmenge $\{\{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\}\}$ ist erfüllbar; wieviele Möglichkeiten gibt es, mit Davis-Putnam zum Ziel zu kommen?

Lösungsvorschlag:

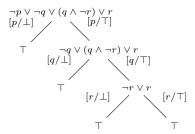
(a) Die Endlichkeit von Γ und das Deduktionstheorem liefern

$$\models (p \land q) \land (\neg q \lor r) \rightarrow r$$

Die zugehörige NNF ergibt sich zu

$$\models \neg p \lor \neg q \lor (q \land \neg r) \lor r$$

Zum Nachweis der Tautologie-Eigenschaft ist der gesamte binäre Baum zu untersuchen, ob jedes Blatt den Wert ⊤ annimmt. (Die Unit- und Pure-Literal Regeln dienen zum Ausschluß von garantiert nicht erfüllbaren Zweigen bei der Untersuchung der Erfüllbarkeit, nützen also nichts bei der Überprüfung der Tautologie-Eigenschaft!)



Da alle Zweige dess vollständigen binären Baums(!) in \top enden, handelt es sich um eine Tautologie.

VIEL geschickter ist es allerdings, die Nicht-Erfüllbarkeit von $\{p \land q, \neg q \lor r, \neg r\}$ bzw. der Konjunktion $p \land q \land (\neg q \lor r) \land \neg r$ dieser Formeln nachzuweisen. Parallele Anwendung der Unit-Regeln für p, q und r liefert sofort \bot .

(b) Hier ist die Pure-Literal Regel sowohl für r wie auch für s und für t anwendbar. Sobald nur noch eine Klausel übrigbleibt, ist die Pure-Literal Regel für jedes vorkommende Atom anwendbar:

$$\begin{aligned} \{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\} \\ & \Big| \quad [r/\bot] \\ \{p,q,\neg t,s\} \\ & \Big| \quad [s/\top] \, \Big| \, [p/\top] \, \Big| \, [t/\bot] \\ & \top \end{aligned}$$

oder

$$\begin{cases} \{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\} \\ & \Big| [s/\top] \\ \{\neg p,\neg q,\neg r\} \\ & \Big| [p/\bot] \, \Big| [q/\bot] \, \Big| [r/\bot] \\ \top \end{cases}$$

oder

$$\{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\}\}$$

$$\{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\}\}$$

$$[t/\bot]$$

$$\{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\}\}$$

$$[s/\top]$$

$$[p/\bot] | [q/\bot] | [r/\bot]$$

$$[p/\bot] | [q/\bot] | [r/\bot]$$

$$[p/\bot] | [q/\bot] | [r/\bot]$$

Dabei steht | für "oder". Das liefert 13 Möglichkeiten. Erlaubt man die parallele Anwendung der Pure-Literal Regeln (vergl. Blatt 4, Aufgabe 7) ergeben sich weitere Möglichkeiten:

$$\begin{cases} \{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\} \\ & \Big| \left[\langle r,s\rangle/\langle\bot,\top\rangle \right] \Big| \left[\langle r,s,t\rangle/\langle\bot,\top,\bot\rangle \right] \Big| \left[\langle r,t\rangle/\langle\bot,\bot\rangle \right] \\ & \top \end{cases}$$

sowie

$$\begin{cases} \{p,q,\neg t,s\}, \{\neg p,\neg q,\neg r,s\}, \{\neg p,\neg q,\neg r\} \\ & \Big| \left[\langle s,t \rangle / \langle \top, \bot \rangle \right] \\ & \{\neg p,\neg q,\neg r\} \\ & \Big| \left[p/\bot \right] \Big| \left[q/\bot \right] \Big| \left[r/\bot \right] \\ & \top \end{cases}$$

Das war keine gute Aufgabe :-((Die beste Lösung dürfte die maximale parallele Substitution $[\langle r, s, t \rangle / \langle \bot, \top, \bot \rangle]$ sein. Dass man mit gewissen partiellen parallelen Substitutionen genauso schnell zum Ziel kommt, ist Zufall.

Aufgabe 3 [12 PUNKTE]

Wir betrachten die Signatur $\mathcal{S}_{\text{arith}} = \{0_{/0}, 1_{/0}, +_{/2}, *_{/2}; <_{/2}\}$ der Arithmetik und die Struktur $\mathcal{Q} = \langle \mathbb{Q}, I \rangle$ mit den rationalen Zahlen als Wertebereich und der üblichen Interpretation der Operatoren und Prädikate.

Für jedes $n \in \mathbb{N}$ setze $B_n := 0 < x \land \underbrace{(1 + \dots + 1)}_{n \text{ mal}} * x < 1$ mit freiem x und definiere

$$\Gamma := \{ A \in \mathbf{FO}(\mathcal{S}) : A \text{ geschlossen, und } \models_{\mathcal{Q}} A \} \cup \{ B_n : n \in \mathbb{N} \}$$

- (a) [6 Punkte] Zeigen Sie, dass Γ erfüllbar ist.
- (b) [6 PUNKTE] Zeigen Sie, dass es keine Belegung $\sigma \in \mathbb{Q}^{\mathcal{V}}$ gibt mit $\hat{\sigma}(G) = \mathcal{M}[\![G]\!](\sigma) = 1$ für alle $G \in \Gamma$, d.h., jedes Modell für Γ ist ein Nichtstandardmodell für die abgeschlossenen Formeln in Γ .

Lösungsvorschlag:

(a) [6 PUNKTE] Ist $\Delta \subseteq \Gamma$ endlich, so existiert ein maximales $m \in \mathbb{N}$ mit $B_m \in \Delta$. Nun wähle eine Belegung der Variablen $\sigma \in \mathbb{Q}^{\mathcal{V}}$ mit $\sigma(x) := (m+1)^{-1}$. Nun bildet $\hat{\sigma}$ alle geschlossenen Formeln aus Δ trivialerweise auf 1 ab, und nach Konstruktion auch alle Formeln der Form B_n , die in Δ liegen, da diese $n \leq m$ und folglich $(m+1)^{-1} < (n+1)^{-1}$ erfüllen.

Da Γ endlich erfüllbar ist, ist Γ aufgrund des Kompaktheitszatzes der Prädikatenlogik auch erfüllbar.

(b) [6 PUNKTE] Wir nehmen an, eine Belegung $\sigma \in \mathbb{Q}^{\mathcal{V}}$ erfüllt alle Formeln in Γ . Dann muß $\sigma(x)$ einerseits positiv sein, andererseits aber auch kleiner als jede Zahl n^{-1} , $n \in \mathbb{N}$, und damit kleiner als jede positive rationale Zahl. Das ist unmöglich, Widerspruch.

Aufgabe 4 [12 PUNKTE]

Zeigen Sie mit Hilfe eines Tableaus die Unerfüllbarkeit von

$$\neg \Big(\forall x \left[P(x) \to P(f(x)) \right] \to \forall x \left[P(x) \to P(f(f(x))) \right] \Big)$$

Lösungsvorschlag:

Aufgabe 5 [12 PUNKTE]

(a) [6 PUNKTE] Berechnen Sie einen allgemeinsten Unifikator für folgende Menge an Literalen:

$${Q(x,z), Q(h(y,z), f(a)), Q(h(f(b),z), z)}$$

(b) [6 PUNKTE] Zeigen Sie $\{ \forall x \exists y. L(x,y), \forall x \forall y (L(x,y) \rightarrow H(x)) \} \models \forall x. H(x)$

Lösungsvorschlag:

(a)

Klausel	Klausel	Klausel	Modifikation
Q(x,z)	$Q(\mathbf{h}(y,z),f(a))$	$Q(\mathbf{h}(f(b),z),z)$	$ \overline{\{x/h(y,z)\}} $
Q(h(y,z),z)	$Q(h(\mathbf{y},z),f(a))$	Q(h(f(b),z),z)	$\{y/f(b)\}$
$Q(h(f(b),z), {\color{red} z})$	$Q(h(f(b),z), \mathbf{f}(a))$	$Q(h(f(b),z), {\color{red} z})$	$\{z/f(a)\}$
Q(h(f(b), f(a)), f(a))	Q(h(f(b), f(a)), f(a))	Q(h(f(b), f(a)), f(a))	

(b) Die Behauptung ist äquivalent zur Unerfüllbarkeit von

$$\forall x \,\exists y. \, L(x,y) \land \forall u \forall v \, \big(L(u,v) \to H(u) \big) \land \neg \forall z. \, H(z)$$

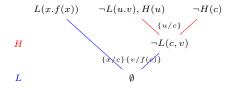
Umwandlung in PNF ergibt

$$\exists z \, \forall x \, \exists y \, \forall u \, \forall v. \, \Big(L(x,y) \wedge \Big(L(u,v) \to H(u) \Big) \wedge \neg H(z) \Big)$$

Daraus resultiert z.B. die SNF

$$\forall x \, \forall u \, \forall v. \, \Big(L(x, f(x)) \wedge \big(L(u, v) \to H(u) \big) \wedge \neg H(c) \Big)$$

deren quantorenfreier Teil sich für prädikatenlogische Resolution eignet:



Aufgabe 6 [12 PUNKTE]

Bestimmen sie explizite hybride Ableitungen im Kalkül \mathcal{K}_0 von

1. [4 PUNKTE]
$$(A \rightarrow B) \rightarrow C \vdash B \rightarrow C$$

2. [8 PUNKTE]
$$A \to (B \to C) \vdash \neg C \to (B \to \neg A)$$

 $L\"{o}sungsvorschlag:$

(1)

$$\begin{array}{cccc} 0. & (A \rightarrow B) \rightarrow C & & \text{Ann.} \\ 1. & B & & \text{Ann.} \\ 2. & B \rightarrow A \rightarrow B & & \text{Ax1} \\ 3. & A \rightarrow B & & \text{MP, 1,2} \\ 4. & C & & \text{MP, 3,0} \\ 5. & B \rightarrow C & & \text{DT, 1-4} \end{array}$$

(2)

Oder alternativ, etwas geschickter:

1.
$$A \to B \to C$$
 Prä.
2. C Ann.
3. C Ann.
4. C Ann.
5. C MP, 4,1
6. C MP, 3,5
7. C Ann.
8. C MP, 3,5
6,2
9. C A IK 4-7
9. C A DT, 3-8
10. C DT, 2-9

Aufgabe 7 [12 PUNKTE]

Wir betrachten nur endlich viele Variablen $V = \{p_0, \dots, p_{n-1}\}$. Eine Menge Σ aussagenlogischer Formen über V (alle Variablen stammen aus V) nennen wir folgerungsmaximal, wenn sie erfüllbar ist und für alle Formeln A über V gilt: Falls $A \notin \Sigma$, dann ist $\Sigma \cup \{A\}$ unerfüllbar.

1. Zeigen Sie: Für n=2 Variablen ist die Formelmenge

$$\{p_0 \lor p_1, p_0 \lor \neg p_1, \neg p_0 \lor p_1, p_0, p_1\}$$

nicht folgerungsmaximal.

- 2. Konstruieren Sie für eine Formelmenge Γ über V eine folgerungsmaximale Formelmenge Σ mit $\Gamma \subseteq \Sigma$.
- 3. Zeigen oder widerlegen Sie: Jede folgerungsmaximale Formelmenge ist unendlich.

Lösungsvorschlag:

- 1. Belegt man beide Atome mit 1, so wird auch $p_1 \wedge p_2$ erfüllt.
- 2. Bilde zunächst die Menge $\Gamma^{\triangleright} \subseteq \mathbb{B}^{\mathcal{V}}$ aller Belegungen, die alle Formeln aus Γ erfüllen, und setze $\Sigma := \Gamma^{\triangleright \triangleleft}$, die Menge aller Formeln in \mathcal{V} , die von allen Belegungen in Γ^{\triangleright} erfüllt werden (Hüllenoperator!).
- 3. Ist Σ folgerungs maximal dann gilt für jedes $F \in \Sigma$ auch $\neg \neg F \in \Sigma$, und damit ist unendlich.

Aufgabe 8 [12 PUNKTE]

Wir betrachten Strukturen $\mathcal{M} = \langle D, \mathcal{I} \rangle$ für die Signatur \mathcal{S} mit dem binären Prädikat \leq und dem unären Funktionssymbol f.

- 1. Konstruieren Sie eine Formel F_{\leq} , sodass \mathcal{M} genau dann ein Modell ist, wenn $\leq^{\mathcal{M}}$ eine Halbordnung auf D ist.
- 2. Geben Sie eine unendliche Struktur \mathcal{M} an, die Modell ist für

$$F = F_{<} \land \exists x \, \forall y \forall z. \, ((y \le z) \rightarrow (y = x \lor y = z))$$

3. Geben Sie eine unendliche Struktur $\,\mathcal{M}\,$ an, die Modell ist von $\,F_{\leq}\,$ sowie

$$F_0 = \forall x \forall y. (x \le y \to f(x) \le f(y))$$

$$F_1 = \exists x \forall y. (f(x) \le x \land (f(y) \le y \to x \le y))$$

$$F_2 = \exists z. \neg (f(z) \le z)$$

Lösungsvorschlag:

1. Reflexivität: $F_r = \forall x. \ x \leq x$

Transitivität: $F_t = \forall x \, \forall y \, \forall z. \ (x \leq y \land y \leq z \rightarrow x \leq z)$ Antisymmetrie: $F_a = \forall x \, \forall y. \ (x \leq y \land y \leq x \rightarrow x \stackrel{.}{=} y)$.

$$F_{\leq} = F_r \wedge F_t \wedge F_a$$

- 2. Setze $D := \mathbb{N} + \{*\}$ und verlange, dass \mathbb{N} durch $\mathcal{I}(\leq)$ diskret, d.h., durch =, geordnet und * bzgl. $\mathcal{I}(\leq)$ ein kleinstes Element ist. Dass es sich um einen Halbordnung handelt ist klar, und der zweite Teil der Formel F ist ebenfalls klar (mit * as besonderem Element x).
- 3. Die Funktion $f^{\mathcal{M}}$ soll monoton sein (F_0) , ein kleinstes Element x mit $f(x) \leq x$ (Prä-Fixpunkt) haben (F_1) , und muß mindestens ein Element z haben, das kein Prä-Fixpunkt ist (F_2) , was insbesondere bedeutet, dass f nicht die Identität auf D sein darf.

Beispiel: Setze

$$\mathbb{N} \xrightarrow{f} \mathbb{N}, n \longmapsto \begin{cases} 1 \text{ falls } n = 0 \\ n \text{ sonst} \end{cases}$$

Der kleinste Fixpunkt ist natürlich 1.

Es gibt noch viele andere Beispiele!

Aufgabe 9 [12 PUNKTE]

Quiz:

Beantworten/Bewerten Sie die folgenden Fragen/Aussagen. Begründen Sie Ihre Antwort mit einem kurzen Beweis oder einem Gegenbeispiel.

- 1. Eine aussagenlogische Formelmenge Σ heißt doppelt erfüllbar, falls es mindestens zwei unterschiedliche Belegungen gibt, die Σ erfüllen. Wenn sowohl Γ als auch Δ jeweils doppelt erfüllbar sind, ist $\Gamma \cup \Delta$ dann erfüllbar?
- 2. Gegeben sei eine prädikatenlogische Formel F mit freien Variablen x und y, ein Term t und eine Konstante c. Stimmen die Formeln

$$F[x/t][y/c]$$
 und $F[y/c][x/t]$

syntaktisch überein?

- 3. Gegeben seien zwei aussagenlogische Formelmengen Σ und Γ , sodass $\Sigma \cup \Gamma$ nicht erfüllbar ist. Gibt es eine Formel F, sodass $\Sigma \models F$ und $\Gamma \models \neg F$?
- 4. Zwei binäre Junktoren \sqcap und \sqcup mögen für alle aussagenlogischen Formen A und B die Bedingung

$$\neg A \sqcap \neg B \vDash \neg (A \sqcup B)$$

erfüllen. Behauptung: $\{\sqcap, \neg\}$ ist genau dann eine vollständige Junktorenmenge, wenn dies für $\{\sqcup, \neg\}$ gilt.

$L\"{o}sungsvorschlag:$

- 1. Nein: wähle $\Gamma = \{p\}$ und $\Delta = \{\neg p\}$. Dann sind beide Mengen doppelt erfüllbar (der Wert einer Belegung auf $q \neq p$ ist beliebig), ihre Vereinigung ist aber nicht erfüllbar.
- 2. Nein, nur wenn die Variable y nicht im Term t vorkommt.
- 3. Wegen der Unerfüllbarkeit von $\Sigma \cup \Gamma$ sind die Mengen Σ^{\triangleright} und Γ^{\triangleright} der Belegungen, die Σ bzw. Γ erfüllen, disjunkt, denn

$$\emptyset = (\Sigma \cup \Gamma)^{\triangleright} = \Sigma^{\triangleright} \cap \Gamma^{\triangleright}$$

Für jede Formel F ist $\mathbb{B}^{\mathcal{A}}$ disjunkte Vereinigung von $\{F\}^{\triangleright}$ und $\{\neg F\}^{\triangleright}$. Die Frage ist, ob die Mengen Σ^{\triangleright} und Γ^{\triangleright} durch eine Formel F separiert werden können.

Sind Σ^{\triangleright} und Γ^{\triangleright} beide leer, so ist die Behauptung trivial.

Ist eine dieser Mengen nichtleer, etwa Γ^{\triangleright} , so gilt $\mathcal{F}[\mathcal{A}] \neq \Gamma^{\triangleright \triangleleft}$. Wähle ein Element $H \notin \Gamma^{\triangleright \triangleleft}$. Nun ist $\Gamma \cup \{H\}$ nicht erfüllbar, also $\Gamma \models \neg H$.

Andererseits folgt aus der Unerfüllbarkeit von $\Sigma \cup \Gamma$ sofort $\Sigma \cup \Gamma \models H$; insbesondere gibt es dann eine endliche Teilmenge $\{C_i: i < n\} \subseteq \Gamma$ mit $\Sigma \cup \{C_i: i < n\} \models H$. Das Deduktionstheorem liefert dann

$$\Sigma \models C_0 \to C_1 \to \cdots \subset C_{n-1} \to H \models \neg \bigwedge_{i < n} C_i \lor H =: F$$

Andererseits gilt $\Gamma \models C_i$, i < n, wegen $\Gamma \models \neg H$ also

$$\Gamma \models \bigwedge_{i < n} C_i \land \neg H \models \neg F$$

4. Ja, denn $A \sqcap B \models \neg(\neg A \sqcup \neg B)$ und $A \sqcup B \models \neg(\neg A \sqcap \neg B)$. Damit ist $\{\sqcap, \neg\}$ genau dann funktional vollständig, wenn dies für $\{\sqcup, \neg\}$ gilt.