From Symbolic Execution to Concolic Testing

Daniel Paqué
Structure

- Symbolic Execution
- Concolic Testing
- Execution Generated Testing
- Concurrency in Concolic Testing
Motivation

- Software Testing “usually accounts for 50% of software development cost”
 [Source: “The economic impacts of inadequate infrastructure for software testing”, NIST]
- complex and large Software Systems complicate finding small test suites with high coverage

- Symbolic Execution
 - automatic test case generation
 - high code coverage
Symbolic Execution - **Idea**

- execute the program in symbolic domain
 - explore all possible execution paths
 - for each path the constraints of the branching points are collected
 - generate test input based on the constraints
Symbolic Execution - Example

```c
1   foo(int x, int y){
2       z = 2*y;
3       if (x == z){
4           if (x > y + 5){
5               //some error
6               }
7           }
8       }
```
Symbolic Execution - Example

```java
1   foo(int x, int y) {
2       z = 2*y;
3       if (x == z) {
4           if (x > y + 5) {
5               //some error
6           }
7       }
8   }
```

symbolic domain:

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊘</td>
<td>true</td>
</tr>
</tbody>
</table>

symbolic state

path condition
Symbolic Execution - Example

```
1   foo(int x, int y) {
2       z = 2*y;
3       if (x == z) {
4           if (x > y + 5) {
5               //some error
6           }
7       }
8   }
```

symbolic domain:

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \mapsto x_0)</td>
<td>true</td>
</tr>
<tr>
<td>(y \mapsto y_0)</td>
<td></td>
</tr>
</tbody>
</table>
Symbolic Execution - Example

```c
1    foo(int x, int y) {
2        z = 2*y;
3        if (x == z) {
4            if (x > y + 5) {
5                // some error
6            }
7        }
8    }
```

symbolic domain:

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \mapsto x_0)</td>
<td>true</td>
</tr>
<tr>
<td>(y \mapsto y_0)</td>
<td></td>
</tr>
<tr>
<td>(z \mapsto 2y_0)</td>
<td></td>
</tr>
</tbody>
</table>
Symbolic Execution - Example

```c
1  foo(int x, int y) {
2      z = 2*y;
3      if (x == z) {
4          if (x > y + 5) {
5              // some error
6          }
7      }
8  }
```

symbolic domain:

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x_0$</td>
<td>$(x_0 \neq 2y_0)$</td>
</tr>
<tr>
<td>$y \mapsto y_0$</td>
<td></td>
</tr>
<tr>
<td>$z \mapsto 2y_0$</td>
<td></td>
</tr>
</tbody>
</table>

$PC = PC \land b$

$PC' = PC' \land \neg b$

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x_0$</td>
<td>$(x_0 = 2y_0)$</td>
</tr>
<tr>
<td>$y \mapsto y_0$</td>
<td></td>
</tr>
<tr>
<td>$z \mapsto 2y_0$</td>
<td></td>
</tr>
</tbody>
</table>

satisfiable?
Symbolic Execution - Example

```
1  foo(int x, int y) {
2      z = 2*y;
3      if (x == z) {
4          if (x > y + 5) {
3                // some error
4          }
5      }
6  }
7  }
8 }
```

symbolic domain:

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ← x₀</td>
<td>(x₀ ≠ 2y₀)</td>
</tr>
<tr>
<td>y ← y₀</td>
<td></td>
</tr>
<tr>
<td>z ← 2y₀</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ← x₀</td>
<td>(x₀ = 2y₀)</td>
</tr>
<tr>
<td>y ← y₀</td>
<td>∧(x₀ ≤ y₀ + 5)</td>
</tr>
<tr>
<td>z ← 2y₀</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ← x₀</td>
<td></td>
</tr>
<tr>
<td>y ← y₀</td>
<td>(x₀ = 2y₀)</td>
</tr>
<tr>
<td>z ← 2y₀</td>
<td>∧(x₀ > y₀ + 5)</td>
</tr>
</tbody>
</table>

satisfiable?

From Symbolic Execution to Concolic Testing 28.11.2014
Symbolic Execution - Example

\[x = z \]

\[(x_0 = 2y_0) \]
\[(x_0 \neq 2y_0) \]

\[x > y + 5 \]

\[(x_0 = 2y_0) \land (x_0 > y_0 + 5) \]
\[(x_0 = 2y_0) \land (x_0 \leq y_0 + 5) \]

\[(x = 12, y = 6) \]
\[(x = 2, y = 1) \]
\[(x = 1, y = 1) \]
Limits of Symbolic Execution

```c
1  foo(int x, int y) {
2      z = bar(y);
3      if (x == z) {
4          if (x > y + 5) {
5              // some error
6          }
7      }
8  }
```

Symbolic Domain:

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x_0$</td>
<td>$(x_0 \neq bar(y_0))$</td>
</tr>
<tr>
<td>$y \mapsto y_0$</td>
<td></td>
</tr>
<tr>
<td>$z \mapsto bar(y_0)$</td>
<td></td>
</tr>
</tbody>
</table>

Satisfying Assignments:

- $x \mapsto x_0$
- $y \mapsto y_0$
- $z \mapsto bar(y_0)$

satisfiable?

```
```
Solution

- Mix Symbolic Execution with Concrete Execution
 - Concolic Testing
 - Execution Generated Testing
Symbolic Execution

- 1979
- J.C. King

Concolic Testing

- 2005,
 - Godefroid, Sen

Execution Generated Testing (EGT)

- 2006
 - Cadar et. al

mix concrete with symbolic execution

+ improvements in constraint solving
Concolic Testing

- execute program with concrete values and collect symbolic constraints during execution
- explore paths sequentially instead of forking
 - infer input for next execution
- use concrete values to solve problematic constraints
Concolic Testing - Example

```c
1  foo(int x, int y){
2      z = 2*y;
3      if (x == z){
4          if (x > y + 5){
4          // some error
5      }
6  }
7  }
8 }
```

symbolic state:

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \mapsto x_0)</td>
<td>true</td>
</tr>
<tr>
<td>(y \mapsto y_0)</td>
<td></td>
</tr>
</tbody>
</table>
Concolic Testing - Example

```c
1 foo(int x, int y) {
2     z = 2*y;
3     if (x == z) { // some error
4         if (x > y + 5) {
5             false
6         }
7     }
8 }
```

symbolic state:

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x_0$</td>
<td>$(x_0 \neq 2y_0)$</td>
</tr>
<tr>
<td>$y \mapsto y_0$</td>
<td></td>
</tr>
<tr>
<td>$z \mapsto 2y_0$</td>
<td></td>
</tr>
</tbody>
</table>
Concolic Testing - Example

```c
1  foo(int x, int y){
2      z = 2*y;
3      if (x == z){
4          if (x > y + 5){
5              // some error
6      }
7      }
8  }
```

<table>
<thead>
<tr>
<th>σ</th>
<th>PC</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x \mapsto x_0$</td>
<td>$(x_0 \neq 2y_0)$</td>
</tr>
<tr>
<td>$y \mapsto y_0$</td>
<td>$z \mapsto 2y_0$</td>
</tr>
</tbody>
</table>

new input: $\{x = 8, y = 4\}$
Concolic Testing - Example

\[x = z \]

\[(x_0 = 2y_0) \]

\[(x_0 \neq 2y_0) \]

\[x > y + 5 \]

\[(x_0 = 2y_0) \land (x_0 > y_0 + 5) \]

\[(x_0 = 2y_0) \land (x_0 \leq y_0 + 5) \]

\[(x = 12, y = 6) \]

\[(x = 8, y = 4) \]

\[(x = 29, y = 4) \]
Concolic Testing - Example

```c
1    foo(int x, int y) {
2        z = bar(y);
3        if (x == z) {
4            if (x > y + 5) {
5                // some error
6            }
7        }
8    }
```

symbolic domain:

\[
(x_0 = \text{bar}(y_0))
\]

evaluate condition in concrete

\[
\{x = 8, y = 4\}
\]

true

\[
\begin{array}{c|c}
\sigma & PC \\
\hline
x \mapsto x_0 & (x_0 = \text{bar}(y_0)) \\
y \mapsto y_0 & \\
z \mapsto \text{bar}(y_0) & \\
\end{array}
\]
Concolic Testing - Example

```c
foo(int x, int y){
    z = bar(y);
    if (x == z){
        if (x > y + 5){
            // some error
        }
    }
}
```

symbolic state:

\[
(x_0 = \text{bar}(y_0))
\]

\{x = 8, y = 4\}

evaluate bar() in concrete

<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \mapsto x_0)</td>
<td>((x_0 = 8))</td>
</tr>
<tr>
<td>(y \mapsto y_0)</td>
<td></td>
</tr>
<tr>
<td>(z \mapsto 8)</td>
<td></td>
</tr>
</tbody>
</table>
Symbolic Execution

1979
J.C. King

Concolic Testing
- sequential path exploration
- guided by concrete input

Execution Generated Testing (EGT)
- fork execution for each path
- guided by symbolic execution

mix concrete with symbolic execution
Execution Generated Testing

- further differences to Concolic Testing:
 - EGT dynamically checks if all operands are concrete
 - if so the operation can be executed in concrete
 - otherwise the operation is executed symbolical

```c
1 foo3(int x) {
2     y = 2;
3     z = 3*y;
4     if (x == z) {
5         // ...
```
How to deal with concurrent programs?
Main Challenge

From Symbolic Execution to Concolic Testing 28.11.2014
Main Challenge

summarize redundant interleavings

Thread 0

Thread 1

\[x = 42; \]

...
Koushik Sen & Gul Agha: (2006)

- „race-detection and flipping algorithm“
 - minimize redundant executions in concurrent programs
 - uses vector clocks to identify races
Redundant Executions

Thread t₀:

1: \(x = 3; \)

Thread t₁:

1: \(y = 0; \)
2: \(x = 4; \)
3: \(z = x + 12; \)

Execution 1:

\[
\begin{align*}
x &= 3; \\
y &= 0; \\
x &= 4; \\
z &= x + 12; \\
\end{align*}
\]

Execution 2:

\[
\begin{align*}
y &= 0; \\
x &= 3; \\
x &= 4; \\
z &= x + 12; \\
\end{align*}
\]

Execution 3:

\[
\begin{align*}
y &= 0; \\
x &= 4; \\
x &= 3; \\
z &= x + 12; \\
\end{align*}
\]

Execution 4:

\[
\begin{align*}
y &= 0; \\
x &= 4; \\
x &= 3; \\
z &= x + 12; \\
\end{align*}
\]

result:

\[
\begin{align*}
\{4, 0, 16\} & \quad \{4, 0, 16\} & \{3, 0, 15\} & \{3, 0, 16\}
\end{align*}
\]
Redundant Executions – Race Detection

- two events are in a race if...
 - they stem from different threads
 - both access the same memory location (without locking)
 - the order both events can be permuted by changing the schedule

<table>
<thead>
<tr>
<th>Execution 1:</th>
<th>Execution 2:</th>
<th>Execution 3:</th>
<th>Execution 4:</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>x = 3;</code></td>
<td><code>y = 0;</code></td>
<td><code>y = 0;</code></td>
<td><code>y = 0;</code></td>
</tr>
<tr>
<td><code>y = 0;</code></td>
<td><code>x = 3;</code></td>
<td><code>x = 4;</code></td>
<td><code>x = 4;</code></td>
</tr>
<tr>
<td><code>x = 4;</code></td>
<td><code>x = 4;</code></td>
<td><code>x = 3;</code></td>
<td><code>z = x + 12;</code></td>
</tr>
<tr>
<td><code>z = x + 12;</code></td>
<td><code>z = x + 12;</code></td>
<td><code>z = x + 12;</code></td>
<td><code>x = 3;</code></td>
</tr>
</tbody>
</table>

result: {4, 0, 16} {4, 0, 16} {3, 0, 15} {3, 0, 16}

races: (t₀, 1.1) (t₀, 1.1) (t₁, 1.2) (t₁, 1.3)
 -(t₁, 1.2) -(t₁, 1.2) -(t₀, 1.1) -(t₀, 1.1)
 (t₀, 1.1) (t₀, 1.1) (t₁, 1.3) (t₁, 1.3)
The Race-Detection and Flipping Algorithm

init:
- generate a random input and a schedule

loop:
- execute code with the generated input and schedule
- compute the race conditions and symbolic constraints
- generate a new schedule or a new input
- continue until all possible distinct execution paths have been explored (depth-first search strategy)
Generating new inputs/schedules

- new input: concolic testing
- new schedule:
 - pick two events which are in a race
 - delay the first event as much as possible

\[\text{schedule 1:}\]
\[
\begin{align*}
x &= 3; \\
y &= 0; \\
x &= 4; \\
z &= x + 12;
\end{align*}
\]

\[\text{schedule 2:}\]
\[
\begin{align*}
y &= 0; \\
x &= 4; \\
z &= x + 12; \\
x &= 3;
\end{align*}
\]
How to identify races?
How to identify races?

- **vector clocks**

- $V : \{\text{Threads}\} \rightarrow \mathbb{N}$
- can be compared (\leq)
- max is componentwise
- $V \neq V'$ if neither "\leq" nor "\geq"

- each thread t gets its own vector clock V_t
- each memory location gets another two
Vector Clocks - Example

- two threads \(t_0, t_1 \)
- one memory location \(x \)

<table>
<thead>
<tr>
<th></th>
<th>(V_{t_0})</th>
<th>(V_{t_1})</th>
<th>(V_{x}^{a})</th>
<th>(V_{x}^{w})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{init}_0)</td>
<td>(t_0)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{fork}_1)</td>
<td>(t_0)</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>((t_0, rd, x)_2)</td>
<td>(t_0)</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>((t_1, rd, x)_3)</td>
<td>(t_0)</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>((t_1, wr, x)_4)</td>
<td>(t_0)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>((t_0, rd, x)_5)</td>
<td>(t_0)</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>(t_1)</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Vector Clocks - Algorithm

- Whenever a thread t with vector clock V_t generates an event e, the following algorithm is executed:

 1. If e is not a fork event or a new thread event, then $V_t(t) = V_t(t) + 1$
 2. If e is a read of a shared memory location m then
 \[
 V_t = \max\{V_t, V_m^w\} \quad \text{and} \quad V_m^a = \max\{V_m^a, V_t\}
 \]
 3. If e is a write, lock or unlock of a shared memory location m then
 \[
 V_m^w = V_m^a = V_t = \max\{V_m^a, V_t\}
 \]
 4. If e is a fork event and if t' is the newly created thread then
 \[
 V_{t'} = V_t, \quad V_t(t) = V_t(t) + 1 \quad \text{and} \quad V_{t'} = V_{t'} + 1
 \]
Vector Clocks – Example

1. If e is not a fork event or a new thread event, then $V_t(t) = V_t(t) + 1$

<table>
<thead>
<tr>
<th></th>
<th>V_{t_0}</th>
<th>V_{t_1}</th>
<th>V_x^a</th>
<th>V_x^w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_0</td>
<td>t_1</td>
<td>t_0</td>
<td>t_1</td>
</tr>
<tr>
<td>init0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fork1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(t_0,rd,x)_2$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(t_1,rd,x)_3$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$(t_1,wr,x)_4$</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$(t_0,rd,x)_5$</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Vector Clocks – Example

1. If e is not a fork event or a new thread event, then $V_i(t) = V_i(t) + 1$

<table>
<thead>
<tr>
<th></th>
<th>V_{t_0}</th>
<th>V_{t_1}</th>
<th>V_x^a</th>
<th>V_x^w</th>
</tr>
</thead>
<tbody>
<tr>
<td>init$_0$</td>
<td>t_0 0</td>
<td>t_0 0</td>
<td>t_0 0</td>
<td>t_0 0</td>
</tr>
<tr>
<td></td>
<td>t_1 0</td>
<td>t_1 0</td>
<td>t_1 0</td>
<td>t_1 0</td>
</tr>
<tr>
<td>fork$_1$</td>
<td>t_0 1</td>
<td>t_0 1</td>
<td>t_0 0</td>
<td>t_0 0</td>
</tr>
<tr>
<td>(t$_0$, rd, x)$_2$</td>
<td>2 0</td>
<td>0 1</td>
<td>2 0</td>
<td>0 0</td>
</tr>
<tr>
<td>(t$_1$, rd, x)$_3$</td>
<td>2 0</td>
<td>0 2</td>
<td>2 2</td>
<td>0 0</td>
</tr>
<tr>
<td>(t$_1$, wr, x)$_4$</td>
<td>2 0</td>
<td>2 3</td>
<td>2 3</td>
<td>2 3</td>
</tr>
<tr>
<td>(t$_0$, rd, x)$_5$</td>
<td>3 3</td>
<td>2 3</td>
<td>3 3</td>
<td>2 3</td>
</tr>
</tbody>
</table>
Vector Clocks – Example

2. If e is a read of a shared memory location m then

$$V_t = \max\{V_t, V_m^w\} \quad \text{and} \quad V_m^a = \max\{V_m^a, V_t\}$$

<table>
<thead>
<tr>
<th></th>
<th>V_{t_0}</th>
<th>V_{t_1}</th>
<th>V_{x}^a</th>
<th>V_{x}^w</th>
</tr>
</thead>
<tbody>
<tr>
<td>init$_0$</td>
<td>t_0 0</td>
<td>t_1 0</td>
<td>t_0 0</td>
<td>t_1 0</td>
</tr>
<tr>
<td>fork$_1$</td>
<td>t_0 1</td>
<td>t_1 0</td>
<td>t_0 0</td>
<td>t_1 0</td>
</tr>
<tr>
<td>$(t_0, rd, x)_2$</td>
<td>t_0 2</td>
<td>t_1 0</td>
<td>t_0 0</td>
<td>t_1 2</td>
</tr>
<tr>
<td>$(t_1, rd, x)_3$</td>
<td>t_0 2</td>
<td>t_1 0</td>
<td>t_0 2</td>
<td>t_1 2</td>
</tr>
<tr>
<td>$(t_1, wr, x)_4$</td>
<td>t_0 2</td>
<td>t_1 2</td>
<td>t_0 3</td>
<td>t_1 3</td>
</tr>
<tr>
<td>$(t_0, rd, x)_5$</td>
<td>t_0 3</td>
<td>t_1 3</td>
<td>t_0 3</td>
<td>t_1 3</td>
</tr>
</tbody>
</table>
Vector Clocks – Example

3. If e is a write, lock or unlock of a shared memory location m then

$$V_m^w = V_m^a = V_t = \max\{V_m^a, V_t\}$$

<table>
<thead>
<tr>
<th></th>
<th>V_{t_0}</th>
<th>V_{t_1}</th>
<th>V_x^a</th>
<th>V_x^w</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>t_0</td>
<td>t_0</td>
<td>t_0</td>
<td>t_0</td>
</tr>
<tr>
<td>t_1</td>
<td>t_1</td>
<td>t_1</td>
<td>t_1</td>
<td>t_1</td>
</tr>
<tr>
<td>V_{t_0}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{t_1}</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_x^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_x^w</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>init_0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fork_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(t_0, rd, x)_2$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(t_1, rd, x)_3$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(t_1, wr, x)_4$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$(t_0, rd, x)_5$</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Vector Clocks – Example

3. If e is a write, lock or unlock of a shared memory location m then

$$V_m^w = V_m^a = V_t = \max\{V_m^a, V_t\}$$

<table>
<thead>
<tr>
<th></th>
<th>V_{t_0}</th>
<th>V_{t_1}</th>
<th>V_x^a</th>
<th>V_x^w</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_0</td>
<td>t_1</td>
<td>t_0</td>
<td>t_1</td>
<td>t_0</td>
</tr>
<tr>
<td>init</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>fork_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(t_0, rd, x)_2$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$(t_1, rd, x)_3$</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>$(t_1, wr, x)_4$</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$(t_0, rd, x)_5$</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

From Symbolic Execution to Concolic Testing 28.11.2014
Vector Clock Theorem

Theorem 1. Two events e and e' are race related if following holds:

1. $V\{e\} \neq V\{\text{prev}(e')\}$ given that $\text{prev}(e')$ exists, and
2. $V\{\text{next}(e)\} \neq V\{e'\}$ given that $\text{next}(e)$ exists, and
3. $V\{e\} \leq V\{e'\}$, and
4. $VS_e \neq VS_{e'}$
Questions?
Precise Definitions

(just in case)
Race Relation – Simple Definition:

Any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ are race related (denoted by $e < e'$) iff:

1. $e \nleq e'$, and
2. $e <_m e'$ and there exists no e_1 such that $e_1 \neq e, e_1 \neq e', e \leq e_1$ and $e_1 \leq e'$

(t_i, l_i, a_i) \rightarrow (thread, label, type of access)

$e \nleq e'$ \rightarrow sequentially not related

$e <_m e'$ \rightarrow access on the same memory location

$e \leq e_1$ \rightarrow causally related
sequentially related

In an execution path $\tau \in \text{Ex}(P)$, any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ appearing in τ are sequentially related (denoted by $e \triangleleft e'$) iff:

1. $e = e'$, or
2. $t_i = t_j$ and e appears before e' in τ, or
3. $t_i \neq t_j$, t_i created the thread t_j, and e appears before e'' in τ, where e'' is the fork event on t_i creating the thread t_j, or
4. there exists an event e'' in such that $e \triangleleft e''$ and $e'' \triangleleft e'$

We say $e \triangledown e'$ iff $e \not\triangleleft e'$ and $e' \not\triangleleft e$.

access precedence related

In an execution path \(\tau \in Ex(P) \), any two events \(e = (t_i, l_i, a_i) \) and \(e' = (t_j, l_j, a_j) \) appearing in \(\tau \) are shared-memory access precedence related (denoted by \(e \prec_m e' \)) iff:

1. \(e \) appears before \(e' \) in \(\tau \), and
2. \(e \) and \(e' \) both access the same memory location \(m \), and
3. one of them is an update (not a read) of \(m \).
causally related

In an execution path \(\tau \in \text{Ex}(P) \), any two events \(e = (t_i, l_i, a_i) \) and \(e' = (t_j, l_j, a_j) \) appearing in \(\tau \) are causally related (denoted by \(e \preceq e' \)) iff:

1. \(e \triangleleft e' \), or
2. \(e <_m e' \) for some shared-memory location \(m \), or
3. there exists an event \(e'' \) in such that \(e \preceq e'' \) and \(e'' \preceq e' \)

The causal relation is a partial-order relation. We say that \(e \parallel e' \) iff \(e \not\preceq e' \) and \(e' \not\preceq e \).
race related

Any two events $e = (t_i, l_i, a_i)$ and $e' = (t_j, l_j, a_j)$ are race related (denoted by $e < e'$) iff:

1. $e \uparrow e'$, and
2. if e is lock event and e'' is the corresponding unlock event, then $e'' <_m e'$ and there exists no e_1 such that $e_1 \neq e'', e_1 \neq e', e'' \preceq e_1$ and $e_1 \preceq e'$, and
3. if e is read or write event, then $e <_m e'$ and there exists no e_1 such that $e_1 \neq e, e_1 \neq e', e \preceq e_1$ and $e_1 \preceq e'$
Race-Detection and Flipping Algorithm
Detailed Example

Thread t_0

1 $x = 3$

Thread t_1 (with z as input)

1 $x = 2$
2 $\text{if } (x == 2*z+1)$
3 error
4 \ldots

Ex.1: [$z = 8$, $sched_0$]
 $(t_0,l.1), (t_1,l.1), (t_1,l.2), (t_1,l.4)$
Ex.2: [$z = 8$, $sched_1$]
 $(t_1,l.1), (t_1,l.2), (t_1,l.4), (t_0,l.1)$
Ex.3: [$z = 8$, $sched_2$]
 $(t_1,l.1), (t_0,l.1), (t_1,l.2), (t_1,l.4)$
Ex.4: [$z = 1$, $sched_2$]
 $(t_1,l.1), (t_0,l.1), (t_1,l.2), (t_1,l.3), (t_1,l.4)$