
Bounds on Mobility

Reiner Hüchting1, Rupak Majumdar2, and Roland Meyer1

1University of Kaiserslautern 2MPI-SWS

Abstract. We study natural semantic fragments of the π-calculus: depth-
bounded processes (there is a bound on the longest communication path),
breadth-bounded processes (there is a bound on the number of parallel
processes sharing a name), and name-bounded processes (there is a bound
on the number of shared names). We give a complete characterization of
the decidability frontier for checking if a π-calculus process in one subclass
belongs to another. Our main construction is a general acceleration scheme
for π-calculus processes. Based on this acceleration, we define a Karp and
Miller (KM) tree construction for the depth-bounded π-calculus. The KM
tree can be used to decide if a depth-bounded process is name-bounded,
if a depth-bounded process is breadth-bounded by a constant k, and if a
name-bounded process is additionally breadth-bounded. Moreover, we
give a procedure that decides whether an arbitrary process is bounded in
depth by a given k.
We complement our positive results with undecidability results for the
remaining cases. While depth- and name-boundedness are known to be
Σ1-complete, we show that breadth-boundedness is Σ2-complete, and
checking if a process has a breadth bound at most k is Π1-complete, even
when the input process is promised to be breadth-bounded.

1 Introduction

The π-calculus is an expressive formalism for modelling and reasoning about
concurrent systems. The full π-calculus is Turing-complete. From a verification
perspective, much research has therefore focused on defining semantic fragments
which have decidable analysis questions but retain enough expressiveness to
capture practical systems. π-calculus processes model communication between
components along channels. Natural restrictions on the use of these channels give
rise to natural semantic fragments, like bounding the depth of communication
(the longest communication chain between processes), bounding the degree of
sharing (the number of processes sharing a channel), or bounding the number of
channels used concurrently. These restrictions model natural resource constraints
in implementations, and indeed have all been studied previously: bounds on
depth lead to depth-bounded processes [11], bounds on sharing lead to breadth-
bounded processes [12], and bounds on the number of concurrent channels lead to
name-bounded processes [9]. While these bounds are defined by induction on the
syntax, the restricted classes they define are semantic: for example, a process P
is breadth-bounded if there is a bound k ≥ 0 such that in every process reachable
from P , every channel is shared by at most k processes. The semantic fragments

are still very expressive. For example, name-bounded processes can simulate Petri
nets, and depth- or breadth-bounded processes can simulate extensions of Petri
nets with reset operations. At the same time, they enable algorithmic verification,
e.g. coverability is decidable for depth-bounded processes [18].

Little is known about the relation between semantic fragments, beyond the fact
that name-bounded processes are also depth-bounded, and the incomparability
of the depth- and breadth-bounded fragments. In particular, the classification
problem —given a process from one (sub)class, does it also belong to another?—
has not been studied. By an analogue of Rice’s theorem, checking if a π-calculus
process belongs to a semantic fragment is likely to be undecidable. However, the
status of natural classification questions, such as whether a given depth-bounded
process is actually name-bounded, remains open.

The classification problem has various applications in verification. As stand-
alone analysis, classification can judge the resource requirements of a system.
For example, to check whether a system is implementable on a given platform,
one may check whether it is depth-, breadth-, or name-bounded by a suitable
constant k. In turn, a heap-manipulating program that is shown to violate name
boundedness may have a memory leak. Within a verification effort, classification
serves as a type check that precedes the actual analysis. If the check establishes
certain bounds, then the following verification may employ specialized algorithms
that make use of this knowledge. For example, to check coverability for general
depth-bounded systems, there is only a forward procedure based on iterative
refinement. However, if the system is additionally known to be breadth- or name-
bounded then more efficient acceleration schemes apply. Similarly, if a bound on
the depth is known, then one can use a backwards search.

In this paper, we study and completely characterize the decidability frontier
for classification of π-calculus processes into the depth, breadth, and name-
bounded semantic fragments, as well as their “k-restricted” versions consisting
of all processes where the bound k is given explicitly. Our main construction is a
general acceleration scheme for π-calculus processes, and a π-calculus analogue
of the Karp-Miller construction for vector addition systems. We characterize
the limits of the acceleration for depth-bounded systems and show that —using
suitable break conditions— the Karp-Miller construction can decide classification
questions such as “given depth-bounded P , is P name-bounded?” and “given
depth-bounded P and k ≥ 0, is P breadth-bounded by k?”.

Figure 1 shows a summary of the classification problems, and highlights the
results of this paper that complete the picture. The question “given a general
process P and k ≥ 0, is P depth-bounded by k?” was also open (and conjectured
to be undecidable). We prove it decidable by showing the existence of a small
witness in case the depth bound k is violated. Then we reduce to the coverability
problem for depth-bounded processes, which is known to be decidable [18].

We complement our decidability results with undecidability results in the
remaining cases. We show that checking if a breadth-bounded process is also depth-
or name-bounded is Σ1-complete, and that checking if a breadth-bounded process
has breadth-bound at most a given k is already Π1-complete. Additionally, while

∈ Breadth ∈ Breadth(k) ∈ Depth ∈ Depth(k) ∈ Name ∈ Name(k)

Proc Σ2 Π1 (Σ1)
√

(Σ1)
√

[9]

Breadth Π1 (Σ1) (
√

) Σ1 (
√

)

Depth Σ1
√

(
√

)
√

(
√

)

Name
√

(
√

) (
√

) (
√

)
√

: decidable Σi/Πi : undecidable (−) : follows from another result

shaded box : results in this paper empty box : trivial

Fig. 1. Decidability frontier for the classification problem.

checking if a process is depth- or name-bounded is only Σ1-complete, checking
breadth boundedness is actually Σ2-complete. Our lower bounds follow from
simulations of Turing machines by depth- or breadth-bounded processes.

Related Work The Karp-Miller construction, originally developed for Petri
nets [10], is generalized to WSTS in [4, 5]. The use of Karp-Miller procedures in
model checking is assessed e.g. in [3]. In [6–8], Finkel and Goubault-Larrecq pro-
vide a general algorithmic concept that abstracts from the actual tree structure.
They devise a class of systems for which this type of algorithm is guaranteed to
terminate. One can prove that our domain of limits is the ideal completion of the
partially ordered set of processes in the sense of [6]. Wies et al. make a similar
observation in [18]. These results make the general acceleration-based algorithms
developed in [7, 8] applicable to depth-bounded processes. In contrast to [7, 8],
we explicitly construct a Karp-Miller tree in order to decide properties like name
and breadth boundedness. Recently, a specific acceleration scheme was developed
for name-bounded processes [9]. Our acceleration scheme applies to any process,
not restricted to depth-bounded systems and subsumes the results in [9].

The key observation in our acceleration is that repeating transition sequences
leads to a cyclic behaviour in the use of restricted names. A similar observation
is made for ν-APNs (an extension of Petri nets using names as tokens) in [14],
where it is used to establish decidability of so-called width boundedness. The
property asks for a bound on the number of names that holds in all reachable
ν-APN markings and is related to name boundedness. However, our decision
procedure handles the more general depth-bounded systems. The notion of depth
applies to other concurrency models with name creation (e.g. ν-MSR in [15]),
but we are not aware of any results for the classification problem.

2 The π-calculus

We recall the basics on π-calculus [13, 16], a formalism to encode computation
using processes that exchange messages over channels. Messages and channels are
represented uniformly by names from a countable set N . Processes communicate
by synchronising on prefixes π that send (x〈y〉) or receive (x(y)) message y on
channel x. Using these communication primitives, we construct processes using

choice (+), parallel composition (|), restriction (νa), and calls (Kbãc). Process
identifiers K in calls are associated with defining equations K(x̃) := P where P
is a process and x̃ is a vector of distinct names. Each process depends on finitely
many defining equations. Formally, π-calculus processes P,Q,R are defined by

M ::= 0 p π.P p M1 +M2 P ::= M p Kbãc p P1 | P2 p νa.P .

We write Proc for the set of all processes. Processes M and Kbãc are called
sequential, and we use S to indicate that a process is sequential. We denote parallel
compositions by products (

∏
), and use P k for the k-fold parallel composition of

P . Multiple restrictions νa1 . . . νak.P are written as a vector νã.P .
A name a that is neither bound by a restriction νa nor by an input prefix x(a)

is called free. Names bound by ν are called restricted. A restricted name νa is
active if it is not covered by a prefix. For instance, in the process νa.a(y).νb.P byc,
names a and b are restricted, a is active, b is not active, and y is bound but
not restricted. We denote the set of free names in P by fn(P) and the active
restricted names by arn(P). Since we will be able to α-convert bound names, we
assume active restrictions to be unique within a process, and to be disjoint from
the free names. By P{ã/x̃} we mean the substitution of the free names x̃ in P
by ã. We only apply substitutions that do not clash with the restricted names.

The π-calculus semantics relies on the structural congruence relation ≡, the
smallest relation that allows for α-conversion of bound names, where + and |
are associative and commutative with neutral element 0, and that satisfies

νa.0 ≡ 0 νa.νb.P ≡ νb.νa.P νa.(P | Q) ≡ P | νa.Q if a 6∈ fn(P) .

The behaviour of processes is given by the reaction relation, the smallest relation
closed under | , ν, and structural congruence, and that satisfies the rules

x(z).P +M | x〈y〉.Q+N → P{y/z} | Q and Kbãc → P{ã/x̃}

with K(x̃) := P a defining equation. Up to ≡, processes have only finitely many
successors. The set of all processes reachable from P is the reachability set R (P).

We define the embedding ordering � on processes to satisfy νã.P � νã.(P | Q)
and to be closed under structural congruence. We use P↓ := {Q ∈ Proc | Q � P}
to denote the downward closure of P wrt. embedding.

Our development relies on two normal forms for processes. A process νã.P
with P = S1 | . . . | Sn and ã ⊆ fn(P) is in standard form [13], which can be
obtained by maximising the scope of restricted names. Similarly, a process is
rewritten to restricted form by minimising the scope of restricted names [12]. We
write P ≡ F1 | . . . | Fn where each Fi is sequential or of the form νa.P ′ with P ′

again in restricted form and a ∈ fn(Fi) for all i. The Fi are called fragments.
The restricted form of a process P can be used to determine its depth, defined

as the minimal nesting depth of restrictions in its congruence class: |P |D :=
min{nestν(Q) | P ≡ Q in restricted form} with nestν defined inductively as
nestν(S) := 0, nestν(P1 | P2) := max{nestν(P1),nestν(P2)}, and nestν(νa.P) :=
1 + nestν(P). Similarly, the breadth |P |B is the maximal number of sequential
processes composed in parallel underneath an active restricted name.

We define the following subclasses of the set Proc of π-calculus processes.
The class Depth(k) contains all processes P that are bounded in depth by k.
Formally, for all Q ∈ R (P) we have |Q|D ≤ k. Then the class Depth of all
depth-bounded processes is the union ∪k≥0Depth(k). The classes Breadth(k)
and Breadth are defined analogously. Finally, Name(k) contains all processes
P so that every process in R (P) has at most k active restricted names, and
Name := ∪k≥0Name(k). Clearly, Name(k) ⊆ Depth(k) for each k ≥ 0 and so
Name ⊆ Depth. It is well known that Depth and Breadth are incomparable.

Our results rely on the fact that depth-, breadth-, and name-bounded processes
can be represented in a finite way:

Lemma 1. Let P ∈ Name(k). There is a finite set of sequential processes
{S1, . . . Sn} so that every Q ∈ R (P) satisfies

Q ≡ νa1 . . . ak.(Smi
1 | . . . | Smn

n) with m1, . . . ,mn ∈ N .

Similarly, given a depth-bounded process P ∈ Depth, all reachable Q ∈ R (P)
can be written using finitely many sequential processes [11]. Indeed, with depth
bound k, we rewrite Q to restricted form with at most k nested restrictions. Then
we choose a distinguished name ak for each nesting level:

Q ≡ νa1.(νa2.(. . .) | . . . | νa2(. . .)) .

After this modification, the sequential processes take the form Dσ with finitely
many D and finitely many substitutions σ. For Depth ∩ Breadth, we obtain a
finite representation using fragments [12].

Lemma 2. Let P ∈ Depth ∩ Breadth. There is a finite set of fragments
{F1, . . . Fn} so that every Q ∈ R (P) satisfies

Q ≡ Fmi
1 | . . . | Fmn

n with m1, . . . ,mn ∈ N .

Decision Problems. We study decision problems of the form (C1, C2) for classes
of processes C1 and C2, asking for a process from class C1, is it also in C2.

3 Karp and Miller for Bounded Depth

We now describe an adaptation of the Karp-Miller algorithm for Petri nets [10]
to the π-calculus. The Karp-Miller algorithm determines a finite representation
of (the downward closure of) a system’s reachability set. It unwinds the state
space until it detects a transition sequence between comparable states. The
key ingredient is then an acceleration theorem that characterizes the states
reachable with arbitrary repetitions of this sequence in a symbolic way. When
transferring the idea to depth-bounded processes, the unwinding finds Q1 →∗ Q2

with Q1 ≺ Q2. By monotonicity, this can be repeated as

Q1 →∗ Q2 →∗ Q3 →∗ . . . with Q1 ≺ Q2 ≺ Q3 ≺

Our main result is an acceleration theorem that characterizes {Qi | i ∈ N}.
Acceleration for the π-calculus is more involved than for Petri nets, because we
have to take the identities of restricted names into account. Consider the reaction

νa.νb.K1ba, bc → νa.νb. (K1ba, bc | K2bbc)

with K1(x, y) := νz.(K1bz, xc | K2bxc) and K2(x) := 0. At first glance, k
repetitions of this reaction should lead to processes νa.νb.

(
K1ba, bc | (K2bbc)k

)
.

However, due to α-conversion, a and b in source and target process are different.
Since a has been renamed to b and a fresh a has been created, repetitions will
lead to terms νc.K2bcc. To see this, we repeat the reaction without renaming:

νa.νb.K1ba, bc → νc.νa.(K1bc, ac | K2bac)
→ νd.νc.(K1bd, cc | K2bcc | νa.K2bac) .

The example illustrates that we have to track the identity of restricted names
over transitions. We have to determine if a restricted name is stable in the sense
that it remains in the original process, or it is fragile, i.e. it is eventually forgotten
and moves to the accelerated part. The following subsection develops a suitable
notion of identity relations, afterwards we turn to the actual acceleration.

3.1 Identity Relations

To track the identity of active restricted names over transitions, we extend
the reaction relation. Recall that we assume active restrictions to be unique
within processes. With each reaction P → Q, we associate an identity relation
I ⊆ (N ∪ {?})×N relating the active restrictions in P and Q. Formally, I is the
smallest set that satisfies the following conditions. If reaction P → Q α-converts
a ∈ arn(P) into b ∈ arn(Q), then we have (a, b) ∈ I. Moreover, if νc becomes
active in Q, we have (?, c) ∈ I. We write P →I Q for these extended reactions
in Proc× P((N ∪ {?})×N)× Proc. The definition generalizes to sequences of
extended reactions by composing the identity relations. Such a sequence is faithful
if it does not use α-conversion. Formally, I ∩ (N ×N) is the identity.

For the purpose of acceleration, we focus on the special case that I acts on
a finite subset ã ⊆ N of names, I ⊆ ({?} ∪ ã) × ã. In this case, I induces a
partition ã = f̃] s̃ as follows. The set f̃ of fragile names contains all names that
are recreated in repeated applications of I. Technically, these names form a least
fixed point. If (?, a) ∈ I, then a ∈ f̃ . If a ∈ f̃ and (a, b) ∈ I, then b ∈ f̃ . The
remaining names s̃ := ã \ f̃ are called stable. We use σI for I ∩ (s̃× s̃).

Lemma 3. σI : s̃→ s̃ is a bijection.

Since σI is a bijection, repeated applications of σI become periodic. The period
of σI is the smallest p ≥ 1 so that σpI = id . Now σxI = σx mod p

I for all x ∈ N.
We call an identity relation I forgetful if it immediately recreates all fragile

names, as opposed to needing several applications to recreate them. Formally,
I is forgetful if the fragile names are precisely the names (?, a) in I. We also

call an extended reaction sequence P →∗I Q forgetful if I is. To give an example,

consider ã = a.b.c.d and I = {(?, a), (a, b), (d, c), (c, d)}. Then f̃ = a.b, s̃ = c.d,
σI(c) = d, and σI(d) = c. The period of σI is p = 2. Relation I is not forgetful,
but I2 = {(?, a), (?, b), (c, c), (d, d)} is.

3.2 Acceleration for π-calculus

We make precise what it means to repeat a reaction sequence. Embedding P � Q1

ensures P ≡ νã.P ′ and Q1 ≡ νã.(P ′ | Q′). Hence, Q1 contains all the sequential
processes of P . So if P →∗ Q1 then also Q1 →∗ Q2 with reactions between the

same sequential processes. We use the syntax P
ρ−→ Q1 and Q1

ρ−→ Q2 to indicate
that the sequences rely on the same reactions ρ.

Our main result characterizes the shape of Qk with P
ρk−→ Qk. The idea is

to compose additional copies of Q′ in parallel with the repeating process P ′.
These copies keep track of (i) the fragile names forgotten by P ′ and (ii) repeated
applications of σI to the stable names. We state the precise result for forgetful
sequences. The general case is more involved, but does not add ideas.

Theorem 1 (Acceleration). Let νs̃.νf̃ .P
ρ′−→I′ νs̃

′.νf̃ ′.(P ′ | νf̃ .Q) be a faith-
ful sequence that, using α-conversion, gives rise to the forgetful sequence

νs̃.νf̃ .P
ρ−→I νs̃.νf̃ .(P | νf̃1.Q{f̃1/f̃}{f̃/f̃ ′}σI) .

Then for all k ∈ N we have

νs̃.νf̃ .P
ρk−→ νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

where Qi := Q{f̃i/f̃}{f̃i+1/f̃
′}σk−i+1

I and f̃k+1 := f̃ .

Proof. We use an induction on the number of repetitions of ρ. In the base case,
the term νf̃k.(. . .) is missing. Now assume ρk behaves as required. We can repeat
ρ once more since embedding is a simulation [11]. We use a faithful repetition
that avoids α-conversion and instantiates restricted names to fresh names:

νs̃.νf̃ .P
ρk−→ νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

ρ′−→I′ νs̃
′.νf̃ .(νf̃ ′.(P ′ | Q) | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)) .

Since the names f̃ ′ are fresh and do not occur free in νf̃k.(. . .), we can extend
the scope of νf̃ ′. Process P forgets the names f̃ in the reaction sequence ρ. After
swapping νf̃ and νf̃ ′, we can therefore restrict the scope of νf̃ :

νs̃′.νf̃ .[νf̃ ′.(P ′ | Q) | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)]

≡ νs̃′.νf̃ .νf̃ ′.(P ′ | Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

≡ νs̃′.νf̃ ′.νf̃ .(P ′ | Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

≡ νs̃′.νf̃ ′.(P ′ | νf̃ .[Q | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)]) .

We rename f̃ to fresh names f̃k+1 and afterwards f̃ ′ to f̃ . The last step is to
rename s̃′ to s̃ using σI . The resulting processes have the required form. ut

Depth boundedness of νs̃.νf̃ .P allows us to draw further conclusions about the
shape of the processes resulting from acceleration. We now characterize this shape.
We start with the assumption that νs̃.νf̃ .P is even name-bounded. This case
explains well the finiteness obtained from periodicity of σI . Moreover, it illustrates
the shape of limit processes in the decision procedure for name boundedness
of depth-bounded processes. Under the assumption of name boundedness, the
accelerated processes Qi cannot contain the fragile names f̃i and f̃i+1. As a
consequence, these processes can be written as Qσi.

Lemma 4. Under the conditions in Theorem 1 and the additional assumption
that νs̃.νf̃ .P is name-bounded, acceleration yields

νs̃.νf̃ .P
ρk−→ νs̃.(νf̃ .P |

p∏
i=1

(QσiI)
b kp c+zi) .

Here, p is the period of σI and zi = 1 if i ≤ k mod p and zi = 0 otherwise.

Proof. We skip the substitutions {f̃i/f̃}{f̃i+1/f̃
′} and remove the corresponding

restrictions from Qi. This leaves us with an i-fold application of σI :

νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .)) ≡ νs̃.(νf̃ .P |
k∏
i=1

QσiI) .

The claim then follows from σx = σx mod p for all x ∈ N and the fact that
k = bkp cp+ r where r = k mod p. ut

In case νs̃.νf̃ .P is depth-bounded, the processes Qi in

νs̃.νf̃ .(P | νf̃k.(Qk | . . . νf̃2.(Q2 | νf̃1.Q1) . . .))

cannot connect all fragile names f̃k+1 to f̃1. Instead, we now argue that process
νf̃k.(. . .) falls apart into a composition of fragments that stem from a finite set.

We first note that Q induces a relation D ⊆ f̃ × f̃ among the fragile names.
Intuitively, (f1, f2) ∈ D indicates that name f2 from some execution of ρ is
connected with name f1 from the next execution via a fragment in Q. For the
formal definition, recall that Qi = Q{f̃i/f̃}{f̃i+1/f̃

′}σk−i+1
I . Substitution σI is

a bijection among the stable names. When studying the relation among the
fragile names, we can drop it. Moreover, {f̃i/f̃} and {f̃i+1/f̃

′} are bijective
renamings of f̃ that we also avoid. To define D ⊆ f̃ × f̃ , we turn the remaining
process Q into restricted form. The restricted form is a parallel composition
G1 | . . . | Gn of fragments. Relation D ⊆ f̃ × f̃ is defined to contain the pair
(f1, f2) if there is a fragment Gi that has f ′1 ∈ f̃ ′ and f2 ∈ f̃ as free names. To
give an example, consider Q = G1 | G2 where G1 = νa.(K1bf ′1, ac | K2ba, f2c)
and G2 = K3bf ′2, f3c. Then we have D = {(f1, f2), (f2, f3)}.

If the process of interest is depth-bounded, relation D is guaranteed to vanish.
Otherwise, the connected fragments Gi would witness unbounded depth.

Lemma 5. If νs̃.νf̃ .P ∈ Depth, then there is b ≤ |f̃ | so that Db = ∅.

The lemma shows that fragments in Qi+(b−2) may only share fragile names with
fragments in Qi+(b−3), which only share names with fragments in Qi+(b−4) up to

Qi. Combined with periodicity of σI , it follows that process νf̃k.(. . .) falls apart
into fragments from a finite set {F1, . . . , Ft}. In the example, we have b = 3 as
D3 = ∅. So fragments in Qi+1 may only share fragile names with fragments in Qi,
but these fragments will not share fragile names with fragments in Qi−1. Hence,
we may observe νf1,i+2.f2,i+1.f3,i.(G1,i+1 | G2,i) but G2,i = K3bf2,i+1, f3,ic will
not share f3,i with another fragment.

Lemma 6. If νs̃.νf̃ .P is depth-bounded, then acceleration yields

νs̃.νf̃ .P
ρk−→ νs̃.(νf̃ .(P | Rk) |

t∏
i=1

Fni
i)

where the Rk are periodic, t ∈ N is the number of fragments, and n1, . . . nt ∈ N
grow unboundedly with k.

To actually compute the fragments F1, . . . , Ft, we iterate ρ until the fragments
repeat, due to periodicity of σI and modulo α-conversion of fragile names. The
time it takes until repetition depends on the period of σI and |f̃ |. However,
termination does not rely on the precise depth bound.

In the decision procedure for restricted breadth boundedness, we apply
Lemma 6 in a setting where also the breadth is bounded. In this case, the
stable names are guaranteed not to occur in the accelerated fragments. We derive

νs̃.νf̃ .P
ρk−→ νf̃ .(νs̃.P | Rk) |

t∏
i=1

Fni
i .

3.3 Karp and Miller Trees for Bounded Depth

We now apply these insights about acceleration to devise a Karp and Miller
algorithm for depth-bounded processes. Our goal is to separate soundness and
completeness of the construction from termination. We will guarantee that the
tree represents precisely the downward closure of the reachability set, but the
tree computation may not terminate. Termination is studied independently in
the next section where we draw conclusions about decidability. In Section 5, we
show that in general the coverability set is not computable for depth-bounded
systems. Hence, no Karp-Miller algorithm for depth-bounded processes can be
both, sound and complete as well as terminating.

To represent the downward closure of the state space, we use limit processes:

L ::= S p L1 | L2 p νa.L p Lω .

Structural congruence is extended to limits by

0ω ≡ 0 Lω ≡ L | Lω (Lω)ω ≡ Lω (L1 | L2)ω ≡ Lω1 | Lω2 Lω | Lω ≡ Lω .

Algorithm 1 Generic Karp & Miller Tree Construction

1: V := {root : P}; := ∅; work := root : P ;
2: while work not empty do
3: pop n1 : L1 from work ;
4: Break condition;
5: for all L1 →I L2 up to ≡ do
6: if there is n : Lp ∗

I1 n1 : L1 since last acceleration so that

Lp ≡ νs̃.f̃ .L and L2 ≡ νs̃.f̃ .(L | Q) then
7: L2 := Accelerate(Lp, L2);
8: let n2 fresh; V := V ∪ {n2 : L2}; := ∪ {n1 : L1 I n2 : L2};
9: work := work · (n2 : L2) provided L2 does not occur on the path;

10: return (V, , root : P);

With this, the reaction relation and the embedding order carry over to limit
processes. To generalize the extended reaction relation to limits, we do not
consider a restricted name as active if it is covered by an ω. If a reaction takes a
restriction νb.L{b/a} out of a term (νa.L)ω, we add (?, b) to the identity relation.

Our Karp-Miller construction is stated as Algorithm 1. Understand break
condition as a no-op for the moment. The command will be instantiated in
Section 4. The algorithm constructs a tree KM(P) := (V, , root : P) where the
nodes are labelled by limit processes, starting from the root that is labelled by
the given process P . To construct the tree, the algorithm maintains a worklist of
nodes that have not yet been processed. As long as the worklist is not empty, the
algorithm pops nodes n1 : L1 and computes all successors L1 →I L2. In contrast
to a standard state space computation, the algorithm does not immediately add
L2 to the tree, but it checks for a predecessor Lp that is strictly smaller in the

following sense: Lp ≡ νs̃.f̃ .L and L2 ≡ νs̃.f̃ .(L | Q). If such an Lp exists, the
algorithm accelerates subterms in L2 to ω and adds the result to the tree.

We use an acceleration scheme that is flat in the following sense. We only
look for predecessors Lp starting from the last accelerated process on the path
from the root. This ensures that the Karp-Miller transitions between Lp and L2

are actually reactions. As a consequence, the additional process Q in L2 can be
assumed to be concrete because the reaction relation does not introduce ω.

To define the acceleration, assume νs̃.f̃ .L
ρ→I νs̃.f̃ .(L | Q). We observe that

Theorem 1 carries over to limits. As the input process is depth-bounded, Lemma 6
shows that k ∈ N repetitions of the reaction sequence yield

νs̃.νf̃ .L
ρk−→ νs̃.(νf̃ .(L | Rk) |

t∏
i=1

Fni
i)

where the Rk are periodic and n1, . . . , nt ∈ N grow with k. We set

Accelerate(νs̃.f̃ .L, νs̃.f̃ .(L | Q)) := νs̃.(νf̃ .(L | R1) |
t∏
i=1

Fωi) .

The following theorem states that the limit processes in KM(P) are a sound and
complete representation of the state space.

Theorem 2. Let P ∈ Depth. Then R (P)↓ = KM(P)↓∩ Proc.

Completeness means every Q ∈ R (P) satisfies Q ∈ KM(P)↓. This holds because
acceleration only returns a larger process and embedding is a simulation. Sound-
ness states that every process Q � L ∈ KM(P) is covered by a reachable process,
Q � R ∈ R (P). The acceleration results show that for every limit L ∈ KM(P)
and k ∈ N there is a process RL,k ∈ R (P) that coincides with L in the concrete
part and yields more than k parallel compositions of the ω terms.

4 Decidability Results

4.1 Given P ∈ Depth, is P ∈ Name?

To decide name boundedness, we instantiate break condition as follows:

if there is a predecessor n : Lp ∗ n1 : L1 so that n : Lp is not inside
an acceleration, Lp ≺ L1, and |arn(Lp)| < |arn(L1)| then

return not name-bounded;

That predecessor n : Lp is not inside an acceleration, means there is no pair of
nodes nx : Lx + n : Lp + ny : Ly that have been used to accelerate Ly. The
condition guarantees that the sequence n : Lp ∗ n1 : L1 can be accelerated
although it may be nested. The trick is that nested sequences inside have all the
processes required to pump.

We say that Algorithm 1 succeeds, if it returns the tree (Line 10) and it
breaks, if it enters the break condition (Line 4). The next observation shows that
acceleration never introduces ω over an active restriction.

Lemma 7. If KM(P) accelerates an active restriction, it breaks.

Proof. Let L1 be the first limit on a path with some (νa.(. . .))ω. The acceleration
is due to some n : Lp ∗ n1 : L1 that occurs after the last acceleration and
satisfies Lp ≺ L1. As L1 is minimal, |arn(Lp)| ∈ N and |arn(L1)| := ω. ut

We now show Algorithm 1 is partially correct. If KM(P) succeeds, it will not
accelerate active restrictions by Lemma 7. Moreover, the constructed tree is finite
and the maximum max{|arn(L)| | L ∈ KM(P)} is a natural number and an
optimal name bound. If KM(P) breaks, we obtain name unboundedness with the
above argumentation on nested acceleration and Lemma 6.

Lemma 8. If KM(P) succeeds, P ∈ Name. If KM(P) breaks, P /∈ Name.

It remains to show that Algorithm 1 is guaranteed to terminate. First assume P
is name-bounded. By Lemma 8, the algorithm does not break. To show that the

tree construction succeeds, we apply König’s lemma and argue that the paths in
the tree are finite. Towards a contradiction, assume there was an infinite path

root : P = n0 : L0 n1 : L1 n2 : L2 . . .

Since the Karp-Miller construction is sound (Theorem 2) and P ∈ Name, not
only the reachable processes but also the limits Li take the shape from Lemma 1:

Li ≡ νa1 . . . ak.(Smi
1 | . . . | Smn

n)

where n ∈ N is fixed and potentially some mi are accelerated to ω. We can
understand the limits as vectors in (N∪{ω})n. The set of vectors (N∪{ω})n with
the usual ordering on N ∪ {ω} (applied component-wise) is well-quasi-ordered.
Hence, the infinite path contains an infinite non-decreasing subsequence

Li1 � Li2 �

This sequence is strict, as Algorithm 1 never adds a process to the worklist that
already occurs on the path. Since there are only n sequential processes and ωs
are never removed, the number of Sω stabilizes in some node in the path, say
nik : Lik . Then there are no more accelerations from Lik , and Lik+1

� Lik can be
accelerated. A contradiction to the fact that no ω is added to Lik+1

.

Lemma 9. If P ∈ Name, then KM(P) succeeds.

Now assume that P /∈ Name. By Lemma 8, the algorithm does not succeed. To
show that it always breaks, assume this is not the case. With Lemma 7, we never
accelerate an active restriction. Since Algorithm 1 is complete and P /∈ Name,
for every k ∈ N the tree contains a limit Lk with more than k active restrictions.
Thus, the tree is infinite and by König’s lemma contains an infinite path

root : P = n0 : L0 n1 : L1 n2 : L2

We isolate the subsequence Li1 , Li2 , . . . of limits that (i) form the lhs of an
acceleration, like nx : Lx above, or (ii) that lie strictly between accelerations.

We now show that the limits computed without a break form a wqo with �.
Since we never accelerate a restriction, the limits Li are term trees over sequential
processes S and Sω. Due to soundness, the limits are bounded in depth by some
k ∈ N. It remains to show that S stems from a finite set. With the depth bound
and the observation following Lemma 1, we can assume that the limits are flat
processes with at most k nested restrictions. They can be written as

Li ≡ νa1.(νa2.(. . .) | . . . | νa2(. . .)) .

This in turn means S ≡ Dσ with σ : fn(D)→ fn(P) ∪ {a1, . . . , ak}, where D is
a syntactic subterm of P and σ is taken from a finite set of substitutions.

As the limits on the path are wqo, there is an infinite non-decreasing subse-
quence Lj1 � Lj2 � . . . of the sequence Li1 , Li2 , . . . we just considered. Again,

Algorithm 1 does not add copies and the sequence is strict. Either the num-
ber of active restricted names in the limits along this path is bounded, or it
grows indefinitely. If it is bounded, this contradicts infinity of the path as in
Lemma 9. Otherwise, there are Ljk ≺ Ljl with |arn(Ljk)| < |arn(Ljl)| and the
break condition applies.

Lemma 10. If P /∈ Name, then KM(P) breaks.

Theorem 3. Given P ∈ Depth, it is decidable if P ∈ Name.

Name-bounded processes have finite Karp-Miller trees by Lemma 9. We can now
decide breadth boundedness for P ∈ Name by checking if the tree contains a
limit νã.(Sm1

1 | . . . | Smn
n) where a ∈ fn(Si) for some a ∈ ã and Si with mi = ω.

Corollary 1. Given P ∈ Name, it is decidable if P ∈ Breadth.

4.2 Given P ∈ Depth and k, is P ∈ Breadth(k)?

To derive a decision procedure, we use the following break condition:

if |L1|B > k then return not breadth-bounded by k;

Lemma 11. If KM(P) succeeds, P ∈ Breadth(k). If KM(P) breaks, P /∈
Breadth(k).

We now show that Algorithm 1 is guaranteed to terminate. If P ∈ Breadth(k), by
Lemma 11, the break condition will not apply. By soundness of the construction,
limits are composed of finitely many fragments (Lemma 2). Then an infinite path
yields a contradiction to the acceleration behaviour as for name boundedness.
If P /∈ Breadth(k), by Lemma 11, the tree construction will not succeed. We
show that we enter the break condition. Since P /∈ Breadth(k), there is a process
Q ∈ R (P) with |Q|B > k. As Algorithm 1 is complete, we eventually find a limit
L with Q � L and k < |Q|B ≤ |L|B. The break condition applies for L.

Lemma 12. If P ∈ Breadth(k), then KM(P) succeeds. If P /∈ Breadth(k), then
KM(P) breaks.

Theorem 4. Given P ∈ Depth and k ∈ N, it is decidable if P ∈ Breadth(k).

Note that we cannot semi-decide breadth unboundedness. We show in Section 5
that breadth boundedness, despite the seeming similarity with name boundedness,
is undecidable for depth-bounded processes.

4.3 Given P ∈ Proc and k, is P ∈ Depth(k)?

By definition, P ∈ Depth(k) iff all processes in R (P)↓ are in Depth(k).
If R (P)↓ is not in Depth(k), we claim that there is some process Q in R (P)↓

for which k < |Q|D ≤ |P |+ 2k. Let P →∗ Q′ → Q, such that (1) |Q|D > k, and
(2) all processes in the path P →∗ Q′ have depth less than or equal to k. So Q is

a minimal process whose depth exceeds k. Note that Q need not be unique, we
arbitrarily pick a minimal process. Consider the step Q′ → Q. By case analysis
on the possible steps, Q′ either unfolds a recursive call and Q has its depth
bounded by |P |+ |Q′|D, or Q results from a communication and has fragments
whose depth is bounded above by |P |+ 2|Q′|D. In both cases, |P | takes care of
active restrictions that are freed in the reaction. As |Q′|D ≤ k by assumption,
we have that there is a process Q in R (P)↓ whose depth is at most |P |+ 2k.

Now, consider the set Procw := {Q ∈ Proc | k < |Q|D ≤ |P |+ 2k}. We work
in the well-quasi-order of |P |+ 2k depth-bounded processes with the ordering
�. If R (P)↓ intersects this set, a minimal element of this set must be covered
by process P . We enumerate the finitely many minimal elements of this set, and
for each minimal element Q, we check if R (P)↓ intersects Q. This problem is
a coverability question. Since the coverability problem is decidable for depth-
bounded systems [18], we get a decision procedure to check if P ∈ Depth(k).

Theorem 5. Given P ∈ Proc and k ∈ N, it is decidable if P ∈ Depth(k).

5 Undecidability Results

We complement our decidability results with undecidability results for the remain-
ing questions. Recall that a problem L is in the class Σ1 if it is semi-decidable,
and in Σ2 if it is semi-decidable using a Σ1 oracle. A problem is Π1 if it is the
complement of a Σ1 problem, and L is C-complete if it is in the class C and
there is a recursive reduction from every L′ ∈ C to L. The halting problem is
Σ1-complete, the emptiness problem is Π1-complete, and the finiteness problem
is Σ2-complete [17]. Boundedness for reset Petri nets is also Σ1-complete [1, 2].

Theorem 6 (Undecidability results).

1. Given P ∈ Proc, checking if P ∈ Name or P ∈ Depth are both Σ1-complete.
2. Given P ∈ Proc and k ∈ N, checking if P ∈ Breadth(k) is Π1-complete.
3. Given P ∈ Proc, checking if P ∈ Breadth is Σ2-complete.
4. Given P ∈ Depth, checking if P ∈ Breadth is Σ1-complete.

Given a process P , since checking P ∈ Depth(k) and P ∈ Name(k) is decidable,
P ∈ Depth and P ∈ Name are both Σ1. For the problem P ∈ Breadth(k) to
be in Π1, we semi-decide the complement. We enumerate processes until we
find Q ∈ R (P) with |Q|B > k. With an oracle for this, we can semi-decide
P ∈ Breadth by enumerating the possible bounds k and querying the oracle.

We show hardness for these problems. For a Turing machine M with input x,
we construct a process P (M,x) that simulates M and in each step increases the
number of names and the depth. If M halts on x, then P (M,x) is name-, and also
depth-bounded. If M does not halt on x, then P (M,x) is not depth-bounded.

For problems related to breadth boundedness, we show that the computation
of a Turing machine M simultaneously on all possible inputs can be simulated by
a process P (M) in constant breadth. We increment the breadth of P (M) every
time M accepts an input. Restricted breadth boundedness is Π1-hard, because

we can reduce emptiness of M to this question. Breadth boundedness is Σ2-hard,
since the simulating process has bounded breadth iff L(M) is finite.

To show that boundedness in breadth is Σ1-complete even for P ∈ Depth, we
reduce the boundedness problem for reset Petri nets to breadth boundedness. We
simulate net N with a depth-bounded P (N). Tokens are send actions, consumed
and produced when transitions fire. To reset a place, we create a fresh name for
its tokens. The breadth of P (N) is related to the token count in N , and P (N) is
bounded in breadth if and only if N is bounded.

This shows that the coverability set is not computable for P ∈ Depth. The
coverability set of P (N) would allow to decide boundedness of the reset net N .

References

1. C. Dufourd, A. Finkel, and Ph. Schnoebelen. Reset nets between decidability and
undecidability. In ICALP, volume 1443 of LNCS, pages 103–115. Springer, 1998.

2. C. Dufourd, P. Jancar, and Ph. Schnoebelen. Boundedness of reset p/t nets. In
ICALP, volume 1644 of LNCS, pages 301–310. Springer, 1999.

3. E.A. Emerson and K.S. Namjoshi. On model checking for non-deterministic infinite-
state systems. In LICS, pages 70–80, Jun 1998.

4. A. Finkel. A generalization of the procedure of Karp and Miller to well structured
transition systems. In ICALP, volume 267 of LNCS, pages 499–508. Springer, 1987.

5. A. Finkel. Reduction and covering of infinite reachability trees. Inf. Comp.,
89(2):144–179, 1990.

6. A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part I: Completions.
In STACS, pages 433–444, 2009.

7. A. Finkel and J. Goubault-Larrecq. Forward analysis for WSTS, part II: Complete
WSTS. In ICALP, volume 5556 of LNCS, pages 188–199. Springer, 2009.

8. A. Finkel and J. Goubault-Larrecq. The theory of WSTS: The case of com-
plete WSTS. In ATPN, LNCS 7347, pages 3–31. Springer, 2012.

9. R. Hüchting, R. Majumdar, and R. Meyer. A theory of name boundedness. In
CONCUR, volume 8052 of LNCS, pages 182–196. Springer, 2013.

10. R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci.,
3(2):147–195, 1969.

11. R. Meyer. On boundedness in depth in the π-calculus. In IFIP TCS, volume 273
of IFIP, pages 477–489. Springer, 2008.

12. R. Meyer. A theory of structural stationarity in the π-calculus. Acta Inf., 46(2):87–
137, 2009.

13. R. Milner. Communicating and Mobile Systems: the π-Calculus. CUP, 1999.
14. F. Rosa-Velardo and D. de Frutos-Escrig. Forward analysis for Petri nets with

name creation. In ATPN, pages 185–205. Springer, 2010.
15. F. Rosa-Velardo and M. Martos-Salgado. Multiset rewriting for the verification of

depth-bounded processes with name binding. Inf. Comput., 215:68–87, June 2012.
16. D. Sangiorgi and D. Walker. The π-calculus: a Theory of Mobile Processes. CUP,

2001.
17. R.I. Soare. Recursively enumerable sets and degrees. Springer, 1980.
18. T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded

processes. In FOSSACS, volume 6014 of LNCS, pages 94–108. Springer, 2010.

