
A Polynomial Translation of Mobile
Ambients into Safe Petri Nets

Masterarbeit
am Fachbereich Informatik der TU Kaiserslautern

Susanne Göbel

Keywords: Mobile Ambient, Safe Petri net, model checking,
reachability

Abstract. Mobile Ambients [CG98] are a modeling tech-
nique suitable to express typical network components and their
behaviour e.g. processes passing firewalls. We derive a decidable
subclass of the MA calculus by a translation into Safe Petri
nets. Our translation extends to arbitrary MA processes but
finiteness of the net and therefore decidability of reachability is
only guaranteed for processes bounded in depth and breadth.

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

(Ort, Datum) (Unterschrift)

Autorin: Bc. Sc. Susanne Göbel
Email-Adresse: s_goebel@informatik.uni-kl.de
Fachbereich: Informatik
Universität: Technische Universität Kaiserslautern
Studiengang: Master Informatik
Erstgutachter: Dipl. Inf. Reiner Hüchting
Zweitgutachter: Jun.-Prof. Dr. Roland Meyer

Zusammenfassung Typische Komponenten von Netzwerken und Net-
zwerkverhalten, z.B. Prozesse, die Firewalls passieren, lassen sich gut in
Mobile Ambients (MA) [CG98] modellieren. Durch Übersetzung in sichere
Petrinetze ergibt sich hier eine entscheidbare Teilklasse der MA Prozesse.
Die Übersetzung selbst funktioniert für beliebige Prozesse, ein endliches
Netz und damit ein entscheidbares Erreichbarkeitsproblem ergibt sich aber
nur für Prozesse, die tiefen- und breitenbeschränkt sind.

Vielen Dank. . .

. . .möchte ich zunächst meinen beiden Betreuern Roland Meyer und Reiner
Hüchting sagen, für Betreuung und Unterstützung, die schon lange vor dieser Arbeit
begonnen hat und sich hoffentlich auch noch lange fortsetzen wird. Ihr habt mir
ein faszinierendes Feld der Informatik erschlossen, dass mich hoffentlich irgendwann
ernähren, auf jeden Fall aber nie loslassen wird.

Mit der Masterarbeit schließt sich ein spannendes Lebenskapitel: Mein Studium.
Ich habe Freiheit in einem Maß erfahren, dass ich vorher kaum für möglich gehalten
hätte, aber auch Heimweh und Verlorensein. Ich danke meinen Eltern und Großeltern
für Geborgenheit und einen Ort, an den ich bis heute fliehen kann, wenn mir alles
zuviel wird. Ihr habt mir mein Studium ermöglicht und ihr seid bis heute für mich da,
wenn ich Sorgen habe.

Genauso begleitet haben mich Freundinnen, die schon in der Schulzeit an meiner
Seite waren und bis heute sind: Sonja, die vom Kindergarten bis als Trauzeugin mit
mir gegangen ist, Mara, die mit mir die Männerwelt unsicher gemacht hat und bei
Liebeskummer immer eine zuverlässige Anlaufstelle war, Marina, die mich nicht erst,
aber vor allem in meiner Schwangerschaft so kompetent und mitfühlend begleitet
hat und bestimmt mal eine tolle Ärztin wird, Kristina, mit der man schon immer
wunderbar träumen und spielen konnte, und schließlich Vali, die alle Sorgen einfach
weglacht. Noch länger mit mir geht meine Schwester – wir haben uns gemeinsam
durch Pubertät und Schule gekämpft und so viel zusammen erlebt, wie man das wohl
nur als Geschwister kann. So verschieden sich unsere Leben entwickelt haben, das
Band ist doch nie ganz abgerissen und ich bin unglaublich stolz und glücklich, euch
alle zu haben – ich hab euch lieb.

Während des Studiums habe ich neue Freunde gefunden, auch wenn die erste Clique
nicht gehalten hat, bin ich doch euch allen dankbar für die gemeinsame Zeit. Viele sind
geblieben und sind zu wichtigen RatgeberInnen, LeidensgenossInnen und in Helens
Fall sogar beinahe zu einem Familienmitglied geworden. Da sind noch Anne, Frank,
Laura und Stephan, Lars, Marco, Christian, Roya und Christina. Mit manchen kann
man schwimmen gehen, mit manchen wandern, Brettspiele spielen oder Musik machen,
aber mit allen kann man reden.

Ebenfalls dankbar bin ich der Studienstiftung und Professor Liggesmeyer, der mich
im zweiten Semester vorgeschlagen hat. Ich habe durch sie den Zugang zu einem
Gesellschaftsbereich erhalten, der sich sicherlich im Berufsleben als hilfreich erweisen
wird. Dem gesamten Fachbereich, vor allem der Fachschaft und den Gremien danke
ich für unsere gemeinsame Zeit und Arbeit. Ich denke wir haben viel bewegt und ich
bin sicher, ich habe viel gelernt.

Ganz neben der Uni und dennoch eng damit verwoben ist mein Mann Chris, der
seit drei Jahren mit mir durch dick und dünn geht. Für eine Ehe, die so ist, wie sie
sein sollte, weil sie uns beide trägt und stützt, für eine Schulter, an die ich mich immer
lehnen kann, auch wenn sie eher spitz und etwas härter ist, möchte ich dir aus tiefstem
Herzen danken. Du hast dich begeistert mit mir in das Abenteuer Familie gestürzt

3

und bist so liebevoll und fürsorglich bisher für mich und jetzt für Katharina und mich
da.

Schließlich sind da noch Mady und Katharinas Patentante Nathalie, die uns durch
die schwere Zeit des Krankenhauses begleitet haben und hoffentlich auch weiterhin als
selbstgewählte Familie mit uns zusammenstehen.

Und dann, ja dann ist da natürlich noch die kleine Katharina selbst, die nicht erst
seit dem 20.8.2013 unser Leben ordentlich durcheinanderwirbelt. Ich danke dir fürs
Kuscheln, für dein Lächeln und das unfassbare Vertrauen, das aus deinen großen
blauen Augen spricht. Du bist so ruhig und friedlich, dass ich die letzten Kapitel
fertigstellen konnte, als du schon in meinen Armen lagst.

4

Contents

1 Introduction and Related Work 6
1.1 Overview . 7

2 Preliminaries 9
2.1 Safe Petri Nets . 9
2.2 Mobile Ambients . 10
2.3 Bisimulations . 12

3 Translating MA Processes into Safe Petri Nets – The Idea 15
3.1 Translating MA Terms into Safe Petri Net Markings 15
3.2 Translating Capability Actions into Petri Net Transitions 17
3.3 Managing Names in the Petri Net . 22
3.4 Guaranteeing Finiteness . 30

4 From MA to rMA 32
4.1 Preprocessing . 32
4.2 The Refined MA Calculus . 33
4.3 Bisimulation between MA and rMA 33

5 The Construction: MA-PN 35
5.1 Places . 35
5.2 Transitions . 38

6 From rMA to MA-PN 50
6.1 Stable MA-PN Markings Maintain a Tree Structure 50
6.2 Connecting rMA and MA-PN . 54
6.3 Bisimulation between rMA and MA-PN 64

7 Extensions and Optimisation 66
7.1 Saving Transitions by Modularisation 66
7.2 Excluding Public Names from Parameter Lists 66
7.3 Relaxed MA Semantics . 67
7.4 Simulation of Unbounded Processes . 69

8 Conclusion and Future Work 73

A Polynomial Construction Using a Substitution Net 75
A.1 The New Buds . 75
A.2 The Substitution Net . 75

B Overview: The Transitions 81
B.1 Transitions for rMA Actions . 81
B.2 Transitions for Equivalence Transformations 84

5

1 Introduction and Related Work

Since its development in 1998 in [CG98] the Mobile Ambient (MA) calculus has
received a lot of attention. It allows for the specification of hierarchical protection
domains like firewalls around a concurrency framework close to that of the π-calculus
([Mil99], [SW01]). The need to express such features arises in the verification of security
properties for mobile devices [UAUC10] where model checking is automated using the
MA calculus but also in the area of architecture description languages ([Oqu04]).

The pure MA calculus, also called mobility calculus, comes unlike its ancestor, the
π-calculus, without any communication primitives. Still, it is already Turing-complete
[CG98]. A lot of variations and extensions have been proposed, e.g. Safe Ambients
[LS03], also enriched with passwords [MH02] where the capabilities are only executed
if both participants agree, or the Controlled Ambient Calculus [TZH02] which focusses
on security modeling. The MA founders’ subsequent work like [GC03] uses the calculus
enriched with communication which then also allows for the convenient encoding of
the asynchronous π-calculus [CG98]. The Ambient logic [CG00] opens the way for
conventional model checking. Already the introducing paper proves decidability of the
model checking problem between a subclass of the ambient calculus and a subclass of
the Ambient logic. Later, PSPACE-completeness was shown in [CZG+01].
Just like ourselves, [BZ09] searches for fragments of the MA calculus for which

verification’s premier problem, reachability, is still decidable. Therefore they
investigate syntactic restrictions removing the open capability and the restriction as
well as allowing for guarded replication only. However, their investigated fragments
are still Turing-complete as shown by [MP05].

We will enable efficient verification for a purely semantically restricted subclass of
the MA calculus by an encoding into Safe Petri nets. Safe Petri nets [RT86] offer
PSPACE-complete reachability, liveness, and persistence analysis ([EN94], [CEP95])
combined with high expressiveness. The encoding of Safe Petri nets into Boolean
formulas allows for the use of SAT solvers. Techniques like bounded model checking can
increase their efficiency by avoiding the state explosion problem [Val98] as [OTK04]
showed. Thus, Safe Petri nets are a popular framework for verification.

To our knowledge, they haven’t been employed yet to directly encode fragments of
the MA calculus, though. Still, [KK06] uses arbitrary p/t Petri nets to approximate
graph rewriting systems for counter-example based verification. The MA and the
π-calculus are mentioned as typical graph rewriting systems to model mobile processes.
As we will highlight, MA is even a tree rewriting system.

[RVMS12] contribute to the verification of depth bounded processes with restrictions
(into which the depth bounded MA calculus falls) by the introduction of ν-MSR. It
allows for a convenient encoding of name binding since it comes with an own restriction
operator. While their approach guarantees decidability of termination, boundedness
and coverability for any depth bounded MA process the decision procedure is known
to not be primitively recursive. We will introduce a depth and breadth bounded
fragment of the MA calculus in which we cannot only decide reachability but even
with a P-SPACE upper bound.

6

There are a lot of verification results for the MA inspirer, the π-calculus, which rely
on the notion of depth bounded processes introduced by [Mey08]. While termination
[Mey08] and coverability [WZH10] are still decidable for these systems, reachability is
undecidable in general. We are especially interested in the subclasses of depth bounded
processes for which encodings into Petri nets have been proposed. Employing the
decidable Petri net reachability all those classes have a decidable reachability problem.
Still, the decision procedure may have large complexity depending on the class of Petri
nets used for the encoding and the size of the encoding itself. [Mey09] introduces the
huge fragment of structurally stationary π-calculus processes giving a translation into
p/t Petri nets which can become non-primitively recursive. [MG09] extends this class
further to mixed bounded processes again by an encoding into p/t Petri nets.

For Finite Control Processes (FCP) [Dam96], which form a subclass of structurally
stationary processes, encodings into bounded Petri nets have been proposed: [MKS08]
gave an exponential encoding of FCPs into bounded Petri nets, identifying a subclass
for which the translation already produced a safe net. Recently, this work has been
refined by [MKH12] who could present a polynomial encoding for arbitrary FCPs
into Safe Petri nets. Although one can suspect that our translation closely matches
their work we will see that the different ways to deal with restricted names enforce
quite different translation mechanisms. While the send and receive actions in the
π-calculus allow for an almost arbitrary runtime-spread of a name, MA has no name
passing mechanism so that the spread of a name can be characterised by some static
properties.

1.1 Overview

We give a polynomial encoding of MA processes into Safe Petri nets in Section 51.
The bisimilarity result of Theorem 2 guarantees its correctness. The idea behind the
translation is stepwisely introduced in Section 3. We define the intermediate rMA
calculus in order to deal with new actions in Section 4. These are inserted into the
MA terms to propagate necessary management information to the net. Our proof is
divided into two bisimulations, one between MA and rMA in Lemma 3, and a more
complex one between rMA and the actual Petri nets in Theorem 1.

After the introduction of the necessary formalisms in Section 2 we investigate the
MA calculus in detail in Section 3. The term tree is translated into Petri net places
and first rough translations of the capability operations are given. We discuss problems
hurting the one-safeness or causing races and devote Section 3.3 to deal with the
biggest problem: ambiguous trees due to multiple ambients with the same name. Since
we manage all relations by name the name management is crucial and indeed all the
features our final construction uses are already introduced here – although still in
an informal way. To guarantee finiteness of the net our name sets must be limited.
This requires depth and breadth bounds on the MA processes which we introduce in
Section 3.4. We later soften this constraint in Section 7.4. There we allow for infinite

1The necessary substitution net is deferred into Appendix A.

7

sets and derive the characterisation that the Petri net is finite if the process it was
constructed of is bounded in depth and breadth.

We define new commands to maintain the spread of names. This information allows
us to detect and then reuse forgotten names. The commands’ insertion requires an
intermediate calculus which we call rMA. Section 4 defines this calculus, gives a
preprocessing algorithm to translate an MA process into an rMA process, and proves
a bisimulation between these processes.
We then turn our attention to the actual Petri net construction. Since our nets

are built on an MA process we call them MA-PN. In Section 5.1 we define and count
the necessary places and give the initial marking. Additionally, a graphical notation
for net markings is included. Section 5.2 depicts and analyses the transitions and
transition chains to model (r)MA actions and equivalence transformations. The quick
reader may refer to Appendix B which skips analysis and explanation and simply
summarises all transitions.
Section 6.1, proves that these transitions maintain a tree structure. This is an

important pre-requisite for the next Sections, 6.2 and 6.3, which connect stable MA-PN
markings to their original rMA process via a restore function rest and establish a
bisimulation between rMA and MA-PN built on it.
Finally, Section 7 discusses further optimisations and extensions of the given con-

struction. A relaxed approach towards the MA semantics shown in Section 7.3 promises
great optimisation potential due to a possible division of the verification problems. We
enlarge our translation to arbitrary unbounded MA processes in Section 7.4. Artificial
bounds allow us to those runs which respect the bounds in a finite net. An example
illustrates that such a simulation can be sufficient to capture important behavioural
aspects.

8

2 Preliminaries

We present the two formalisms our translation links, namely Safe Petri nets and Mobile
Ambient processes, and bisimulations which we will use to prove the link between the
systems.

2.1 Safe Petri Nets
A Petri net is a tuple (P, T, F,M0) where P and T are the disjoint sets of places and
transitions, respectively, F ⊆ (P × T) ∪ (T × P) is the flow relation, and M0 = N|P |
is the initial marking. Each marking is specified as a vector representing the current
number of tokens per place. We use the standard graphical representation with nodes
represented as circles, their current token count as dots, transitions as rectangles, and
the flow between them as arcs.
Petri nets are commonly used to express system behaviour. Often, the tokens are

understood as threads which execute commands in the program part symbolised by
their surrounding place. Thus, transitions model possible control transfer.

Example 1 (Client-server application depicted as a Petri net).

Client fills form

Client setup

Server

Process formClient processes data

Figure 1: Interplay of a server with an arbitrary number of clients

The size of a net N = (P, T, F,M0) is |N | = |P | + |T | +
∑
p∈P (

∑
t∈T (|F (p, t)| +

|F (t, p)|)) +
∑
p∈P M0(p). A transition t is enabled on a marking M if the places

from which the transition takes tokens (F (∗, t)) contain at least as many tokens as
the transition wants to take. A marking M is called reachable in the net N if there is
a sequence of enabled transitions which transforms M0 into M .
Petri nets only fulfilling these restrictions are usually called p/t Petri nets to

distinguish them from their bounded subclasses. A net is called k-bounded if no place
in any reachable marking contains more than k tokens. One-bounded nets are called
safe. They have excellent model checking properties: The reachability problem is only
PSPACE-complete for Safe Petri nets while it is already EXSPACE-hard for arbitrary
Petri nets [EN94].

9

2.2 Mobile Ambients
The Mobile Ambient (MA) calculus focusses on the step-wise transition of processes
or devices through administrative domains. These domains are called ambients
and their nesting forms a tree structure. Each one possesses a name n. They are
entered, left or removed ("opened") by processes via the execution of capabilities
π := {in n, out n, openn}.

Definition 1 (Syntax). P is a process term if it is built according to the following
rules: P ::= 0 p π.P p n[P] p !P p νn.P p P |Q p K(~a), where π ={in n, out n, open n}.

A prefix π binds stronger than any other primitive, that is π.P |Q ≡ (π.P)|Q. Next
comes the replication !P so that we have !P |Q ≡ (!P)|Q. A restriction is still stronger
than the parallel composition: νn.P |Q ≡ (νn.P)|Q. Each ambient’s binding is
explicitly stated by its closing bracket since we expect a correct bracket tree.
The ambient symbol n[P] expresses that P is running within ambient n. Like for

the π-calculus 0 has no behaviour, P |Q is the parallel composition of P and Q, K(~a)
the call to process identifier K with parameters ~a and νn. P is the restriction which
introduces a new name n and limits its scope onto P . A name n occurring in the scope
of a νn is called restricted, otherwise called free. The in n and out n capabilities can
move an ambient with all its children into or out of a sibling ambient n. The execution
of openn removes an ambient n so that its children now belong to n’s former parent.
The transition relation specifies the possible actions giving a formal semantics to the
execution of capabilities and calls.
The MA calculus is a classical prefix system so that each action consumes exactly

one prefix. Neither restrictions nor ambients are understood as prefixes. Therefore,
the transition relation is independent of them.

Definition 2 (Transition relation defining actions). The transition relation defines
the four actions:

call: K(~a) Kx~a/~xy

in: n[inm.P |Q]|m[R] m[n[P |Q]|R]

out: m[n[outm.P |Q]|R] n[P |Q]|m[R]

open: openm.P |m[Q] P |Q

It ignores neighbouring terms completely via P Q⇒ P |R Q |R and also ignores
preceding terms as long as they do not contain prefixes: P Q⇒ n[P] n[Q], and
P Q⇒ νn.P νn.Q.

All other possible transformations to one MA term are no actions but equivalence
transformations which respect the congruence defined below. They do not influence
the possible actions: P ≡ P ′, P Q,Q ≡ Q′ ⇒ P ′ Q′. The congruence requires α
conversion of restricted names which we express by the name substitution σν defined
below. We will see that a term P and its substitution result Pσν(n/l) are congruent
if the substituted name is bound completely in P , that is νn.P ≡ νl.Pσν (n/l).

10

Definition 3 (Substitution). Let P an MA process term, n a name occurring in P ,
and l another name. We call a function which replaces each occurrence of n by one
of l a substitution. We distinguish the name substitution Pσν(n/l) where l may not
occur in P from the parameter substitution PσK(n/l) without this requirement.

Since process calls allow for the multiple occurrence of a name, we need the second
substitution for parameters which doesn’t require the substitute name l to be fresh.
This allows us to write the call action as K(~a) KσK(~a/~x).

Definition 4 (Structural congruence). We define a structural congruence with:

Refl P ≡ P

Symm P ≡ Q⇒ Q ≡ P

Trans P ≡ Q, Q ≡ R⇒ P ≡ R

Pers P ≡ Q⇒ νn.P ≡ νn.Q, P |R ≡ Q|R, n[P] ≡ n[Q], πn.P ≡ πn.Q

Again, as for the π-calculus, | and ν are commutative and associative, with ν also
allowing for scope extrusion (νn.(P |Q) ≡ (νn.P) |Q if n not free in Q). The additional
rules are:

νn.m[P] ≡ m[νn.P] if n 6= m P |0 ≡ P νn.0 ≡ 0

νn.P ≡ νl.Pσν(n/l) !P ≡ P | !P !0 ≡ 0

0 is understood as equivalent to the empty process (0 ≡ ε).

We define a short notation for MA processes representing the two main components,
defining equations and the initial process term. We also enforce that only those
equations are defined which are later used, and that the parameter list of each
definition is restricted to the finally used parameters.

Definition 5 (MA process). Let D =
⋃n
i=1Dix~xiy := Pi a set of defining MA

equations and I an MA term. The tuple (D, I) is called MA process if

minPara: For all Di all xi,j ∈ ~xi occur in Pi.

closed: All calls to process identifiers in any Pi are only done to elements of D.

complete: Each identifier call from the MA calculus term I is only done to elements
of D.

reachable: Each Di is either already called in I or in one of the Dj callable by I or
its (recursive) callees.

In our complexity analysis it will be necessary to reason about the size of such an MA
process. We define it according to the size of π-calculus terms and Safe Petri nets as
the sum over all syntactic elements.

11

Definition 6 (Size). The size of an MA process (D, I) is

size(I) + (
∑n
i=1 size(Di))

where size(P) for a process term P is defined inductively by

size(0) = 1 size(K(~a)) = 1

size(π.P) = 1 + size(P) size(n[P]) = 1 + size(P)

size(!P) = 1 + size(P) size(νn.P) = 1 + size(P)

size(P |Q) = size(P) + size(Q)

and size(Di) for a process equation Di is the size of its right-hand side.

Congruent process terms can have different sizes, for example size(P |0) = size(P)+ 1.
Since we use the process equations in their original form it is important to use the
original process’s size for our reasoning rather than some congruent, smaller version.

To simplify matters and exclude pathological cases we restrict ourselves to processes
in which restricted names and formal parameters occur only once per equation and
are never also used as free names. Analogously to the π-calculus we call this property
no clash (NC)[MKH12]. In fact, the original NC criterion was even stricter and forbid
multiple restrictions of a name over all equations.

Definition 7 (NC). Let A = (D, I) an MA process with fn(A) all names occurring
freely in D or I, rn(A) the set of names occurring restricted in D or I, and pn(A) all
names occurring as formal parameters in D. A fulfills the no clash (NC) criterion if

1. The sets fn(A), rn(A), and pn(A) are pairwise disjoint.

2. A name is restricted at most once within an equation Di and in I.

3. A name is used at most once within a formal parameter list.

Together with the restriction to specify only parameters which are later used (Defini-
tion 5 on the preceding page) we make sure that each defining equation uses as short
a parameter list as possible.

2.3 Bisimulations
Bisimulations link state transition systems which show the same behaviour to an
external observer. A bisimulation cares for the action with which a state is transformed
into another one. If there are several possible actions in a state, the bisimilar state
should be able to perform one action leading into an again bisimilar state for each one
of them.

Definition 8 (Act). The set Act of actions consists of all system actions Sys and of
the waiting action ε which encodes that the system doesn’t do a step.

Act = Sys ∪ {ε}

12

The system actions vary with the studied systems but can always be partitioned into
modifying actions mod and silent actions τ . The latter are simple prefix removals
while the former have some further effect additionally to the prefix removal. For
example, the system actions for the MA calculus are all steps according to , i.e.
SysMA = {call, in, out, open} with modMA = {call, in, out, open} and τMA = ∅.
We will concentrate on weak bisimulations where one assumes that the external

observer cannot witness silent actions. To abstract them away, we define a relaxed
transition relation which allows arbitrarily many silent actions before and after exactly
one action α ∈ Act.

Definition 9 (Transition relation with silent actions). Let α ∈ Act. P1 ⇒α̂ Pn iff

∃Pi, Pj : P1
τ∗ Pi

α Pj
τ∗ Pn

The action α may of course also be a silent action (α ∈ τ) or even encode no step at
all (ε). This new transition relation allows us to define the weak bisimulation:

Definition 10 (Weak bisimulation). A binary relation S ⊆ P × P over processes is
a weak bismiulation iff (P,Q) ∈ S implies for all actions α ∈ Act

1. Whenever P α P ′, then for some Q′, Q⇒α̂ Q′ and (P ′, Q′) ∈ S,

2. Whenever Q α Q′, then for some P ′.P ⇒α̂ P ′ and (P ′, Q′) ∈ S.

A process can mimic its bisimilar counterpart’s behaviour. In every state it can do a
transition for each action the bisimilar state can process. A weak bisimulation S can
be visualised by two commutative simulation diagrams:

P P ′ Q Q′

Q Q′ P P ′

α

S S and

α

S S

α̂ α̂

.

To abstract the concrete relation away and address bisimilarity as a property in general
we give the following definition of weak bisimilarity.

Definition 11 (Weak bisimilarity). Two systems T1 and T2 are called weakly bisimilar
(T1 ' T2) if a weak bisimulation exists between them.

As discussed before the external observer cannot witness silent actions. Thus, a silent
prefix τ does not influence a systems possible actions since it can be consumed before
the required action α without the observer noticing it.

13

Lemma 1 (Silent actions). Let P an arbitrary process.

P ' τ.P

Proof. The proof can be found in [Mil89, p. 111]. Roughly, τ.P executes τ before
mimicking P ’s actual action to establish a simulation of P by τ.P . In the opposite
direction τ.P can only execute its silent action which P simply simulates by ε.

In order to combine bisimulations we will make use of their transitivity.

Lemma 2 (Transitivity of weak bisimulations). Let Px,Py, and Pz processes and
S1 ⊆ Px × Py and S2 ⊆ Py × Pz weak bisimulations. Then S2 ◦ S1 is also a weak
bisimulation.

Proof. The proof can be found in [Mil89, p. 110].

14

3 Translating MA Processes into Safe Petri Nets –
The Idea

The notion already developed by the original "Mobile Ambients"-paper [CG98, p. 144]
that an MA process is a tree gives rise to the idea to use this tree as the data
structure for our construction. We depict first MA trees in Section 3.1. Restrictions
and ambients are inner nodes and all terms starting with a capability, replication, 0,
or a call are leaves. Based on this translation we propose an encoding into Petri net
places which are named after all possible parent chid relations. We discuss problematic
ambiguities which arise due to the management by name. They are resolved in Section
3.3 where we introduce two distinct name sets A, which keeps the tree unambiguous,
and L, which allows us to drop the restrictions. We derive their management via Petri
net transitions.
The second key property of the MA calculus is the locality of changes. All

capabilities interact with an ambient on an adjacent level so that their influence is
also limited to the respective subtree. On one hand this seems only too natural
considering the application in firewall modeling and other areas concentrating on
step-wise movement, on the other hand it makes a modeling via Petri nets so very
natural since – as we will see in Section 3.2 – only few and easily identifiable places
are affected by each transition.

3.1 Translating MA Terms into Safe Petri Net Markings
Every MA process term can be represented as a tree where the inner node structure
depicts the ambient hierarchy with the restrictions while the leaves are prefix guarded,
that is each leaf starts with a capability π, is a call or 0, or a replication. The parallel
compositions separate siblings.

Example 2 (Simple ambient hierarchies). The process n[P |m[Q|R]] corresponds to
the tree:

n

m

RQ

P

.

We do not wish to order a node’s children in the tree but define it to represent all
process terms congruent by the rule P |Q ≡ Q|P . Thus, the example tree above also
stands for the process terms n[P |m[R|Q]] n[m[Q|R]|P] and n[m[R|Q]|P]. We will
later abstract even more congruence rules away so that one marking represents an
even larger subset of a process term’s congruence class.

To maintain a tree rather than a forest if parallel compositions occur at the process’s
top level it is necessary to add an artificial root root adopting all so far orphaned

15

process terms. We will always have this root as to prevent any process term from becom-
ing an orphan but only depict it in figures if necessary to keep them representing a tree.

We use the Safe Petri net’s places to represent all possible parent-child relations
with the tokens representing the actual ones. E.g., a token on the place labeled n→ m
shows that an ambient n is a direct child of an ambient m whereas another token on
P → m represents a similar relation between a (leaf) process term P and the ambient.

Example 3 (Translating a tree). The process term m[P |n[. . .]] represents the following
tree which is then translated into a net marking:

m

nP

⇒
n→ m P → m

.

Just like the tree it depicts the marking doesn’t define an ordering on a node’s children.
Thus, each marking represents all processes modulo reordering P |Q ≡ Q|P , too. So
far, the parent-child relation is maintained only by name so that problems arise due
to ambiguities if there are two ambients with the same name within a process.

Example 4 (Ambiguities in the net). The process term m[P |m[Q]] corresponds to

P → m m→ m Q→ m

.

This allows for several interpretations:

m

m

QP

m

m

P

Q

m

m

Q

P

.

The last tree is the correct one but the representation allows for all of them.

The ambiguity becomes fatal as soon as capabilities are executed on unintended
subtrees leading then to actually unreachable configurations. We will hence later use
unique names A = {ai | i = 1, . . . , n} for all ambients. These newly assigned names
are not in any relation to the original ones. Thus, we need to make sure that each
capability knows "its" ambients.
Even with unique ambient names, yet another problem remains: Identical leaf

process terms, so called twins, under one ambient hurt the 1-safeness.

Example 5 (Multiple tokens in the presence of twins). We depict the situation for
the leaf process term P = πn.Q under a:

16

a

πn.Qπn.Q

⇒
πn.Q→ a

.

Figure 2: The translation so far allows for multiple tokens

We introduce unique identifiers T = {Ts | i = 1, . . . , n}, so called twigs, which we put
instead of the leaf below its parent ambient. The relation to the actual leaf term P is
maintained via places Ts =̂P :

a

P

⇒
a

Ts =̂P
⇒

Ts → a Ts =̂P

.

Example 6 (Dealing with twins without and with twigs). With twigs, the situation
from Figure 2 translates to

a

Tt =̂πn.QTs =̂πn.Q

⇒
Ts → a Ts =̂πn.Q Tt → a Tt =̂πn.Q

.

Figure 3: Representing twigs in the net

Although the introduction of twigs is a rather simple step, we will not incorporate
them in our introductory constructions since they create a blow-up on every transition
which may hide the central idea behind formalisms. The final construction presented
in Section 5.2 will of course provide all features.

To separate the different groups of places with different functions we will use a
color encoding for the rest of this work. The colors are added step-by step and later
summarised in Figure 11 on page 37.

3.2 Translating Capability Actions into Petri Net Transitions
The MA calculus is a tree rewriting system since a change in the process state, i.e. the
performance of a step according to the transition relation or the congruence ≡, is a
transition from one tree into another one.

Example 7 (Tree transition). Let k 6∈ fn(P2). We can then apply the scope extrusion:

17

n

m

RQ

νk

P2P1

≡
n

m

RQ

P2νk

P1
.

The MA calculus solely provides actions with a local impact. All three capabilities
only affect adjacent levels in the tree but behave quite differently on any other account.
Our first rough translation of these actions will visualise which further information we
should encode in our net in order to exclude behaviour impossible in MA. We will
refine the construction by including twigs and the sophisticated name management.
Restrictions are removed from the tree by the introduction of unique restricted link
names R = {ri | i = 1, . . . n}. Even though they are not yet introduced the reader
may already assume a restriction-free tree. The call and some other operations are
straight forward so that we will only depict them in Section 5.2 when we present the
final translation for each MA construct.

We will now shortly summarise the capabilities’ tree transitions. For the rest of this
section we fix some naming conventions: Each process incarnation is contained in an
ambient2 which we call o. It is important to keep in mind that the process variables P ,
Q, and R used in MA’s transition relation represent arbitrary process terms including
those with an ambient or a parallel composition at the top level. However, in the
case of openm it will be important to highlight that such a process can be a parallel
composition. We will do so by using Q1 to Qn instead of Q.

3.2.1 The Capability Action inm

The action n[inm.P |Q]|m[R] m[n[P |Q]|R] corresponds to:

o

m

R

n

Qinm.P

o

m

Rn

QP
.

Figure 4: o[n[inm.P |Q]|m[R]] o[m[n[P |Q]|R]]

We make the parent n of inm.P a child of its former sibling m. We neither depict
Q nor R nor any further children of o in our net fragment since they do not interfere
with the transition. In order to avoid n jumping through the tree we need to verify
that they are siblings: We assumed that o is n’s parent and thus need to check that it
is also m’s parent via a test on m→ o.
2Remember that at least root is such an ambient.

18

n→ m

m→ o

n→ o

inm.P P → n

inm.P → n

We depend on inm.P , o, and n for the transition. Thus, there is one such transition
per (o, n, inm.P)-combination.

3.2.2 The Capability Action outm

The action m[n[outm.P |Q]|R] n[P |Q]|m[R] corresponds to:

o

m

Rn

Qoutm.P

o

m

R

n

QP

.

Figure 5: o[m[n[outm.P |Q]|R]] o[n[P |Q]|m[R]]

The operation outm is inverse to inm. The ambient n, formerly the parent of
outm.P and the child of ambient m, becomes m’s sibling during the transition.
Therefore, the transition has to know m’s parent (which we assume to be o) to
introduce n as its new child. This requires the test on m→ o here.

n→ m

m→ o

n→ o

outm.P P → n

outm.P → n

In comparison to an in transition, the n → m place is a token source while n →
o now receives a token. Everything else is equal for both transitions (of course,

19

now we consume the outm prefix) and thus we again need one transition for each
(o, n, outm.P)-combination.

3.2.3 The Capability Action openm

The action openm.P |m[Q] P |Q corresponds to:

o

m

QnQ2Q1

openm.P
o

QnQ2Q1P

.

Figure 6: o[openm.P |m[Q]] o[P |Q]

The ambient m is removed by its sibling openm.P . This requires all processes
which were so far m’s children to introduce themselves to m’s and openm.P ’s common
parent o. Obviously, a new test on o is required but it can be realised with the change
from openm.P → o to P → o which is anyway necessary.
Unfortunately, the Safe Petri net’s structure so far is not able to decide when all

subprocesses of m subscribed to o. We install complement places to overcome this
short-coming. Now we may either inspect all place and complement place pairs in a
predefined order or we can visit them concurrently. Since the latter approach requires
an additional huge transition to unite the intermediate visits into an "all-ambients-
considered" place – and since additional arguments will be necessary when arguing for
the transitions’ correctness – we will implement the first approach. Depending on the
Petri net model checker at hand one may of course choose the concurrent approach
instead.

m→ o

m 6→ o

openm.P P → o

openm.P 6→ o

P 6→ o

release(m, o)

Sem

openm.P → o

We use the semaphore to block other transitions which may influence the actual tree.
This will prevent undesired races before we are able to restore a correct tree. After
the actual openm.P transition the tree is already degenerated into a forest since the

20

connection m→ o is erased. At first the second tree with root m possesses the children
Q1 to Qn but during the chain’s execution these children vanish. It doesn’t make a
difference wether an ambient or a leaf process is m’s child so that we unite them in a
set M = {P | P leaf term} ∪ {n | n name} \ {m, o} which we stepwisely process.

release((M1 → m) o) M1 → m

M1 6→ oM1 → o

M1 6→ mtest((M1 6→ m) o)

release(m, o)

release(m, o)M2

The chain is hard-coded via progress logging places release(m, o)M∗ where
release(m, o)M∗ is consumed for the (∗+1)-th transition and release(m, o)M∗+1 is fed
by it. We can unify the depicted first steps with all intermediate steps by a slight mod-
ification: Rather than release(m, o) the open transition should fill release(m, o)M1

.
The process chain provides the same two transition for each ambient or leaf process

term M∗ under m. In the case of a token on the complement place, nothing has to be
done and the token is simply passed to the logger for the next step. However, if the
token is on any place M → m we have to remove this connection and replace it by
M → o before allowing the next transition to take over. The last transition re-installs
the semaphore:

release((Mn → m) o) Mn → m

Mn 6→ oMn → o

Mn 6→ mtest((Mn 6→ m) o)

release(m, o)Mn

Sem
.

Finally, we are done and can be happy that only two ambients were involved. In
fact, the release-chain only depends on the (m, o)-combination while the original
open-transition depends on the (o, openm.P)-combination.

3.2.4 The Semaphore’s Necessity

The semaphore blocks all transitions interfering with the actual tree no matter wether
they affect the inner ambient tree or the leaf level. We illustrate inconsistencies
appearing if we did not use it on the example of outm:

21

Example 8 (Possible race without semaphore). We consider the transition for
o[m[n[outm.P |Q]|R]] o[n[P |Q]|m[R]] if a release(o, o′) sequence is processed in
parallel, that is we formerly had o′[open o.S|l[m[n[outm.P |Q]|R]]]. The processing of
nothing but the open transition without its subsequent release chain has yield:

o′

o

m

Rn

Qoutm.P

open o.S

 open
o′

S

6 o

m

Rn

Qoutm.P

.

The ambient o should now vanish and all its children (here only m) should move under
o′. If we now assume that the release chain starts its execution and the ambient n
is tested before out is fired, but m is not, the token on n 6→ o is seen and allows the
test chain to proceed. Now out fires, thus n is hung under o. The release step on m
correctly puts m below o′ but the already tested n remains:

o′

S

6 o

nX

QP

m

R

 release((m→o)o′)

o′

m

R

S

6 o

nX

QP
.

Since the n to o relation was already considered it won’t be tested again so that n
remains under the actually removed o and we run into an inconsistent system state.
The new second root o should actually have vanished and n should be another child of
o′. Instead, n’s connection to the main tree is lost.

The strict use of the semaphore prevents such unpleasant behaviour. We now turn
our attention to guaranteeing the uniqueness of names.

3.3 Managing Names in the Petri Net
As we pointed out in Example 4 on page 16 the relation by name causes ambiguous
trees since several ambients may carry the same name. We now use the ambient name
set A which our Petri net will use instead of the original name. In order to react to
the right capabilities the connection to that name is still maintained. We remove the
restrictions from the tree by assigning a unique name from the new set of restricted
link names R. Their management requires new commands which we incorporate in
the MA process equations via a preprocessing. We derive transitions to manage both
link and ambient names.

22

Names and their respective positions store the information in the MA processes.
The proof of Turing-completeness for the MA calculus [CG98, p. 149f] encodes the
tape into a chain of nested ambients. The ambient’s name corresponds to the current
symbol on the dedicated tape position.

Example 9 (Ambient hierarchy encoding a word).

h

e

l

l

open o.Heado

0

h

e

l

l

Head0

Figure 7: "hello" becomes "hell"

Hence, the saving of name and position information in each ambient is the heart of
the information storage in the MA calculus. Capability operations and the addition of
new ambients via ambient spawning (n[P]) manipulate such information.

3.3.1 Distinguishing Link from Ambient Names

Actually, a name m accomplishes two completely different tasks: It stores information
in the ambient tree (m[. . .]) via its name and position but it also maintains the
connection between the ambients called m and the capability operations (inm, outm
and openm).
We want to separate these concerns in our construction. Hence, we distinguish

link names (L), which maintain the connection between capabilities and the actual
instance in the tree, and the globally unique instance names which we call ambient
names (A) and which form the tree. We demand A ∩ L = ∅.

root

m

Q2

m

Q1

openm.P

Figure 8: Link name m and ambient name m

Link names L unify all ambients in a scope and represent them in capabilities and
process calls. We will enforce link names to be unique, too, so that we can manage
their relation to the ambients (a 7→ l) by name and remove the restrictions from the

23

tree. The incorporated ambients of one link name should not be affected by any other
link name, nor should any ambient without a corresponding link name exist. Hence,
the link names will induce a partition of the ambients into scopes.

Example 10 (A capability’s scope). In the process νm.(openm.P |m[Q1] |m[Q2])
| νm.(openm.P |m[R1] |m[R2]) each openm-capability may only affect the two m-
ambients in its restriction’s scope. We assign the link names l1 and l2:

root

a4 7→ l2

R2σν(m/l2)

a3 7→ l2

R1σν(m/l2)

open l2.Pa2 7→ l1

Q2σν(m/l1)

a1 7→ l1

Q1σν(m/l1)

open l1.P

Figure 9: Different scopes replaced by different names

The omission of restrictions keeps the tree flat. Because of NC only locally restricted
names may carry the same name. This makes a distinction between public link names
P and restricted link names R appropriate. We have L = P ∪R.

In summary, link and ambient names are globally unique but link names may occur
several times within a process incarnation. They are only present at the leaf level,
while the ambient names only occur above this level in the inner tree and at most
once there.

3.3.2 Assigning a Restricted Link Name r ∈R

We assign a new restricted link name whenever we process a leaf νn.P : The net
non-deterministically chooses a currently unused name r ∈ R and substitutes n by r
in the whole term P . Since n’s scope can only be intermitted by a new νn which is not
allowed within the same process equation due to NC we can substitute n by r on the
whole leaf (νn.P Pσν(n/r)). It is absolutely desirable to rename the n-ambients as
well: this propagates the information on which name r to link. Our substitution also
replaces occurrences in process calls and thus makes sure that the name is passed on
to subsequent equations.

νn. P νn. P 6→ al

νn. P → al

Pσν(n/r) 6→ al

Pσν(n/r)→ al

rX Sem

24

The token on rX guarantees that r is currently unused. The transition occupies the
name and performs νn.P Pσν(n/r). The inner ambient hierarchy is not touched.

3.3.3 Assigning an Ambient Name

When processing an ambient spawn l[P] we choose an arbitrary unused name ai ∈ A
(aiX) and replace the link name l ∈ L by ai, while not changing P at all. Note that
this is no substitution on P but just a very local renaming in one position. We store
the knowledge that ai reacts to l-capabilities on the place ai 7→ l.

ai → ajai 6→ aj aiX ai 7→ l

r[P]

P → aiP 6→ ai l[P] 6→ aj l[P]→ aj

Sem

This transition is more complex than the link version since it must also integrate ai
into the ambient tree.

3.3.4 Releasing an Ambient Name

An ambient hierarchy remains even if there is no process running in it any more. This
makes the release of an ambient name fairly easy, since the only situation to do so is
when processing an open capability. There are only minor changes necessary to adapt
the open procedure presented in Section 3.2.3 on page 20. We now use the name l
and write open l to indicate that we work on a link name.

ai → ajai 6→ aj ai 7→ l

open l.P

aiX

P → ajopen l.P 6→ aj

open l.P → aj

P 6→ aj

release(ai, aj)M1 Sem

25

Due to the separation of link and ambient names we now need to check via a place
ai 7→ l that ai reacts on l capabilities, namely on open l. We mark ai as unused via
aiX and erase ai from the ambient hierarchy by the release(ai, aj) procedure. This
procedure remains unchanged in comparison to 3.2.3 on page 21 and is hence not
repeated here.

3.3.5 Releasing a Restricted Link Name

The releasing of a restricted link name is only possible if it is completely unused in
the process incarnation P . In the marking representing this incarnation it should
neither appear in a leaf process term nor have any ambient linked to it. A marking
with a name r which is unused but not marked as unused (rX) corresponds to an MA
process term νr.P where r does not occur in P . In this analogy our release performs
the congruence transformation to P .

We must start by verifying that the name is forgotten among all leaves since a leaf
carrying a spawn could easily introduce a new link while an open command could
remove one: As long as there are leaves using a name r the information on its use in
the tree is volatile.

Forgotten Among All Leaves? – Maintaining a Name’s Spread

Wether or not a name is forgotten at the leaf level can best be monitored via the
name’s spread among the Petri net leaves. A name r’s spread s(r) is the number of
Petri net leaves which currently use it. Although the spread’s behaviour is totally
dynamic the positions at which this value changes are already visible in the process
equations. Thus, we can do a preprocessing on the original process equations with the
original names n. We mark the relevant positions with the commands used(n) and
unused(n), respectively. These new commands allow the net to log the appropriate
changes to a name’s spread. They are executed during runtime and thus performed
on the instance name r. As soon as a spread declines to 0 we immediately know
that the respective name is forgotten among all leaves (rXleaves). The one-safeness
requires us to use one place s(r) = i per possible spread value i. Whenever we process
a restriction νn.P we initialise the spread of the chosen name r with 1.

νn. P νn. P 6→ ai

νn. P → ai

Pσν(n/r) 6→ ai

Pσν(n/r)→ ai

rX Sem

s(r) = 1

The substitution Pσν(n/r) and subsequent calls also instantiate the corresponding
used and unused commands with r.

26

Each used(r) action increases r’s current spread s(r) = i by 1:

used(r) P → ai

P 6→ ai

used(r).P 6→ ai

Sem

s(r) = i+ 1

s(r) = i

used(r).P → ai

.

The unused(r) action behaves similarly, but reduces the spread by moving the token
from s(r) = i onto s(r) = i− 1. In every case but the lowest option with s(r) = 1 we
simply have:

unused(r) P → ai

P 6→ ai

unused(r).P 6→ ai

Sem

s(r) = i− 1

s(r) = i

unused(r).P → ai

.

If r’s spread is s(r) = 1 before the unused(r) execution, the name is now forgotten
among all leaves. Instead of s(r) = 1 we remove the count completely and mark
rXleaves. We will now discuss where to put the used and unused commands.

Incorporating the Necessary Information – the Preprocessing

We determine the relevant positions by examining the right-hand side of each defining
equation as well as the initial term. Commands can be set for a name r freshly
restricted in this term as well as for a formal parameter x inherited from some former
process term. The latter may cause problems if the name instantiating x is public.
We can easily deal with these problems by an additional transition for each public
name p ∈ P which simply consumes the command:

(un)used(p)1 P → ai

P 6→ ai

(un)used(p).P → ai

(un)used(p).P 6→ ai .

27

Another way to address this problem is to exclude public names from parameter lists.
We will discuss this in Section 7.2 on page 66.

At first, only the leaf which carried the restriction νn can know the name n and
thus later the chosen instance. Since there is no name passing mechanism like there
is in the π calculus the leaf cannot spread its knowledge to other leaves arbitrarily.
The name’s spread can only increase if the leaf splits itself into two leaves. This can
either happen due to a parallel composition or due to a replication. If after a parallel
composition P |Q both leaves use the name n we should increase s(n) by 1.

Example 11 (Spread increase with parallel compositions). Both process terms follow-
ing the parallel composition use n so that its spread increases as soon as this parallel
composition is no longer prefixed.

l

m

0

openm.(in n.P | out n.Q)

l

0out n.Qinn.P

Figure 10: Counting leaves using n: n’s spread changes from 1 to 2

We can check for each parallel composition P |Q in each defining equation (and in I)
whether P and Q both continue to use a name n which was used before the parallel
composition. If they do, we put the command used(n) before the parallel composition.
One could argue that this increases the spread too early, before the parallel composition
is actually processed, but since we are only interested in the question wether the
spread is above 0 or not this can cause no harm.
However, if we put the used(n) command say in front of Q we could reach wrong

conclusions: Imagine s(n) = 1, that is the leaf carrying P |Q is the only leaf knowing
n. If we now freed P for execution it could easily reach and execute its unused(n) out
of which the net would conclude s(n) = 0 although Q still knows n but did not tell
the net yet.

The dealing with the replication !P is similar to that for the parallel composition: we
must put a used command right behind the replication sign ! for each name occurring
in P . But since a name occurring in a replication term can never become unused our
spread count is useless there. We only keep it to exclude the wrong conclusion of a
spread of 0 which may otherwise arise just like it may in the parallel composition’s
case.
The unused commands are put behind each last occurrence of a name on the

right-hand side of a process equation. Due to minPara in Definition 5 on page 11
this last occurrence is always either a capability or a spawn. Thus, we check behind
each capability πn and spawn n[Q] wether n is used in the following process term Q.
If it is not used we put the unused(n) command before Q.

28

Forgotten in the Ambient Tree

As soon as the instance r is forgotten among all leaves we also need to make sure that
no ambient is linked onto r. Here the static relationship between an ambient and its
link name plays an important role: During an ambient’s whole life time it is bound to
one link name. Only by opening it becomes free again and can then be assigned to
a new link name l during a spawn. However, we know that this new name isn’t our
name r since r is forgotten among all leaves and therefore cannot exist in a spawn.
Thus, we only have to implement a simple test chain where we protocol for each

ambient name a ∈ A that it is not linked to r. As we discussed before it does not
matter when we test the ambients as long as the name r is forgotten among all leaves.
This makes the consuming of the semaphore unnecessary for the whole procedure
which we again implement sequentially.

Each of the chain’s transitions takes a place unused(r)a∗ as input3. This place
encodes that all ambients up to a∗ have already been inspected and none of them was
linked onto r. The ambient a∗ is next. The possible situations are:

• a∗ 7→ r: If a∗ is linked onto r we may not proceed but are trapped. Since no r
capabilities exist any more this ambient and its link to r will never be removed.
Thus, r will never become unused.

• a∗ 7→ lx 6= r: If a∗ is linked onto a name different to r we can immediately
proceed to a∗+1.

• a∗X: The ambient name a∗ is currently unused. It cannot become linked to r
since no spawn on r exists. Thus, we can immediately proceed to a∗+1.

The corresponding transition set is:

a∗ 7→ lx

a∗ 7→ r

a∗X

unused(r)a∗

unused(r)a∗+1

a∗ 7→ lx

a∗X .

The transition for the link name lx stands subsidiarily for all L \ {r} transitions. We
reflect the blocking by no transition in the case that a∗ is linked onto r. If the chain
passes all ambients successfully the last transition marks the name r as unused (rX).

3To avoid the distinction between the chain’s first and intermediate transitions, we mark unused(r)a1

instead of rXleaves in unused(r).

29

3.4 Guaranteeing Finiteness
So far, we were not worried about the finiteness of the Petri net. With our design
decision to maintain the tree by using distinct identifiers for each ambient and twig we
are forced to limit their respective numbers. We introduce a breadth bound b which
gives a bound for T and an additional bound d to limit the overall number of ambients
and thus A. A bound for R can be constructed out of them.

Definition 12 (b, d-bounded process). An MA process term is called b, d-bounded
if its number of ambients is at most d and the overall number of parallel compositions
is at most b− 1, that is there are at most b leaf processes. An MA process is called
b, d-bounded if each reachable congruence class contains at least one b, d-bounded
instance.

Conceptually, the bound d is a depth bound for the ambient tree and thus for
the process since it constraints the nesting depth of ambients. A depth bound on
MA processes was also necessary in [RVMS12] where they derived decidability of
coverability by a translation into ν-MSR. This logic incorporates a restriction ν
which makes it convenient for the translation but hard for the checking – only a non-
primitive recursive coverability checking procedure exists and reachability is in general
undecidable. However, the restriction operator allows them to enforce uniqueness by
different scopes rather than different names so that their result is independent of any
breadth bound. It is unknown wether pure MA reachability is decidable if we only
require a depth bound. But since it is known to be undecidable for MA’s ancestor
π ([MG09, p. 15]) where depth is the number of names a "leaf" process knows we
expect it to require high complexity if at all possible for MA. Our breadth restriction
allows for an only PSPACE-complete decidability procedure which is as low as one
can usually get in verification.
The breadth and depth bounds are in general not computable since this would

allow us to decide how much space a Turing machine uses. Recall that MA can
simulate arbitrary Turing machines (Argument in Section 3.3 on page 23 subsuming
the proof in [CG98, p. 149f]). Rather than restricting the process to be b, d-bounded
we could therefore set artificial bounds to generate a finite net. Even if the process
itself was unbounded it might possess interesting runs – e.g. counter-examples – which
respect the artificial bounds. Section 7.4 will provide the necessary extensions and
a small example. The reader who finds it more convenient may already check that
all translation schemes in principle extend to unbounded processes, too. Only the
simulation may block if we require more names or twigs than we have: We can process
a parallel composition or a replication only if a new twig is available for the new leaf.
This requires a management of unused twigs Ts via places TsX which is similar to the
ambient name management.

MA Parameters

Apart from the breadth and depth bound there are some size parameters which depend
on the respective MA process (D, I) where each Di ∈ D has a parameter vector ~xi.
We call the maximal number of parameters in a defining equation κ = maxDi∈D(|~xi|).
We have the number of public names p and the number of process equations dD = |D|.

30

The maximal number c of restrictions a leaf process term may spawn is crucial for
the possible calls: Only public, freshly restricted names and passed restricted names
are possible parameters. We must compare all possible threads through each process
equation in order to determine c. Since a parallel composition splits one leaf into
two we have to consider both resulting subprocess terms in combination with the
part before the split. Thus, we multiply out each parallel composition: A.(P |Q) is
transformed to A.P and A.Q. Of course, the results are not equivalent to the process
term before since instead of one shared name we now receive two independent names n
for each restriction νn in the prefix A. If we apply the transformation to each process
equation including I we receive a number of threads Thi with i = 1, . . . ,m. The
maximal number c of new restrictions is simply the maximal number of restrictions in
one of these threads c = max(#ν(Thi) | i = 1, . . . ,m).
It is obvious that all of the process parameters are bound by the process’s size n.

31

4 From MA to rMA

The introduction of the used and unused commands exceeds the MA calculus’s means.
We therefore define the refined MA calculus, shortly called rMA calculus, which
is capable of expressing the additional commands. We recapitulate and analyse the
preprocessing algorithm which bridges the gap between the two formalisms. The proof
that rMA introduces no new behaviour is done by establishing a bisimulation. It is
our first step towards a bisimulation between MA and our Petri nets.

4.1 Preprocessing
The first step towards rMA is the preprocessing algorithm for the introduction of used
and unused commands to a process P = (D, I). We consider the initial term I as
the right-hand side of a parameterless equation Dj ∈ D so that we then simply deal
with all defining equations. The set rn(Di) consists of those names which are freshly
restricted in Di.

We need a predicate occur(n, P) which tests syntactically wether the name n occurs
in the term P . It can be implemented linearly in length(P) which is always in
O(length(Di)). The actual algorithm pre(P) is performed independently for each
Di ∈ D by the following replacement:

for each πn.P :
i f not occur(n, P) then set πn.unused(n).P

for each n[P] :
i f not occur(n, P) then set n[unused(n).P]

for each P |Q :
for each n ∈ ~xi ∪ rn(Di) :

i f occur(n, P) and occur(n,Q) then set used(n).(P |Q)
for each !P :

for each n ∈ ~xi ∪ rn(Di) :
i f occur(n, P) then set used(n).P

Since the name addressed by the capability and the spawn is unique we can set at
most one unused command behind each one of them. On the contrary, it may be
necessary to put several used commands before a parallel composition or a replication
– one for each name which is spread to P and Q or used in P .

The algorithm can be implemented by one pass through the process term which
determines the respective positions to be checked. Of course, neither the number
of capabilities and spawns nor of parallel compositions and replications may exceed
length(Di). The check behind a capability and spawn only requires one execution
of occur while each parallel composition may require up to |~xi ∪ rn(Di)| · 2 many
executions which is twice as much as the replication requires. Although dominating
the capabilities’ and spawns’ time demand those are still in O(length(Di)). Thus,
even in the worst case where the equation mostly consists of parallel compositions we
are still in O(length(Di))

2 for its analysis. This guarantees that our preprocessing for
all equations may be performed in O(n3) for n = size(P).

32

4.2 The Refined MA Calculus
Since rMA is a rather simple extension of MA we will only give new definitions where
necessary and otherwise expect the given MA definition to extend to rMA as well.

Definition 13 (Syntax). P is an rMA process term if it is built according to the
following rules: P ::= 0 p π.P p n[P] p τ.P p !P p νn.P p P |Q p K(~a), where π =
{in n, out n, openn} and τ = {used(n), unused(n)} for a name n.

This is essentially the same definition as Definition 1 on page 10, only the new
commands are added. We give τn the same binding priority as πn, otherwise adopting
the priorities given for the MA calculus. Additionally, we need to adapt the transition
relation in order to deal with the new actions.

Definition 14 (Transition relation for rMA). The rMA transition relation is that of
the MA calculus with the additional rules:

use: used(n).P P

unuse: unused(n).P P

Thus, the new commands are simple silent actions where the prefix is consumed but
no modification on the tree is necessary. They play no role in rMA’s semantics and do
not influence the system behaviour. However, we know that the Petri net will take a
quite different view on them.

We adapt the structural congruence given in Definition 4 on page 11 accordingly by
the addition of P ≡ Q⇒ τ.P ≡ τ.Q with τ = {used(n), unused(n)} and add the rule
size(used(n).P) = size(unused(P)) = 1 + size(P) in Definition 6 on page 12.

4.3 Bisimulation between MA and rMA
MA and rMA calculus enjoy the prototype of weak bismiulation since their only
difference lies in the silent actions which rMA has while MA doesn’t have them. As
already implied by Lemma 1 on page 14 any process term derived out of a term P by
adding silent actions to P is bisimilar to it.

Lemma 3. Let P an MA process. The relation 'P = (P, pre(P)) linking an MA
process and the rMA process derived by preprocessing it is a bisimulation.

Proof. The rMA process pre(P) is an enrichment of P by silent used and unused
actions. No reordering or replacement of the MA process’s actions happens. Thus, we
can establish a bisimulation between the two processes by Lemma 1 on page 14.

We can define a b, d-bounded rMA process in analogy to Definition 12 on page 30.
Since we will establish a Petri net translation only for b, d-bounded MA processes it is
desirable to know that the bisimulation 'P between MA and rMA processes retains
the bounds.

Lemma 4. Let P a b, d-bounded MA process. The rMA process pre(P) is also
b, d-bounded.

33

Proof. Neither a used nor an unused command can make a process deeper since they
are only located at the leaf level. Since used is always placed behind a capability it
cannot extend the breadth, either.
To show that unused cannot enlarge the breadth, we analyse the possible breadth

contributions of P |Q. If at least one process term doesn’t equal 0, P |Q contributes at
least with 1 to the breadth. Thus, the breadth of used(n).(P |Q) is at most as large as
the breadth of P |Q. Only if P |Q = 0|0, the parallel composition doesn’t contribute
to the breadth. However, in this case pre doesn’t introduce any used action, either.
Analogously, we don’t put any used command if !P = !0.

34

5 The Construction: MA-PN

The Petri nets we introduce are constructed out of a b, d-bounded (r)MA process.
This is why we call them MA-Petri nets, shortly MA-PN. Each net will need an rMA
process P as construction parameter. We show how to use this process to derive the
sets R, P, L, A, T, and B which are then used to compile the places in Section 5.1.2.
Purely based on them Section 5.2 depicts and analyses all transitions.

Definition 15 (MA-PN). Let P a b, d-bounded rMA process. The MA-PN(P) is the
Petri net (P (P), T (P), F (P),M0(P)) with P (P) as defined in Section 5.1.2 on the next
page, M0(P) as defined in Section 5.1.4 on page 38, and F (P) and T (P) following the
building schemes of Section 5.2 on page 38.

5.1 Places
We first construct the rather simple sets R, P, L, A, and T out of the process’s
parameters and the breadth and depth bound before we turn our attention to the leaf
level in Section 5.1.1. All sets are then used to determine the places P (P) in Section
5.1.2. Afterwards we propose a graphical notation for a net marking in Section 5.1.3
which facilitates the definition of the initial marking in Section 5.1.4.

Definition 16 (MA-PN sets). Let P = (D, I) a b, d-bounded rMA process and p the
number of public names, c the maximal number of restrictions in a thread, and κ
the maximal number of call parameters. We define its associated MA-PN sets R =
{r1, . . . , rb·(κ+c)+d}, P = fn(P), L = P ∪R, A = {a1, . . . , ad}, and T = {T1, . . . , Tb}.

5.1.1 All Possible Leaves – Buds

A last prerequisite for the compilation of the Petri net places is a precise notion of the
leaf terms. So far we considered them as those terms which are leafs in the (r)MA
tree. This would match the concept of derivatives which were introduced in [Mey09]
for the π-calculus and extended to the MA calculus by [RVMS12, p. 27]. However, we
take a lazy approach to the net’s behaviour and also allow for unprocessed parallel
compositions and ambient spawners at the beginning of a leaf process.
Thus, the set of all possible leaves – conveniently called buds – can be defined in

the following way:

Definition 17 (MA-PN set of buds). Let P = (D, I) a b, d-bounded rMA process and
D = {D1, . . . , Dn}, ~xi the list of formal parameters for the defining equation Di, and
~a the actual parameters.
Based on the associated MA-PN set R we define a last associated set B := b(I) where

b(0) := {0} b(Di(~a)) := {Di(~a)} ∪ b(DiσK(~xi/~a))

b(π.P) := {π.P} ∪ b(P) b(n[P]) := {n[P]} ∪ b(P)

b(![P]) := {![P]} ∪ b(P) b(νn.P) := {νn.P} ∪
⋃

(b(Pσν(n/r) | r ∈ R)

b(P |Q) := {P |Q} ∪ b(P) ∪ b(Q) b(τ.P) := {τ.P} ∪ b(P)

35

When removing a restriction νn we replace the rMA name n promptly by all possible
restricted link names r ∈ R. Each call happens with the actual parameters only. This
can require at most |L|κi many initial settings for Di. With each restriction producing
|R| many new ways to proceed there are up to |L|κi · |R|ci · |Di| many buds per Di

which is not polynomial since we only know that ci ∈ O(n) and κi ∈ O(n). The name
on which a spawn is later executed will always be a link name.

The use of a substitution net as introduced in [MKH12] will make our construction
polynomial but also quite overwhelming. We therefore work with the exponential B
but present the necessary modifications in Appendix A on page 75. For now we have
|B| ∈ O(|L|κi · |R|ci · |Di| · dD) ∈ O(|L|κi+ci · |Di| · dD) ∈ O(|L|n · n2).

5.1.2 All MA-PN Places

We are now prepared to determine the set of places P (P). We shortly recapitulate
each associated MA-PN set’s purpose and determine its size.

T: Twigs are unique separators between leaves and inner tree. They were introduced
in 3.1 on page 17 to guarantee one-safeness by separating twins. We defined
T = {T1, . . . , Tb}, thus |T| = b.

A: The ambient names form the inner tree. They were introduced in Section 3.3.1
on page 23. We defined A = {a1, . . . , ad} and now add A′ = A ∪ {root} so that
we have |A| = d and |A′| ∈ O(d).

R: Restricted link names guarantee uniqueness of restricted names. They were
introduced in Section 3.3.1 on page 23. We set R = {r1, . . . , rb·(κ+c)+d} and
have |R| ∈ O(b · (c+ κ) + d).

P: Public names are globally unique. In MA-PN they only occur at the leaf level.
They were also introduced in Section 3.3.1 on page 23. We set P = fn(P) and
thus conclude |P| = p.

L: Link names occur in leaves only and represent several ambient names. They
were introduced in Section 3.3.1 on page 23. We defined L = P ∪ R, so that
|L| ∈ O(p+ |R|).

B: The buds are all possible leaves introduced in Section 5.1.1 on the previous page.
We have |B| ∈ O(|L|n · n2).

Additionally we need to determine how many places we must reserve at most as
possible spread values. The actual spread cannot exceed our breadth bound b since
this is the limit on the number of leaves. However, our approach to place used(n)
before the parallel composition allows the spread to increase further. It may never
exceed 2 · b, though, so that we use the spread values I = {1, . . . , 2 · b}. The set M
abbreviates A ∪ T. We now depict all places and highlight their respective function.

36

inner tree:

A → A′ A 6→ A′

leaf level:

T→ A′ T 6→ A′ T =̂B TX

restricted link
name management:

unused(R)A s(R) = I RX

ambient management:

release(A,A)M A 7→ L AX

other:

Sem yes(A)

Figure 11: The Petri net places

One just multiplies the involved sets’ sizes to determine the respective number of
places. Apart from T =̂B, for which we have |T| · |B| and thus exponentially many
places, all numbers are polynomial in the process size.

5.1.3 MA-PN Trees for Stable Markings

Often, we are only interested in the tree behind an MA-PN marking. It is sufficient
to visualise the transformation a particular transition performs and thus allows us to
reason about the transitions’ correctness. We will build our bisimulation between rMA
processes and MA-PN on the insight that the respective MA-PN transitions perform
the depicted MA-PN tree transition.

The tree can already be determined from the places A → A′, T→ A′, T =̂B, A 7→ L,
and Sem. The semaphore is necessary to distinguish markings encoding a tree from
intermediate markings in the open chain. We call a marking stable if it possesses the
semaphore. Otherwise it is called unstable and may relate to a forest as we saw in
Section 3.2.3 on page 21.

The MA-PN Tree

We depict the ambient tree with the chosen ambient names ai ∈ A, and the additional
note onto which link name l ∈ L each ambient reacts. The twigs are shown as leaves
with their assigned bud notated just behind. Thus, an MA-PN tree may look like this:

37

root

a5(7→ l4)

...

a3(7→ l4)

Ti =̂P
.

Figure 12: MA-PN tree

It might sometimes be helpful to use a calculus notation rather than the tree. We
will therefore simply treat the tree’s entries as if they were an rMA tree’s respective
names. For the above example we would have root[a3(7→ l4)[Ti =̂P]|a3(7→ l4)[. . .]] as
short notation. We will devote Section 6.1 to proving that the MA-PN transitions
between stable markings maintain a uniquely determinable tree.

5.1.4 Initialising the Net

We initialise the net by assigning the initial process I to the twig T1 which is then the
root’s only child:

root

T1 =̂ I
.

All other ambient and twig relations are marked as not present via the complement
places. The corresponding twigs are marked as unused just as all the ambient and
link names are. We place a token on the semaphore.
The Petri net will use its ambient spawning, restriction processing, and parallel

composition splitting transitions to establish an ambient hierarchy out of the initial
term.

5.2 Transitions
We distinguish MA-PN transitions which correspond to rMA actions or parts of them
from other transitions which allow a transformation within an rMA equivalence class. If
we depict the tree transition we highlight this distinction by the use of MA−PN and
≡MA−PN , respectively. The equivalence ≡MA−PN is precisely defined in Section 6.2.2
on page 55.
We introduce transitions for each possible bud prefix. Since the processing of a

parallel composition or the removal of an unnecessary 0 leaf are new, we present them
with the necessary care and explanation. Most other transitions are only recapitulated
and the reader is referred back towards the introducing section for further discussion.
Some tree transitions are included as to allow for a quick check of the correspondence
between marking and tree. Our proofs will later rely on this insight. For the impatient
reader who might just plan to implement the construction a short summary of all

38

transition schemes can be found in Appendix B on page 81. It might also prove
advantegous when checking the proofs.

We will not include the replication in our studies here since it generates what its
name promises – unboundedly many leaves and thus unbounded breadth. Thus, a
b, d-bounded MA process cannot contain an executable replication. Section 7.4 on
page 69 will deal with the replication again but until then we use a fragment without
it.
The subsection is divided into two parts where the first part shows all transition

(chains) which form MA-PN actions and the second part gives all equivalence
transformations. We use distinct identifiers out of the associated MA-PN sets, namely
Ts, Tt ∈ T, ai, aj , ak ∈ A, l ∈ L, r ∈ R, and p ∈ P. This will allow us to distinguish
distinct elements of the same set within one transition. In the case of the test chain we
iterate over all ambient names so that we additionally use ad to indicate the chain’s
last element. The transition a∗ 7→ L \ {r} stands for the set of similar transitions for
each element in L \ {r} per fixed restricted link name r and varying but per set fixed
ambient a∗.

Transitions for rMA Actions

5.2.1 Moving Branches: The Capability Action in l

We (re-)implement the idea presented in Section 3.2.1 on page 18. Due to the extensive
changes we now need the test on the semaphore, complement places, twigs, and a
distinction between the ambient ai in the tree and the corresponding link name l
instead of the former MA name m.
Of course, o’s instance ak may have more children than the n instance aj and

the l instanceai but they are not touched by this transition. We use additional link
names ln and lo instead of the MA names n and o to clarify the distinction but
miantain the connection to our former construction. We thus translate the rMA action
lo[ln[in l.P |(∗)]|l[(∗∗)]] lo[l[ln[P |(∗)]|(∗∗)]] which is

ak(7→ lo)

ai(7→ l)

(∗∗)

aj(7→ ln)

(∗)Ts =̂ in l.P

 MA−PN

ak(7→ lo)

ai(7→ l)

(∗∗)aj(7→ ln)

(∗)Ts =̂P

under the assumption that we use the ambient name ai for the depicted instance of l,
ak as lo instance and aj as ln instance.

39

aj → aiaj 6→ aiai → akai 7→ laj → akaj 6→ ak

in l.P

Ts → aj Ts =̂ in l.P Ts =̂PSem

The former change from inm.P → n to P → n is now done in the twig Ts by a change
from Ts =̂ in l.P to Ts =̂P . Ts is no longer the child of n – or ln – but of its instance
which is here called aj . We need the test on Ts → aj and on ai → ak together with
the knowledge aj → ak to be sure that the in l command is called under a sibling of
ai.

We implement one transition per ambient name ai, aj , and ak, bud in l.P which also
determines P , and the involved link name l. Thus, there are O(|A| · |A| · |A| · |B| · |T|)
many transitions.

5.2.2 Moving Branches: The Capability Action out l

Since the out command is inverse to in we can reuse the in l transition with the slight
change already proposed in 3.2.2 on page 19 when processing the ambient hierarchy:
We take a token from aj → ai and put one onto aj → ak which is just opposite to the
taking and giving for in l.

aj → aiaj 6→ aiai → akai 7→ laj → akaj 6→ ak

out l.P

Ts → aj Ts =̂ in l.P Ts =̂PSem

In analogy to the processing of in the necessary number of transitions is O(|A| · |A| ·
|A| · |B| · |T|).

40

5.2.3 Releasing an Ambient when Processing open l

Each processing of an open l command destroys one ambient ai linked onto l. All its
children have to assign themselves to ai’s former parent ambient which we assume
to be aj . This is done via the release(ai, aj) procedure. Thus, this is the first rMA
action that cannot be performed in one Petri net transition. The open transition is
equivalent to that introduced in Section 3.3.4 on page 25, only twigs are included:

ai → ajai 6→ aj ai 7→ l

open l.P

Ts =̂ open l.P Ts =̂P release(ai, aj)M1

Ts → aj

aiX

Sem

.

The transition depends on the involved ambients ai and aj , the associated
twig Ts, and the process in l.P which also determines l. M1 is fixed by an as-
sumed order on the setM . Thus, there are overall O(|A|·|A|·|B|·|T|) many transitions.

The blocking chain of transitions iterates over all possible children of the destroyed
ambient ai to relink them onto ai’s parent aj . These possible children are all ambients
but ai and aj , and – now rather than all leaves – all twigs which we unite under
M = (A \ {ai, aj})∪T. All intermediate transition pairs jump from release(ai, aj)M∗
to release(ai, aj)M∗+1

:

release((M∗ → ai) aj) M∗ → ai

M∗ 6→ ajM∗ → aj

M∗ 6→ aitest((M∗ 6→ ai) aj)

release(ai, aj)M∗

release(ai, aj)M∗+1

and the last transition pair sets Sem rather than the non-existing Mm+1for |M | =
m = b+ (c+ κ) · b+ d− 2:

41

release((Mm → ai) aj) Mm → ai

Mm 6→ ajMm → aj

Mm 6→ aitest((Mm 6→ ai) aj)

release(ai, aj)Mm

Sem
.

We need |M | ∈ O(|A|+ |T|) many such transitions for each (ai, aj)-combination which
makes overall O((|A|+ |T|) · |A|2) ∈ O(|A|3) many transitions.

5.2.4 Calling an Equation K(~a)

The call of an equation K(~a) also only affects the leaf level. There the call term K(~a)
is replaced by its corresponding equation K with the parameter substitution σK(~x/~a).

K(~a) Ts =̂KσK(~x/~a)

Ts =̂K(~a)Sem

We need one transition per bud K(~a) and twig Ts, thus O(|B| · |T|) many transitions.

5.2.5 Processing used(r)

The used(r) command is a silent action for rMA which hence neither affects
the inner tree nor does more to the leaves than consuming the used(r) prefix. In
the MA-PN each used(r) action is "loud" and increases r’s current spread s(r) = i by 1:

used(r) Ts =̂P

Ts =̂used(r).P

Sem

s(r) = i+ 1

s(r) = i .

There is one transition per current spread s(r) = i with i ∈ {1, . . . , 2 · b− 1}. Each of
these transitions occurs per twig Ts and bud used(r).P which also determines r. This
makes overall O(|T| · |B| · (2 · b)) many transitions.
Additionally, we need the dummy transitions for public names p ∈P.

used(p) Ts =̂PTs =̂used(p).P

There are O(|T| · |B|) many such silent transitions.

42

5.2.6 Processing unused(r)

The unused(r) action behaves similarly, but reduces the spread by moving the token
from s(r) = i onto s(r) = i− 1. We distinguish s(r) = i with i ∈ {2, . . . , 2 · b} from
s(r) = 1 as current spread. The transition for higher spreads is:

unused(r) Ts =̂P

Ts =̂unused(r).P

Sem

s(r) = i− 1

s(r) = i .

The lowest case requires a minor change: Rather than setting s(r) = 0 we set
unused(r)a1 to initialise the test chain over all ambients.

unused(r) Ts =̂P

Ts =̂unused(r).P

Sem

unused(r)a1

s(r) = 1

The complexity argumentation presented for used(r) also holds for the unused(r) case.
The s(r) = 1 version is in O(|T| · |B|) which is dominated by O(|T| · |B| · (2 · b)) which
holds for the cases with higher spread. Thus, we have O(|T| · |B| · (2 · b)) unused(r)
transitions.
Additionally, we need the silent transitions for public names p ∈ P:

unused(p) Ts =̂PTs =̂unused(p).P
.

There are O(|T| · |B|) many such transitions which are also dominated by
O(|T| · |B| · (2 · b)).

Transitions for Equivalence Transformations

5.2.7 Occupying a New Twig: Parallel Compositions P |Q

As discussed in Section 5.1.1 on page 35 we take a lazy approach to the process
behaviour by allowing parallel composition P |Q as one leaf. Still, further steps like
the processing of the first operator in P or Q can only be done after the removal of
the composition so that we have to separate P and Q into two subprocesses which
should each be assigned to an own twig. In the terms of rMA nothing is changed, the
rMA process term l[P |Q] remains. However, we can highlight the difference on the
MA-PN tree:

43

ai(7→ l)

Ts =̂P |Q
≡MA−PN

ai(7→ l)

Tt =̂QTs =̂P
.

Figure 13: Occupying a second twig

Of course, we can reuse the former twig Ts so that only one unused twig Tt is
necessary. As discussed in Section 3.4 on page 30 the presence of an unoccupied twig
T is indicated by the place TX in the net. Out of the currently unused twigs one
is chosen at random. We assume ambient ai representing l as parent of the twig Ts
carrying the parallel composition P |Q and show the transition splitting it by occupying
Tt.

split

Ts → ai

Ts =̂P |Q

Ts =̂P

Tt =̂Q

Tt → ai

Tt 6→ ai

TtX

Sem

We claim the unused twig Tt for our transition by consuming the token on TtX.
Also, we test that ai is Ts’s parent and thus know that we have to assign Tt to ai as
well. We need one transition per (P |Q, ai, Ts, Tt)-combination. Hence, there are O
(|B| · |A| · |T| · |T|) many split-transitions.

5.2.8 Removing Dead Twigs

We call a twig carrying 0 only a dead twig. We will implement the rMA congruence
rules which allow one to cut such dead twigs under certain conditions. There is only
one case in which such a twig should remain: Consider the case where the 0 leaf is
the only leaf under an ambient chain. The chain contributes to the process’s breadth
which is maintained via the number of twigs. If we removed the twig we would allow
the process to exceed its bound by assigning the twig to a new subprocess.

Hence, we need to distinguish several cases to react properly to the different situations
the twig carrying the 0 leaf could be in.

1. root as parent: If rather than an ambient chain only root is the parent of twig
Ts we may remove the 0 leaf and its associated twig without further worries. In
the worst case we implement 0 ≡ ε.

44

2. A as parent, Ts only child: If an ambient ai is Ts’s parent and there is no
sibling of Ts we may neither touch leaf nor twig because the 0 leaf may later be
processed if one of the other situations is present then.

3. A as parent, Ts has siblings: If an ambient ai is Ts’s parent and we found at
least one sibling we may remove 0 leaf and twig.

Thus, there are only two situations to take action which for us means to define
transitions. We cannot implement a transition to simply remove the 0 leaf if we have
to keep the twig Ts (situation 2) since this would destroy the information that Ts
carries a 0 leaf and would hence make it impossible to apply a 0 transition if one of
the situations 1 and 3 became true.

Case 1: root as Parent

The transition for the first case transforms root[0] to root[]. If 0 possesses siblings R
we implement 0|R ≡ R, if 0 is the only process left, we implement 0 ≡ ε. In the terms
of our Petri net tree representation that is:

root

. . .Ts =̂ 0
≡MA−PN

root

. . .
.

The Petri net transition mimics this behaviour. Additionally, Ts is marked as free
for further use and can now be requested by another leaf process term.

Ts → root

Ts 6→ root

Ts =̂ 0

TsX

disappearSem

This transition only depends on the choice for Ts. Thus, there are O(b) root based
disappear transitions.

Case 3: A as Parent, Ts Has Siblings

We implement R|0 ≡ R in case 3. There is an ambient ai ∈ A with one child Ts and
at least one other child. This second child can either be another twig Tt with an
arbitrary leaf process P underneath:

ai(7→ l)

Tt =̂PTs =̂ 0

≡MA−PN

ai(7→ l)

Tt =̂P

or the second child can be another ambient aj ∈ A:

45

ai(7→ l)

aj(7→ . . .)

. . .

Ts =̂ 0 ≡MA−PN

ai(7→ l)

aj(7→ . . .)

. . .
.

The difference between these two situations is only technical. If one of the situations is
present the net may immediately cut one twig with a 0 leaf. Hence, we test wether all
conditions except for the existence of a twig Ts with a 0 leaf hold under the ambient ai
and store the result in a place yes(ai). This information is used in a second transition
which cuts one dead twig under ai if one is present.

The two test transitions do some kind of local snapshot on ai’s children and use
yes(ai) to announce the situation. To maintain the consistency between net and
snapshot the transition takes the semaphore, thus allowing for no modification in the
tree. Also, this makes sure that at most one token is put on yes(ai), even if both
conditions are fulfilled.
However, this transition is not triggered by some leaf process but is a guess on

the (unlikely) situation that ai possesses a twig carrying 0 underneath. In the case
of a wrong guess the whole system blocks. This does no harm to the semantics or
correctness of the net but may cause serious problems in an implementation. It is easily
overcome by the addition of a wrong guess transition which destroys the information
on yes(ai) and re-installs the semaphore.

at least two?

Sem

Ts → ai

Tt → ai

yes(ai)

wrong guess

aj → ai ambient?

There is no enforcement on the involved twigs but we simply test wether there are at
least two twigs under ai so that one of them could carry a 0 and be removed. Of course,
there may be more twigs present but so far we are only interested in wether there are
enough twigs to remove one dead twig. This allows us to produce one at least two?
transition per twig pair which is |T| · (|T| − 1) ∈ O(|T|2) of these transitions per name
ai, thus overall O(|T|2 · |A|)) many transitions. Additionally, there is one ambient?
transition per name apart from ai so that there are |A| − 1 per name and overall
O(|A| · |A|) ambient? transitions. The wrong guess transition exists once per yes(ai)
place and thus O(|A|) many times.
Instead of wrong guess a second transition which removes the dead twig may fire.

It is independent from the technical details tested before but uses the right to cut one

46

dead twig under ai which is granted by the token on yes(ai). The transition deletes
the twig and its 0 leaf and re-installs the semaphore, thus allowing other subprocesses
to go on. The twig Ts is marked as unused again.

yes(ai)

Ts → ai

Ts =̂ 0

disappear Ts 6→ ai

TsX

Sem

This disappear transition is only dependent on the twig Ts and the parent ambient ai
so that we need O(|T| · |A|) many such transitions.

5.2.9 Using a New Link Name by Processing a Restriction νn

As discussed in Section 3.3 on page 22 the restriction νn only affects the leaf level,
the inner tree is not touched. The idea already shown in that section remains, but
due to the introduction of twigs we do not care for a parent ambient any more. Hence,
we only depend on the twig Ts and the chosen instance r ∈ R:

νn. P Ts =̂ νn. P

Ts =̂Pσν(n/r)

rX

Sem

s(r) = 1 .

We need one transition per restricted link name r, twig Ts, and bud νn.P , since the
second involved bud Pσν(n/r) is determined completely by νn.P and r. This makes
overall O(|R| · |A| · |T| · |B|) many transitions.

5.2.10 Untriggered Test on Restricted Link Names

The testing of a restricted name r is not triggered by a leaf command but may be done
as soon as the leaves report that the name is forgotten among them by a token on
the chain’s initiator unused(r)a1 . We now test that it is also forgotten in the ambient
hierarchy. Iterating over the elements a∗ of A the chain presented in Section 3.3.5 on
page 29 remains:

47

a∗ 7→ L \ {r}

a∗X

unused(r)a∗

unused(r)a∗+1

a∗ 7→ L \ {r}

a∗X .

There is one a∗ 7→ l transition for each link name l ∈ L but r and one additional
transition for the case that a∗ possesses no link but is unused. Together this makes
O(|L|) transitions per ambient name a∗ and fixed link name r. The sequence’s last
transition marks r as unused (rX):

ad 7→ L \ {r}

adX

ad 7→ L \ {r}unused(r)ad

rX adX .

Iterating over all possible ambient names a∗ ∈ A per restricted link name r ∈ R makes
a total number of O(|A| · |R| · |L|) transitions since each transition set consists of |L|
transitions.

5.2.11 Integrating a New Ambient into the Tree via l[P]

We refine the transition from Section 3.3.3 on page 25 by incorporating twigs, link
names, and the semaphore. When processing a twig Ts carrying an ambient spawner
l[P] we have to move a freshly chosen l instance ai past Ts into the tree. Therefore,
we have to replace Ts’s relation to its parent aj by one to ai and announce ai in turn
as aj ’s child.

aj(7→ . . .)

Ts =̂ l[P]

≡MA−PN

aj(7→ . . .)

ai(7→ l)

Ts =̂P

Figure 14: The ambient instance ai of l moves into the inner tree

As discussed in Section 3.3 on page 22 the name l in l[P] is always a link name. We
need to claim an unused ambient name ai ∈ A which we link on l (ai 7→ l) and then
move into the tree.

48

l[P]

aiX ai 7→ l

Sem

Ts =̂P

Ts =̂ l[P]

ai → aj

ai 6→ aj

Ts → ai Ts 6→ ai Ts → aj

Ts 6→ aj

There is one transition per parent ambient aj , twig Ts, bud l[P], and newly occupied
ambient ai. Thus, we need O(|A| · |A| · |T| · |B|) many transitions.

49

6 From rMA to MA-PN

MA-PN markings should conform to trees for we set them up to mimic rMA processes
which are known to have a tree structure. We first prove that each MA-PN transition
between any two markings doesn’t destroy formerly holding uniqueness constraints.
The uniqueness of an ambient’s link and parent, a twig’s parent, and bud together
with cycle-freeness of the parent relation guarantees that the resulting structure is a
forest. We can further prove that if a stable marking corresponded to a tree with root
root any other stable marking reachable by MA-PN transitions also conforms to such
a tree.
In Section 6.2.1 this result allows us to define a function rest which translates a

stable MA-PN marking into a tree that is then transformed into an rMA process term.
We refine the construction further to recover the original process term before we
turn our attention to the formal establishment of rMA’s and MA-PN’s connection
via processed markings. These markings can simulate all actions possible in the
corresponding rMA process term. They can be constructed using equivalence
transitions only as we show in Section 6.2.4. Thus our bisimulation in Section 6.3
between rMA and MA-PN relies on them.

For the rest of this section and in all following sections we will only consider MA-PN
markings which are reachable in at least one MA-PN. So we let M a reachable MA-PN
marking, i.e. it is produced out of an initial MA-PN marking root[T1 =̂ I]. This
excludes pathological cases, e.g. situations where aX and a 7→ r are both marked.

6.1 Stable MA-PN Markings Maintain a Tree Structure
For the rest of this subsection we will use the MA-PN’s places’ names as predicates
which are true in a marking iff the respective place holds a token. We will use an
arbitrary reachable MA-PN marking M as a model for our formulas. S is a further
restriction of M which is also stable.

Uniqueness Invariants

We inductively prove some uniqueness invariants which together guarantee that each
stable marking is a graph with out-degree ≤ 1 for each node. We first show that the
mapping to a link name l ∈ L is unique for each ambient a. If the ambient name is
currently unused, it is not linked to any link name.

Lemma 5 (Uniqueness of each ambient’s link). Let a ∈A an ambient name.

M |= [(∃! l ∈ L. a 7→ l) ∧ ¬aX] ∨ [(∀ l ∈ L.¬a 7→ l) ∧ aX]

Proof. In the initial marking each ambient is marked as unused and no link is installed.
This conforms to the second case described above.

Now we should check wether all transitions maintain the invariant. We assume that
it holds in the transition’s pre-state. Of course we can restrict our search to those
transitions which change an ambient’s link or usage. They are:

50

• Capability open in 5.2.3 on page 41: The open l transition releases an ambient
named ai. It removes the ai 7→ l link while installing a token on aiX, thus
transferring case 1 into case 2.

• l[P] in 5.2.11 on page 48: The ambient spawner l[P] performs the opposite step
by occupying a new ambient name ai, thus removing the token on aiX and
installing one on ai 7→ l. This transfers case 2 into case 1.

Each ambient name a ∈ A has at most one parent:

Lemma 6 (Uniqueness of an ambient’s parent). Let a ∈ A an ambient name.

M |= [¬aX ∧ (∃! l ∈ A′. a→ l ∧ (∀ l′ ∈ A′. l′ 6= l ⇒ a 6→ l′))]

∨[aX ∧ (∀ l ∈ A′. a 6→ l)]

Proof. The initial marking conforms to the second case described above for all ambients.
We have to check wether all transitions maintain the invariant.

Of course we can restrict our search to those transitions which change ambient
relations and assume that the invariant holds in the transition’s pre-state. They are:

• Capability in in 5.2.1 on page 39: The in l transition can only fire if case 1 is
present on an ambient name aj : aj → ak holds before the transition and is then
replaced by its complement aj 6→ ak. According to the invariant either a new
parent for aj should be installed or aj should be marked as free. The transition
remains in case 1 by putting a token on aj → ai and removing its complement
token.

• Capability out in 5.2.2 on page 40: The out l transition also goes from case 1 to
case 1 now moving the token from aj → ai to aj → ak.

• Capability open in 5.2.3 on page 41: The open l transition requires case 1 on an
ambient name ai by the token on ai → ak and performs the change to case 2 by
marking the name as free and replacing ai → ak by its complement place. The
succeeding release transitions perform a change within case 2 since they change
the ambient’s link from ai to ak.

• l[P] in 5.2.11 on page 48: The ambient spawner l[P] performs the step from
case 2 to case 1. It occupies a so far unused name ai and moves it under ak by
removing the token on ai 6→ ak and putting it on ai → ak.

This lemma proves that exactly the used names have a parent and that this parent is
unique. It could also be written as

M |= [¬aX⇔ (∃! l ∈ A′. a→ l ∧ (∀ l′ ∈ A′. l′ 6= l ⇒ a 6→ l′))]

∧[aX⇔ (∀ l ∈ A′. a 6→ l)].

We can prove the same property for the lowest tree level: Each twig T ∈ T has a
unique parent ambient or is currently unused.

51

Lemma 7 (Uniqueness of a twig’s parent). Let T ∈ T a twig.

M |= [¬TX ∧ (∃! l ∈ A′. T → l ∧ (∀ l′ ∈ A′. l′ 6= l ⇒ T 6→ l′))]

∨[TX ∧ (∀ l ∈ A′. T 6→ l)]

Proof. The initial marking represents case 1 for the twig T1 since it is assigned to
root, and represents the second case for all other twigs. We have to check wether all
transitions maintain the property.
Of course we can restrict our search to those transitions which change a twig’s

ambient relation and assume that the invariant holds in the transition’s pre-state.
They are:

• P |Q in 5.2.7 on page 43: The parallel composition occupies a new twig Tt, thus
requiring case 2 on Tt and transforming it into case 1. The relation on Ts is not
touched.

• Twig removal in 5.2.8 on page 44: The disappear transitions takes the opposite
approach by removing the Ts → ai relation and installing its complement.
Additionally, Ts is marked as unused so that we indeed go from case 1 to case 2.

• Release in 5.2.3 on page 41: During the release chain, each twig T assigned
to the freshly opened ambient ai is hung under aj . This is a transition within
case 1, since T → ai is replaced by its complement and T 6→ aj is replaced by
T → aj .

• l[P] in 5.2.11 on page 48: The ambient spawner transition l[P] moves the token
from Ts → aj to Ts → ai with the necessary complement operations. It is
another transition within case 1.

Each twig T is assigned at most one bud. If there is no bud assigned to T it is marked
as unused.

Lemma 8 (Uniqueness of the twig’s bud). Let T ∈ T a twig.

M |= [(∃! b ∈ B. T =̂ b) ∧ ¬TX] ∨ [(∀ b ∈ B.¬T =̂ b) ∧ TX]

Proof. The initial marking on the relevant places conforms to the second case described
above. We have to check wether all transitions maintain the invariant.
Unfortunately, nearly every transition changes at least one twig’s bud so that we

group the relevant transitions instead of discussing them one by one. We again follow
the inductive proof scheme by assuming that the invariant holds in the transition’s
pre-state. The involved transitions are:

• P |Q in 5.2.7 on page 43: The split transition requires case 2 on Tt. It removes
the tokens on TtX and Tt 6→ ai and installs a new one on Tt → aj so that we
produce a case 1 situation on Tt. The parallel composition 5.2.7 on page 43
changes Ts’s bud from P |Q to P maintaining the uniqueness and staying within
case 1.

52

• Twig removal in 5.2.8 on page 44: The two disappear transitions remove a Ts =̂ 0
token and mark the twig Ts as unused. Thus, they move from case 1 to case 2.

• Capabilities in in 5.2.1 on page 39, out in 5.2.2 on page 40, and open in 5.2.3
on page 41, l[P] in 5.2.11 on page 48, νn.P in 5.2.9 on page 47, K(~a) in 5.2.4
on page 42, used in 5.2.5 on page 42, and unused in 5.2.6 on page 43: All of
these transitions perform a prefix removal on Ts’s bud which is a transformation
within case 1.

Each Stable Marking Represents a Tree

So far we know that our represented structure is a graph with out-degree ≤ 1 for every
node. In oder to prove it a tree (or forest) we have to show that no cycles exist.

Lemma 9 (Cycle-freeness). Each reachable MA-PN marking represents cycle-free
parent-child-relations among all its ambients and twigs.

Proof. Of course, the initial marking is cycle-free, it is a very simple tree. In order to
maintain cycle-freeness it is enough to guarantee that each new relation maintains the
so far used direction, that is no ambient is ever made child of one of its children. We
can concentrate on the ambients completely since the twigs are anyway kept below
them and without relations between each other.
Transitions changing ambient relations are:

• Capabilities: The transitions out and open change an ambient’s parent relation
from parent to grandparent, in moves an ambient below its sibling.

• l[P]: The spawn introduces a so far unused ambient to the tree. This introduction
happens below every other ambient.

Thus, no ambient is ever linked onto one of its children.

By combining the lemmas we already know that each marking represents a forest.

Lemma 10 (Forest). Each reachable MA-PN marking M represents a forest.

Proof. The combination of the four Lemmas 6 on page 51, 7 on the previous page, 8 on
the preceding page, and 9 proves that each MA-PN marking conforms to an (MA-PN)
forest.

To get the stronger result that each stable marking conforms to one tree with root
root we investigate all sequences between stable markings.

Lemma 11 (Tree). Each reachable stable MA-PN marking S represents a tree with
root root.

Proof. It is obvious that the condition holds for the initial marking root[T1 =̂ I] itself.
Now we will prove that any transition (sequence) from one stable marking S1 to the

53

next one S2 maintains this invariant. We only care for transitions which influence the
parent-child relations between ambients and twigs.

One can easily verify that only one transition sequence with intermediate unstable
markings can be executed at a time since each first step consumes the semaphore
and each later step requires the one before. The untriggered test sequence shown in
Section 5.2.10 on page 47 is independent of the semaphore. Thus, it may be executed
between stable markings or interleaved with an arbitrary blocking chain. However, its
transitions do not influence the tree and can be ignored. The following transitions
remain:

• P |Q in 5.2.7 on page 43: The newly installed ambient relation Tt → ai may not
introduce a distinct tree since Ts → ai already holds and thus ai is part of the
one tree S1 depicts.

• Twig removal in 5.2.8 on page 44: Both twig cutters only remove a twig but
introduce no new relation.

• l[P] in 5.2.11 on page 48: The new ambient is integrated into the existing tree.

• Capabilities in in 5.2.1 on page 39 and out in 5.2.2 on page 40: Both transitions
perform a local change in the tree. No new relations are introduced.

• Capability open in 5.2.3 on page 41: The transition open l.P cuts the relation
between ai and aj so that the subtree with root ai becomes a distinct tree, ai
is already marked as unused. The release chain moves all subtrees from under
ai back under aj . Since ai is already marked as unused this removes the newly
created tree completely.

Thus, each stable marking represents a tree with root root.

6.2 Connecting rMA and MA-PN
We use this section to make the connection between rMA and MA-PN precise. While
an MA-PN needs an rMA process as construction parameter the opposite direction
is not so clear. Therefore we first define a function to restore an rMA process out
of a stable MA-PN marking. The former result of Lemma 11 on the previous page
that each stable marking represents a tree guarantees that we indeed define a function.
We highlight the restored process term’s connection to the original rMA process and
define an equivalence on markings based on this connection in Section 6.2.2.
Not every marking in an MA-PN equivalence class can execute all actions the

corresponding rMA process can execute, thus this equivalence is no congruence.
Processed markings are introduced as exit points of the equivalence classes: a processed
marking can execute exactly the same actions as its original rMA process term. In
Section 6.2.4 we show that the MA-PN transitions can transform each stable marking
into an equivalent processed marking so that we can limit our bisimulation in Section
6.3 to processed markings.

54

6.2.1 Restoring rMA Process Terms

We will use the respective trees to relate rMA process terms and MA-PN markings.
With a fixed order on link names and buds we can establish a function rest(M)
which produces an rMA process term P out of an MA-PN marking M by dropping
unnecessary information.

To transform an MA-PN tree into a corresponding rMA tree, only few modifications
are necessary. We can drop the twigs and the concrete ambient names and place the
buds and link names in the hierarchy instead.

Example 12 (From MA-PN tree to rMA tree). We drop the information introduced
in MA-PN to guarantee uniqueness:

root

a5(7→ l4)

...

a3(7→ l4)

T5 =̂P

⇒

root

l4

...

l4

P
.

The introduced root remains so that we still have a tree rather than a forest.

Of course, this will most likely lead to link names appearing several times within the
tree. However, the situation is still clear since the tree is unique (up to reordering
of the branches). It may still contain "lazy" leaves, that is leaves which start with
an unprocessed restriction, ambient or parallel composition. But these peculiarities
disappear automatically when we transform the tree into a process term.

We must then also choose an order on each node’s respective children. As discussed
in Section 3.1 on page 16 we can take any choice because the resulting processes are
congruent to each other by the parallel composition’s commutativity P |Q ≡ Q|P . We
may discard the root now.

6.2.2 Recovering the Original Process Term

The process rest(M) is already a correct rMA process. However, all processed
restrictions are missing since they were replaced by unique restricted link names r ∈ R.
Thus, this process term may contain many more public names than the original rMA
process term out of which we constructed the MA-PN marking M . Luckily, we can
simply bind the whole process term rest(M) under MA-PN’s set R to recover the
original process term. Of course, some of the names r ∈ R may not be used in the
process so that their binding is unnecessary. But since νR.P ≡ νR′.P where R’ only
includes the restricted names used in P we do not have to deal with this. One can
approximate R’ by a look on the places rX with r ∈ R: at least these names are not
used in the net.

Definition 18 (Associated rMA process). Let M a stable MA-PN marking with the
set of restricted link names R. Its associated rMA process term R is

R = νR.rest(M)

55

where rest is the restoring function for a process term introduced above.

This unique correspondence from the marking’s point of view is matched by a large
number of markings for each process: The function rest(M) abstracts the different
possible choices for twig and ambient names away. Also, it hides wether some leaf
contained unprocessed ambient spawns or parallel compositions. Only the mapping
for the restricted names is specified.

Definition 19 (Associated markings). Let R a b, d-bounded rMA process term. Its
associated MA-PN markings are all those stable markingsM for which R = νR.rest(M)
holds.

This definition separates markings which took a different choice on the restricted
link names although we know that these choices can be exchanged by α conversion.
Further aspects are the number of 0 leaf terms and other technical issues. We define an
equivalence on markings to unite those which correspond to the same rMA congruence
class.

Definition 20 (Equivalence on markings). We call two markings M and M ′ of an
MA-PN with restricted names R equivalent if their associated rMA process terms are
equivalent.

M ≡MA−PN M ′ iff νR.rest(M) ≡ νR.rest(M ′)

All markings in an equivalence class modulo ≡MA−PN are exactly those markings
which are in association to the same process term up to ≡. Thus, the notion of
association also extends to equivalence classes.

Since the equivalence on rMA process terms is a congruence, every representative of
the same equivalence class can perform the same actions. This is guaranteed by the
rules P Q⇒ n[P] n[Q], P Q⇒ νn.P νn.Q, and P Q⇒ P |R Q |R.
This is different for MA-PN: Only leaf prefixes may be processed in an MA-PN marking
but ambients, restrictions, and parallel compositions can also form such a prefix. Thus,
a covered capability, call or silent action cannot be executed even if the covering
element is just a restriction. This leads to several markings in the same equivalence
class which can only execute a subset of the actions their associated rMA process term
can. We did not implement all necessary rules to move from an arbitrary marking M
to all equivalent ones via MA-PN transitions. Instead we only implemented transitions
which lead to a "better" marking, that is a marking which is able to perform more
rMA actions. "Best" are the processed markings:

Definition 21 (Processed markings). We call a stable marking processed if

1. All its leaves are a call or 0 or start with a capability or a silent action.

2. Each restricted link name r ∈ R is either marked as unused or is indeed used.

This definition captures all those markings which can execute exactly the same actions
as their associated rMA process since all leaves start with an rMA action. The second
criterion guarantees some kind of normalisation on the restricted link names: there is
no completely executable test chain in the middle of its execution.

56

6.2.3 Understanding Processed Markings: rMA’s Restricted Normal Form

We present a normal form for rMA process terms which is in close correspondence to
processed markings: If we recover the associated process term to a processed marking
M it is always in restricted normal form (RNF). Roughly speaking, the RNF allows
inner restrictions only if they are guarded by a capability or silent action. Exactly
those restrictions are also present in a processed MA-PN marking.

Definition 22 (RNF). An rMA process term R is in restricted normal form (RNF) if

R ::= νn1. . . . νnk.P

where P ::= 0 p n[P] p P1|P2 p K(~a) p π.P ′ p τ.P ′
and P ′ ::= 0 p n[P ′] p P ′1|P ′2 p K(~a) p π.P ′ p τ.P ′ p νn.P ′
where π denotes a capability and τ denotes a silent (un)use action.

One can easily verify that there is an equivalent process term in RNF for an arbitrary
rMA process term.

Lemma 12 (Transformation into RNF for any rMA process). For each rMA process
term R there is a rMA process term R′ which is in RNF and for which R ≡ R′ holds.

Proof. Any process term can be transformed into one in RNF by applying the following
congruence rules:

• νn.(P |Q) ≡ (νn.P) |Q if n not free in Q

• νn.m[P] ≡ m[νn.P] if n 6= m

• νn.νm.P ≡ νm.νn.P

Since we want to enlarge each quantifier’s scope we apply the first two rules in the
opposite direction to the way they are written here. If another restriction with the same
name blocks the movement of one restriction e.g. νn.n[νn.(openn.0)], the restriction
wanting to go up renames itself by a name substitution:

νn.n[νn.(openn.0)] ≡ νn.n[νm.(openm.0)] ≡ νn.νm.(n[openm.0)]

In every RNF process term the restrictions form one long chain above the actual tree
with its behaviour. Each restricted name is unique in the tree just like it is in an
MA-PN marking. The net guarantees uniqueness by introducing so far unused names
r ∈ R. Afterwards it can drop the useless restrictions rather than moving them to the
outside.

57

νn1

. . .

νnk

nj

.

ni

. . .

Pk

. . .

. . .P2P1

≡
νR.

rest(M)

Figure 15: Correspondence between a processed MA-PN marking M and the RNF

6.2.4 Producing Processed Markings

We show that we can produce an equivalent processed marking out of each stable
MA-PN marking using the MA-PN transitions. Therefore we first turn our attention
to the second condition for a processed marking: A name should either really be used
or marked as unused. We show that we can mark each unused name as unused and
stay within the same equivalence class.

Lemma 13 (Release of restricted names). Let M a stable MA-PN marking and r ∈ R
forgotten among all leaves and not referenced as link by any ambient in the ambient
tree. The forgotten r is either marked as unused or can immediately, that is without
further consumption of the semaphore be marked as unused. The new marking is
equivalent to the old one.

Proof. If a name r is forgotten among all leaves, it was either never in use or all
used(r) and unused(r) commands were executed: The preprocessing installs these
commands and a forgetting implies their execution since they are not present on the
leaves any more. In the former case r is marked as unused by the initial marking.
Hence, we can turn our attention to the latter case.

The execution of the commands implies that the place unused(r)a1 was or is marked:
The current marking can either represent this situation or some further step including
rX in the processing of the test chain presented in Section 5.2.10 on page 47. This
chain is the only way to change these particular markings concerned with r.
The chain is a simple test which does not change any part of the tree. It only

moves a token from unused(r)a1 to unused(r)ad and further onto rX to protocol
its progress in testing that no ambient is linked onto r. Thus, for any intermediate
marking M ′ after the execution of some part of the chain it holds that M≡MA−PN
M ′ since already rest(M) = rest(M ′). After the whole execution r is indeed marked
as unused.

58

This is also an important prerequisite for the reuse of a restricted link name which
is necessary when we process a restriction. Additionally, we must show that our
restricted link name set R was chosen huge enough, so that whenever our MA-PN
marking requires a new restricted link name one is indeed unused (or can be marked
as unused).

Remember that we assigned b · (c+ κ) + d restricted link names where b and d are
breadth and depth bound, c is the maximal number of new restrictions, and κ the
maximal number of parameters. We first show that no MA-PN marking blocks more
than this number of restricted names.

Lemma 14 (Blocking restricted names on leaves). Let M an MA-PN marking. One
leaf can block at most c+ κ restricted names.

Proof. Each leaf can only contain – and thus use – c+κ different restricted link names.
This is the worst case assumption where κ different restricted names are passed as
parameters and the c new restrictions are processed before the first unused command
becomes the leaf prefix. Idealised, this is P (~x) = ν~n. . . . Q(~y) where the length of ~x
and ~y is κ and ~n has length c. Of course, no further restrictions may be present in
the omitted inner part4 since the maximum c is already reached. Before the final call
Q(~y) all necessary (which is here at least c) unused commands are processed so that
at most κ used names may persist the call.

Example 13 (Periodic name usage). We depict the number of names used
in the process P (~a) where Px~xy = νn1. . . . νnc.nc[unused(nc).open x4.unused(x4)
. . . Q(n2, n2, . . .)]. We assume that ~a consists of κ different restricted link names so
that we have κ different known names right after the call of P .

νn1. . . . νnc.nc[unused(nc).open a4.unused(a4) . . . Q(n2, n2, . . .)]

κ

c+ κ

Since at least some parameters in the final call to Q are the same the number of known
names is guaranteed to be below κ.

Over all leaves this makes at most b · (c+ κ) different restricted names. If names occur
among different leaves this keeps the number below this bound since such a name
contributes to both leaves’ bounds.

4We do not have to worry about parallel compositions in the omitted part since their processing
will simply lead to one new twig Tt on which the same arguments hold.

59

Lemma 15 (Blocking restricted names in the tree). Let M an MA-PN marking. The
ambient hierarchy can block at most d restricted link names.

Proof. Each ambient name a ∈ A possesses a unique link a ∈ L. With |A| = d at most
d link names may be blocked by the ambient hierarchy. Only if all of these names are
different restricted link names we reach the bound.

Combining the lemmas we can determine b · (c+ κ) + d = b · (c+ κ) + d as bound for
R.

Lemma 16 (Restricted link names suffice). Let M a stable MA-PN marking. If
M contains a leaf Ts =̂ νn.P starting with a restriction, it either contains an unused
name r ∈ R (rX) or can transform itself into an equivalent marking M ′ in which a
restricted name is marked as unused.

Proof. The net possesses b · (c+ κ) + d restricted link names. We assume the worst
case proven in Lemma 15 so that indeed d restricted names are blocked by the ambient
hierarchy. Each leaf but νn.P may use at most c + κ different restricted names by
Lemma 14 on the previous page so that the other leaves block at most (b− 1) · (c+ κ)
restricted names. Now Ts’s leaf may still use up to κ restricted names which were
supplied to it as call parameters. However, it cannot already use c new names since a
restriction νn is still present in the leaf and thus less than c restrictions were so far
processed. Thus, at least one restricted name is unknown among all leaves and does
not appear as link in the tree. By Lemma 13 on page 58 this name can be marked as
unused immediately while maintaining the equivalence.

We now show that the marking after the processing of such a restriction is also in
the same equivalence class.

Lemma 17 (Equivalence when processing restrictions). Let M a stable MA-PN
marking. We assume that the transition νn.P from 5.2.11 on page 48 with the names
used there is enabled. Let M ′ the marking after the execution of this one transition.
M ≡MA−PN M ′ holds and M ′ is stable as well.

Proof. The transition only tests on the semaphore so that the stability is guaranteed.
It performs a step

. . .

. . .Ts =̂ ν n.S

 PN

. . .

. . .Ts =̂Sσν(n/r)

where the upper dots hide the above ambient hierarchy A and the right dots encode
arbitrary siblings denotable as process R. Thus, rest(M1) = rest(A)[νn.S|rest(R)]
rest(M2) = rest(A)[Sσν(n/r)|rest(R)].

We need to prove the equivalence of the associated rMA processes P1 = νR.rest(M1)
and P2 = νR.rest(M2):

Fact 1. P1 ≡ P2

60

Proof. P2 = νR.rest(A)[Sσν(n/r)|rest(R)] ≡ νR∗.νr.rest(A)[Sσν(n/r)|rest(R)]
where R∗ = R\r and we use the rule νn.νm.P ≡ νm.νn.P to move r to the de-
sired position.

The name r cannot be present in rest(A) since it was unused in M and is thus not
used to link on. Thus, we can apply the rule νn.m[P] ≡ m[νn.P] if n 6= m to move r be-
low the ambient hierarchy. The resulting process νR∗.rest(A)[νr.(Sσν(n/r)|rest(R))]
can be transformed into νR∗.rest(A)[νr.(Sσν(n/r))|rest(R)] by scope extrusion since
r cannot be used in R, either.

By applying α-conversion on r we finally receive νR∗.rest(A)[(νn.S)|rest(R)] Since
r does not appear freely in the process (in fact it does not appear there at all due
to our α-conversion) we can add the restriction νr around the process to restore
R while still maintaining the equivalence5. The resulting process is the desired
νR.rest(A)[νn.S|rest(R)] = P2.

The associated processes are equivalent and so are the markings by Definition 20 on
page 56.

Just like unused restricted names are necessary for the processing of a restriction,
unused twigs are a prerequisite for the processing of a parallel composition. We
therefore prove that we can free a twig if there is a parallel composition to be
processed.

Lemma 18 (Cutting twigs). Let M a stable MA-PN marking. If M contains a leaf
Tu =̂P |Q starting with a parallel composition, it either contains an unoccupied twig
or can transform itself into an equivalent stable marking M ′ in which a twig is unused
(TxX).

Proof. Since we assume a b-bounded process R = νR.rest(M) behind the marking
M there is at least one process R′ in R’s equivalence class which does not exceed the
bound b.
We can distinguish two cases:

R = R′: If already the best case R′ which respects the bound was νR.rest(M) we
already know that some unoccupied twig Tx is present: The parallel composition
P |Q already contributes with 2 to b in R′. The net only reserved one twig for it
so far. Thus, the breadth bound b cannot be reached yet in the net and some
twig Tx is marked as unused.

R 6= R′ ≡ R: Differences in R’s and R′’s breadth can only origin from a different
number of additional 0 leaves. These leaves’ removal must really diminish the
bound so that we can exclude case 2 on them. Since the net only possesses b
twigs, already the removal of one unnecessary 0 will guarantee an unoccupied
twig. The fact that M is associated to R already says that M is stable. Thus,
either a case 1 or a case 3 transition (sequence) is enabled on the stable M . We
will now show that any of them maintains stability and equivalence:

5The desired position in R can again be reached by the rule νn.νm.P ≡ νm.νn.P

61

case 1: The disappear transition for the root case shown in 5.2.8 on page 44
maintains the stability since it only tests on the semaphore. It removes
some 0 on the top level transforming itself into a marking M ′. That is,
R = R1|0 ≡ R1 where R1 = νR.rest(M ′). In the extreme case where
R1 = ε the equivalence rule 0 ≡ ε is implemented.

case 3: Either the at least two? or the ambient? transition is enabled on the am-
bient ai which also carries the 0 twig Ts. This transition now consumes
the semaphore and puts a token on yes(ai) which enables the disappear
transition shown in 5.2.8 on page 47. In every other aspect it is a simple
test so that for its result M0 rest(M) = rest(M0) and thus, the equivalence
holds although the stability is not kept. The freshly enabled transition’s
firing restores the stability by putting the semaphore back. It cuts the
dead twig Ts, thus implementing K|0 ≡ K on some subterm K of R. This
guarantees rest(M1) ≡ rest(M ′).

Of course, any of the above transformations marked the cut twig as unused.

Finally we can combine the transitions which maintain the equivalence to produce an
equivalent processed marking out of any stable MA-PN marking.

Lemma 19 (Producing processed markings). Let M a stable MA-PN marking. M
can be transformed into an equivalent processed marking M ′.

Proof. We depict how to mark forgotten restricted link names as unused first. After-
wards, we show how to remove the undesired prefixes l[P], P |Q, and νn.P .

It is sufficient to apply Lemma 13 on page 58 (and thus transitions from 5.2.10
on page 47) to mark any forgotten restricted name as unused while maintaining the
equivalence. The necessary steps for different names may not interfere since they
are working on distinct places (each place uses the link name r as reference). The
concatenation of these steps will yield an equivalent marking in which each name is
either in use or marked as unused.

If we perform these steps before processing any undesired prefix we can assume that
each restricted link name is either really in use or marked as unused. To maintain this
useful insight as an invariant we should show that no restricted link name can become
unused during the execution of the subsequent steps. We will only use the transitions
split from 5.2.7 on page 43, νn.P from 5.2.9 on page 47, and l[P] from 5.2.11 on
page 48. Additional use of the 0 transformations shown in 5.2.8 on page 44 may be
necessary but does no harm since none of them interferes with the ambient hierarchy.
Only the spawner interferes with this but it only introduces a new link ai 7→ l so that
no name can be forgotten in this part. Also, no name can disappear from a leaf since
we do not touch the used(r) and unused(r) commands which are always a name’s last
occurrence on a leaf.

We may start to use new names when processing a restriction but we cannot directly
forget such a name with the same argumentation presented above. Thus, we can
assume that each forgotten name is indeed marked as unused which will facilitate the
reasoning.

62

With this knowledge it is easy to see that the successive removal of undesired prefixes
will sooner or later lead to a processed marking. We show that this removal is indeed
possible, i.e. that the corresponding transition is enabled if an undesired statement is
a leaf’s prefix, and that each of the removing transitions maintains the equivalence.
Each prefix removing transition used below requires a test on the semaphore, which
is possible since M ’s association to R guarantees stability. Since we only test on the
semaphore the stability is also maintained by each transition.
We always assume a situation with the same names we used when introducing

the transitions. In order to distinguish the marking before the transition from that
afterwards, we use the names M1 and M2 for them.

P |Q: The split transition from Section 5.2.7 on page 43 is enabled in the assumed
situation if some unused twig Tt is present. We can apply Lemma 18 on page 61
to guarantee such an unused twig. This may require a 0-transition leading to an
intermediate marking M ′1 while maintaining equivalence and stability.

The split transition maintains the equivalence since already rest(M1) = rest(M2)
or in the case requiring an intermediate 0 transition rest(M1) ≡ rest(M ′1) =
rest(M2).

l[P]: The l[P] transition from Section 5.2.11 on page 48 is enabled in the assumed
situation if some unused ambient name ai is present (aiX). Since we assume a
b, d-bounded process unused ambient names should be present in the net since
the corresponding process in which the ambient already contributes to the depth
does not exceed the bound d.

This transition only allows the net to represent the old information in a more con-
venient way. Again, already rest(M1) = rest(M2) holds, so that the equivalence
between the markings is kept.

νn.P : The νn.P transition from 5.2.9 on page 47 is enabled in the assumed situation if
some unused link name r is present (rX). We can apply Lemma 16 on page 60
to be sure that a name is markable as unused. With the former discussion we
know that the name is already marked and thus our transition is enabled.

As we know from Lemma 17 on page 60 the transition is a transformation within
one equivalence class.

Thus, we even have a constructive procedure to transform a marking M into an
equivalent processed marking M ′.

63

6.3 Bisimulation between rMA and MA-PN
We are now prepared to establish a bisimulation M'MA−PN νR.rest(M) between
processed MA-PN markings M and their associated rMA processes νR.rest(M). We
will use these exit points of each MA-PN equivalence class to mimic each possible
rMA action. Afterwards MA-PN’s equivalence transformations transfer the resulting
marking into a new processed one. The reader familiar with bisimulations might be
interested to hear that the one proposed below is actually strong. However, since there
is only a weak bisimulation between MA and rMA we won’t be able to establish more
between MA and MA-PN, anyway. We thus stick to the weak formulation.

Theorem 1 (Bisimulation between rMA and MA-PN). The (b, d-bounded) rMA calcu-
lus and the MA-PN are bisimiliar via a weak bisimulation Mp 'MA−PN νR.rest(Mp)
for processed MA-PN markings Mp.

Proof. We limit our analysis to processed MA-PN markings. These markings are
sufficient to express every equivalence class [M]≡MA−PN

since an arbitrary marking M
can be transformed into an equivalent one in processed form as stated by Lemma 19
on page 62.

Processed markings are stable. Thus, we can contract several Petri net transitions,
which lead from one stable marking over intermediate unstable markings into another
stable marking, into one MA-PN action. They are then considered atomic for the
bisimulation. The most prominent case is the open action which uses a blocking chain
of transitions to reinstall a correct tree.

We do not consider equivalence transformations as actions, neither for rMA nor for
MA-PN. A Petri net transition which simply performs an equivalence transformation
could anyway be mimicked by an ε action in rMA. We will use these transitions
implicitly when transforming the resulting marking of an action into an equivalent
processed one. The remaining MA-PN actions are call (5.2.4 on page 42), used
(5.2.5 on page 42), unused (5.2.6 on page 43), in (5.2.1 on page 39), out (5.2.2 on
page 40), and open. We contract the original open l.P transition shown in 5.2.3 on
page 41 and its succeeding chain of release and test transitions also shown in 5.2.3
on page 41 to this action. The intermediate transitions are only executed if the
semaphore is not present since open l.P consumed it and only the last transition of
the chain restores it. We establish the bisimulation M'MA−PN νR.rest(M) between
a processed MA-PN marking M and its associated rMA process νR.rest(M). This
also shows [νR.rest(M)]≡'MA−PN [M]≡PN

.

Fact 2. For a pair P ∈ rMA and Q ∈MA−PN with P 'MA−PN Q, whenever P α

P ′ ∈ rMA, there is Q′ ∈MA− PN such that Q⇒α̂ Q′ and (P ′, Q′) ∈'MA−PN .

Proof. We formerly pointed out that arbitrary markings are not always able to perform
the same actions their associated rMA process can perform. However, an equivalent
processed marking can execute exactly these actions since only silent actions, calls
and capabilities form the leaf prefixes.

Thus, each associated processed MA-PN marking Q can mimic its rMA process P ’s
actions by the MA-PN action with the same name. However, the MA-PN marking

64

after the action’s execution could be in unprocessed form so that we have to transfer
it into an equivalent processed one by applying Lemma 19 on page 62.

Thus, we can turn our attention to the other direction. Again, we will see that the
simulation is strong so that we indeed receive a strong bisimulation between rMA and
MA-PN.

Fact 3. For a pair Q ∈MA−PN and P ∈ rMA with P 'MA−PN Q, whenever Q α

Q′ ∈MA− PN , there is P ′ ∈ rMA such that P ⇒α̂ P ′ and (P ′, Q′) ∈'MA−PN .

Proof. Q performs a real action before if necessary restoring processed form. This
action can be mimicked by the same action in P independent of P ’s form in a strong
sense, that is without intermediate silent actions. In fact, rMA’s silent actions are
matched exactly by the used(r) or unused(r) MA-PN action.

It is interesting to see that a (strong) simulation could also be established between
an arbitrary (possibly unprocessed) marking Q and its associated rMA process P . If
Q contains unprocessed restrictions, parallel compositions or ambients this hinders the
thus covered capability or (un)used action. This even reduces the challenge for rMA
which is now only forced to execute the remaining, uncovered actions. As discussed
before, the congruence guarantees that it can execute all actions which are not covered
by a capability or silent action anyway.

The two (strong) simulations guarantee a bisimulation between rMA and MA-PN.

We can combine the bisimulation between MA and rMA and that between rMA
and MA-PN to receive the following theorem:

Theorem 2. The b, d-bounded MA processes and MA-PN are weakly bisimiliar.

Proof. We combine Lemma 3 on page 33 and Theorem 1 on the preceding page via the
transitivity of bisimulations given by Lemma 2 on page 14 to receive a bisimulation
between b, d-bounded MA and MA-PN. It links MA process terms P to processed
markings M via the intermediate step over the rMA process terms pre(P).

We derived a constructive procedure to build a bisimiliar Safe Petri net for any b, d-
bounded MA process P : First we calculate pre(P), then we construct MA-PN(pre(P)).

65

7 Extensions and Optimisation

The construction allows for several interesting modifications. We present a scheme
which saves transitions by modularisation in Section 7.1. This is applicable in other
contexts, too and follows the separation of concerns which already the twigs typified.
There are other simple changes which save transitions or places. For example, we

can drop complement places on the root. Additionally, we can avoid the test on the
semaphore in transitions which do not interfere with the ambient hierarchy. This is
especially helpful if one uses a verification tool which works best with concurrency.

Even more interesting are those modifications which provide further insights into
MA’s mechanisms and facilitate verification: The banning of public names from
parameter lists introduced in Section 7.2 and the relaxed semantics proposed in 7.3
provide interesting approaches for future work. Section 7.4 extends the results for
b, d-bounded processes to bounded runs of unbounded processes.

7.1 Saving Transitions by Modularisation
The (un)use transition for a restricted link name r is implemented per spread value
s(r). We can replace this spread value dependent unused action by a small procedure:
The first transition consumes the semaphore and puts a token on the respective
operation: decrem(r) for unused(r) and increm(r) for the use(r) action.

unused(r) Ti =̂PSem

decrem(r) Ti =̂unused(r).P
.

Now we need one transition per bud unused(r).P and twig Ti which is in O(|B| · |T|)
and saves a factor of 2 · b in comparison to the former transition. In a second step we
perform the spread change:

unused(p) s(r) = i− 1s(r) = i

decrem(r) Sem

.

Even with these additional (2 · b) · |R| transitions the procedure is less expensive: Since
|B| � |R| the new sequences overall require O(|B| · b) many transitions.

7.2 Excluding Public Names from Parameter Lists
The behaviour of calls in the MA calculus is static in almost every aspect. This is
mostly due to the fact that there is no name passing mechanism like the send and

66

receive actions in the π-calculus. In MA a name may only by passed by using it as a
call parameter for a subsequent equation.

There are three types of names a process can choose from when calling other process
equations:

• public names p ∈ P

• own freshly spawned restricted names r ∈ R

• own parameters x ∈ L, i.e. names the process received from its parent (via the
former call), which can be either restricted or public

However, explicitly called public names can be eliminated: If we have an equa-
tion – including the initial term – which calls the process equation P (~y) with the
public name a ∈ P as i-th parameter, we can transform P (~y) into an equation
Pa(y1, . . . , yi−1, yi+1, . . . , yn) which does not use a as explicit parameter but already
comes with the substitution of xi by a, that is Pa = PσK(xi/a). Applying this to all
public names in every equation successively, we receive equations which may only pass
newly restricted names or own parameters to any sibling.
By induction, it follows that no process need pass public names as parameters at

all, thus leaving us only to deal with two types of names:

• own freshly made restricted names r ∈ R

• own parameters x ∈ R, i.e. restricted names the process received from its parent
(via the former call)

The shorter parameter list and the banning of public names from calls come for the
price of many more equations. For example, if there are only three calls P (a), P (b),
and P (c) on three different public names a, b, and c this was formerly handled by one
process equation Pxxy. Now we need three parameterless equations Pa, Pb, and Pc.
However, we eliminate some peculiarities from our MA-PN if we require processes

not to use public names as parameters. For example, we can drop the transitions
eliminating (un)use commands introduced in Section 5.2.5 on page 42 and we will be
able to shorten the substitution net introduced in Appendix A on page 75.

7.3 Relaxed MA Semantics
We can save a considerable amount of link names and prepare the way for further
optimisations if we take a relaxed approach towards the semantics. The idea is based
on the fact that an ambient’s link will never be changed if the corresponding link name
is forgotten among all leaves: The only way to change an ambient’s link is to open,
that is remove, it and afterwards assign it in a new spawn. As soon as the link name
is forgotten among all leaves, no capability on it will be executed. Thus, any ambient
linked to it remains as some kind of garbage, blocking other ambients from passing in
certain constellations. E.g., a border of two garbage ambients above each other blocks
the tree below from that above and thus separates the verification problems.

67

Example 14 (Separating verification problems). A border of two garbage ambients
makes the execution of outm impossible:

o

m

Rgarbage

garbage

Qoutm.P
.

Figure 16: The outm capability cannot be executed

Indeed, we can treat the process terms outm.P |Q and o[m[R]] separately so that the
problems are much smaller.

To implement the relaxed semantics in the net only the test procedure from Sec-
tion 5.2.10 on page 47 must be adapted: We now relink the forgotten ambients onto
the additional link name garbage. This allows the procedure to go on where it formerly
blocked. Thus, a link name r can be released as soon as it is forgotten among all leaves.
This changes the according actions in the possible situations for the test procedure –
which is now in fact a release procedure – to:

• a∗X: The ambient name a∗ is currently unused. In this case we do not need to
change the linking since there is no relevant link installed but can immediately
proceed to a∗+1.

• a∗ 7→ r: If a∗ was so far linked onto r we must replace this link by one onto
garbage before proceeding to a∗+1.

• a∗ 7→ x 6= r: If a∗ is linked onto a name different to r or already linked onto
garbage there is no need to touch the relation. Thus, we can immediately proceed
to a∗+1.

Thus, there are two new transitions per ambient a∗. We need an extra test on the
artificial name garbage and we add a transition for the formerly blocking a∗ 7→ r case.
This new transition is the only one changing the link relation since it relinks the
ambient from r onto garbage.

68

a∗ 7→ l

a∗ 7→ garbage

a∗ 7→ r

a∗X

unused(r)a∗

unused(r)a∗+1

a∗ 7→ garbage

a∗ 7→ r

a∗ 7→ l

a∗X

The complexity class of the number of transitions is not touched. The additional two
transitions per ambient a∗ with fixed link name r vanish among the O(|L|) many
transitions which are anyway used in each such constellation. Thus, the overall
complexity is not affected either so that we have O(|A| · |R| · |L|) transitions over all
possible ambient names a∗ and restricted link names r ∈ R.

Since restricted link names which are only referenced by ambients can be freed now
we only need b · (c+ κ) restricted link names instead of the former b · (c+ κ) + d many
names. Even more interesting than this considerable saving of names and places is the
potential to separate verification problems.

7.4 Simulation of Unbounded Processes
It is easy to see that the construction allows us to simulate finite runs of unbounded
processes, too, if we additionally provide a transition for the unbounded replication.
Even though this element guarantees infinite breadth, already a finite number of its
replicants may reveal interesting behaviour. The replication implements !P ≡ P | !P .
The behaviour and thus the required Petri net transition is hence quite similar to that
for the parallel composition P |Q as shown in Section 5.2.7 on page 43. Again, we use
ai as parent ambient, Ts as already used twig and Tt as freshly occupied one.

split Tt =̂P

Ts → ai

Sem Ts =̂P !

Tt → ai

Tt 6→ ai TtX

69

The only difference to the former transition lies in the fact that !P is kept as Ts’s
content while P |Q was split. The test on !P is necessary to make sure that the P
replication is present. In order to implement all necessary equivalence rules to keep
the process representation small in breadth we care for !0 ≡ 0. It translates to:

!0

Ts =̂ 0

Sem

Ts =̂!0

.

This makes O(|T|) many transitions. In fact, we do not even need the semaphore here
since the transition doesn’t interfere with the tree structure.

This second transition guarantees that our b, d-bounded MA-PN with replication
indeed simulates all b, d-bounded runs. We can even take a further step towards
generality: The bisimulation extends to arbitrary runs and processes if we consider
possibly infinite Petri nets with replication transitions (MA-PNrepli). In fact, the
proof becomes much simpler since we can always assume an unused name of the
respective, now infinite name set. The difficult freeing of restricted link names is no
more necessary then.

Theorem 3 (Extended bisimulation between rMA and MA-PNrepli). The rMA cal-
culus and the MA-PNrepli are bisimilar via Mp 'MA−PN νR.rest(Mp) for processed
MA-PNrepli markings Mp.

Based on this insight we can derive the following characterisation:

Theorem 4 (Finiteness iff bounded). Let P an rMA process. The MA-PNrepli(P) is
finite iff P is b, d-bounded.

Proof. Finiteness of the net is only possible if the process is bounded in breadth and
depth. If the process is bounded we can compile a finite MA-PNrepli for it by using
the true b and d as bounds.

This nice characterisation is not applicable in practice at all. We will therefore
withdraw from infinite Petri nets and show in an example how to simulate interesting
runs with given artificial breadth and depth bounds.

We consider the process (Pxy = νm.(n[openm.P] | m[in n.0]), P). The public name
n is the only one so that our link name set is L = {n} ∪ R. We have c = 1 and
k = 0 so that we only need b · 1 + d many restricted link names. Instead of computing
the bounds we set b = 2 and d = 3. Thus, our other associated MA-PN sets are
T = {T1, T2}, A = {a1, . . . , a3}, and R = {r1, . . . , r5}. To determine the associated set

70

of buds we must apply the preprocessing first. It yields the modified process equation
Pxy = νm.used(m).(n[openm.unused(m).P] | m[unused(m).in n.0]). The buds are

{νm.used(m).(n[openm.unused(m).P] | m[unused(m).in n.0])}
∪ {used(ri).(n[open ri.unused(ri).P] | ri[unused(ri).in n.0]),

n[open ri.unused(ri).P] | ri[unused(ri).in n.0],
n[open ri.unused(ri).P], ri[unused(ri).in n.0],

open ri.unused(ri).P, unused(ri).in n.0,

unused(ri).P, in n.0 | i = 1, . . . , 5}
∪ {P, 0}.

This modest size parameters already yield a large net which we will not depict here.
Instead, we show a run and thus only those transitions which are used.

νm. . . . T1 =̂ νm.used(m).(n[openm.unused(m).P] | m[unused(m).in n.0])

T1 =̂used(ri).(n[open ri.unused(ri).P] | ri[unused(ri).in n.0])

r1X

Sem s(r1) = 1

used(r1) T1 =̂n[open ri.unused(ri).P] | ri[unused(ri).in n.0]

s(r1) = 2
T1 → root

split T1 =̂n[open r1.unused(r1).P]

T2 =̂ ri[unused(ri).in n.0]

T2 → root

T2 6→ root

T2X

So far, only a used action took place, the other two transitions were equivalence
transformations. The respective MA-PN tree is:

root

T2 =̂ r1[unused(r1).in n.0]T1 =̂n[open r1.unused(r1).P]
.

We need to integrate the ambients into the tree before we process the next actions.
We omit the semaphore in the unused transition due to readability. Both ambient
spawners are concurrent. One is shown above the other transitions and the other one
is depicted leftmost. After both fired we can process unused(r1) to finally enable in n.

71

n[. . .]

a2 7→ n

a2 → root

Sema2 6→ rootT1 → root

T1 6→ root

T1 =̂n[open r1
.unused(r1).P]

T1 6→ a2

T1 → a2 T1 =̂ open r1.unused(r1).P

a2X

in n. . . .

a1 → root a1 6→ root T2 → a1

T2 =̂ in n.0 s(r1) = 2 s(r1) = 1

T2 =̂ 0 a1 → a2

a1 6→ a2

unused(r1). . . .

r1[. . .]T2 =̂ r1[unused(r1).in n.0]

T2 → root T2 6→ root a1 7→ r1 a1X T2 6→ a1

T1 =̂unused(r1).in n.0

The process state after the execution of all four transitions is:

root

a2(7→ n)

a1(7→ r1)

T2 =̂ 0

T1 =̂ open r1.unused(r1).P

.

After the three transitions fired the open capability can be executed. Afterwards, 0
can be removed so that we free T2. The twig T1 is now a2’s only child:

root

a2(7→ n)

T1 =̂unused(r1).P

 MA−PN

root

a2(7→ n)

T1 =̂P
.

The execution of the last unused transition removes the spread count and allows us
to free r1. This restores the initial state only with an additional n ambient named a2.
Thus, we can conclude that our process is unbounded in depth. Since its behaviour
is quite limited we can easily check that its breadth is indeed bounded by 2. If we
continue the simulation we can watch the chain of n ambients grow. There is no
further behaviour. Thus, the very limited simulation was sufficient to understand the
whole process behaviour and derive its true bounds.

72

8 Conclusion and Future Work

We presented a polynomial construction to compile a Safe Petri net with equivalent
behaviour for a given b, d-bounded MA process P . This guarantees PSPACE-complete
decidability of reachability, liveness, and persistence for P .
Crucial for our construction was an efficient name management which guaranteed

uniqueness of the encoded process term for recovery on one hand and allowed for
quick reuse of names on the other hand. We accomplished this task by maintaining
each name’s spread among leaf process terms and a checking procedure to determine
use in the ambient tree. As soon as a name wasn’t present in the process any more
we allowed the net to reuse it. We therefore invented a preprocessing which added
the necessary (un)use commands to adjust the spread to our process terms. Since
these commands extended MA’s syntax we defined the refined MA calculus (rMA)
incorporating them.

Our construction highlights MA’s "heart", that is those principles and design
decisions that make it work the way it does. We established a clear distinction between
the ambient tree and leaf process terms by separating them via twigs. The distinction
extends onto the names, too, by a separation between ambient names A, that uniquely
represent an ambient in the tree, and link names L, which occur in leaves only and
partition the ambient tree.

This separation does not only allow the Petri net to maintain a unique tree but also
reveals an important peculiarity of MA: Names which are only used in the ambient
tree but do not appear on the leaves any more cannot be addressed by capabilities.
Thus, their ambients remain as some kind of garbage in the tree. As first examples
show, some constellations of them disrupt the tree since garbage levels cannot be
accessed and thus hurdled. This allows us to divide (and hopefully conquer) larger
verification problems. Although we only proposed it in the context of our Petri nets
the technique to identify the garbage names is not limited to our translation but may
already be applied to the original process. It is an open question to discover further
constellations which guarantee disruption. Also, we should examine how one can
integrate the identification of these break points into existing verification tools, e.g.
into model checkers based on Ambient logic ([CG00]).

Even further promising verification potential comes from some insight in the static
behaviour of calls. It is interesting to see that a call from a given process equation to
the same sibling always happens with the same freshly restricted names. The reason
is that this call is hard-coded in the first process’s own equation. While the own
restricted names are thus always the same, some variation seems to come from the
equation’s own parameters. But since all of the equations experience this effect we
can inductively conclude that the own parameters’ influence is also static – although
static in a larger sense. This should allow us to determine a static call graph which
already reveals most of the possible process behaviour. First analyses indicate two
ways in which names propagate in this graph. Names appearing twice over several call
iterations at the same parameter position persist while other names take some hops

73

and then fade out. This seems to allow for acceleration in the way of the Karp and
Miller algorithm for Petri net coverability ([KM69]) on arbitrary MA processes.
As we showed, the principles behind MA are quite different to those behind its

ancestor, the π-calculus. While the send and receive actions incorporated in the latter
calculus allow an unpredictable dynamic assignment of names, MA’s name propagation
is statically determined. [CG98] proposed an extension of the pure MA calculus with
π’s communication primitives which allows for a convenient encoding of arbitrary
π-calculus processes. The difference in pure MA’s and π’s behaviour gives rise to the
idea that this extension’s expressive power is different. Still, even the pure MA calculus
was proven Turing-complete ([CG98]) which contradicts this conjecture. Thus, the
additional dynamics of the extension seem to add no power. It might be interesting
to see if one can take parts of the dynamics which make π-calculus verification so
very expensive away while keeping its expressive power by using insights we won by
investigating MA. Additionally, such an approach may reveal hidden dynamics in the
MA calculus.

74

A Polynomial Construction Using a Substitution Net

As discussed in Section 5.1.1 on page 35 we can guarantee our construction to be
polynomial by the use of a substitution net like that of [MKH12]. We will now depict
the necessary changes to our construction.

A.1 The New Buds
The representation of all possible substitutions made the set of buds exponential in
the former construction. Now we can stick to the original (r)MA names and maintain
the connection to the link name in the substitution net. For the set of buds we thus
have:

Definition 23 (MA-PN set of buds). Let P = (D, I) an rMA process with D =
{D1, . . . , Dn}, ~xi the list of formal parameters for the defining equation Di, and
~a ∈ fn(Di) ∪ rn(Di) the actual parameters.
We define B := b(I) ∪

⋃n
i=1 b(Di) where

b(0) := {0} b(Di(~a)) := {Di(~a)}
b(π.P) := {π.P} ∪ b(P) b(n[P]) := {n[P]} ∪ b(P)
b(![P]) := {![P]} ∪ b(P) b(νn.P) := {νn.P} ∪ b(P)
b(P |Q) := {P |Q} ∪ b(P) ∪ b(Q) b(τ.P) := {τ.P} ∪ b(P)

One can easily see that each equation now only produces O(Di) many buds which
keeps |B| ∈ O(n). Also, we need not define the associated sets R, P , and L in advance.

A.2 The Substitution Net
We will log a substitution for each leaf and thus bind it to the respective twig. Since
we process a call only if it is the only remaining element on a leaf, we never need more
than the formal parameters and new restrictions of one equation. To keep the number
of places small we assume that each equation Di uses the formal parameters x1 to
xki so that there are only κ formal parameters x1 to xκ over all equations. Also, each
equation should use the restrictions c1 to cci which gives us c1 to cc. We unite these
MA names under the name set N = {xi|i = 1, . . . , κ} ∪ {ci|i = 1, . . . , c}.

We distinguish the names n ∈ N on different leaf terms by additionally referencing
the twig. Thus, we have the places Ts : n = l for Ts ∈ T, n ∈ N , and l ∈ L as well as
the complement place Ts : n = ∅ per name n ∈ N and twig Ts.

A.2.1 Influence on Capabilities and Silent Actions

We use in n.P as the example to illustrate the effect on capabilities and silent actions.
Since we do not replace MA names any more the original name n ∈ N remains. The
connection between the ambient and the action is now managed by two relations
ai 7→ l linking the ambient ai to the link name l ∈ L, and Ts : n = l which links the
name n written in the action to l.

75

aj → aiaj 6→ aiai → akai 7→ laj → akaj 6→ ak

in n.P

Ts → aj Ts =̂ in n.P Ts =̂PSemTs : n = l

There is now one transition per ambient name ai, aj , and ak, twig Ts, link name l, and
bud in n.P which contains an additional factor |L| compared to what we had before:
There are now O(|A| · |A| · |A| · |L| · |T| · |B|) many transitions but now |B| ∈ O(n) so
that we save a considerable amount of transitions.

A.2.2 Ambient Spawn

When translating a spawn we now use a test on Ts : n = l to determine the correct
link name l. Since each name is only used once within an equation due to NC and
each twig Ts is only inherited by a part of one equation the connection is unique.

n[P]

Ts → aiTs 6→ ai Ts 6→ aj Ts → ajTs =̂P

Ts =̂n[P]

ai 6→ aj ai → aj aiX ai 7→ l Ts : n = l

Sem

One can easily see that the additional test on Ts : n = l again adds a factor |L|.

A.2.3 The Restriction

We establish a new substitution whenever we process a restriction νc. We make sure
that only substitutions for those names which are passed on as parameters are kept
at a call. They are then migrated to the parameters ~x and all substitutions on ~c are
removed so that NC guarantees that we have no link on c if there is a new restriction
on it.

76

νc.P Ts =̂ νc. P

Ts =̂P

rX

Sem

s(r) = 1

Ts : c = rTs : c = ∅

We need one transition per bud νc.P , twig Ts and chosen restricted link name r, thus
O (|B| · |T| · |R|) many transitions.

A.2.4 The Parallel Composition

Whenever we process a parallel composition Ts =̂P |Q we occupy a second twig Tt.
Thus, we need to copy the substitution information from Ts to Tt. We decided against
flushing Tt’s substitution when freeing it (TtX) so that an arbitrary substitution may
be stored on Tt when we assign Q to it. Thus, we must flush it before setting the new
substitution.
The former split transition now additionally fills initiator places for flush

(flushTt
(1)) and copy (copy(Ts,Tt)(1)). The latter is necessary to log for store which

twig Tt to copy Ts’s substitutions to without transporting this information through
the flush.

splitTs → ai

Ts =̂P

Ts =̂P |Q

Tt =̂Q

TtX Tt → ai

Tt 6→ ai

copy(Ts,Tt)(1)

flushTt(1)

Sem

The split transition’s former number is not changed. We flush Tt’s substitutions using
flushTt

(1) as initiator. For each number * from this 1 until c+ κ we perform:

77

flushTt

testTt

flushTt(∗)

flushTt
(∗+ 1)

Tt : n∗ = L

Tt : n∗ = ∅ .

We need |L| many flush transitions and an additional test transition for fixed name
n∗ and twig Tt. With c + κ many names n∗ this makes O (|L| · (c + κ) · |T|) many
transitions over all flush chains. The chain’s last transition sets flushedTt

to state
that Tt’s former substitutions are all removed. We consume this information at the
beginning of the copy chain. With it we set all the substitutions Ts maintains for Tt,
too. We again iterate over all names since we must check all possible restrictions and
paramters of Ts.

copy

copy(Ts,Tt)(1)

flushedTt

Tt : n1 = L Tt : n1 = ∅

Ts : n1 = L

Ts : n1 = ∅testcopy(Ts,Tt)(2)

All other transitions simply consume copyTs,Tt
(∗) (and no additional flushedTt

). At
the end of the chain we have ∗ = c + κ and we reset the semaphore instead of
setting copy(Ts,Tt)(∗+ 1). Again, these slight changes do not influence the number of
transitions we need in each step of the chain. There is one copy transition per link
name L and an additional test for fixed twig combination Ts, Tt and name n∗ so that
we have O (|L| · |T| · |T| · (c+ κ)) many transitions.

A.2.5 The Call

Calls now require a complex – but still polynomial – procedure. We have to store the
old substitution in order to avoid races, e.g. when we set the new substitution for xj
but require xj ’s former value to set a later parameter xk. While saving the old values
we also completely flush the substitution on the respective twig Ts. Afterwards we set
the new values for x1 to xki and finally flush the intermediate storage.

Call Step

The actual call now fills to additional places storeTs
(1) and set(an . . . a1) and

consumes the semaphore rather than only testing on it. The former new place is used
to initiate the storing of the old substitution while the latter maintains the actual
parameters for the setting of the new substitution on ~x.

78

Dj(~a)Ts =̂Dj

Ts =̂Dj(~a)

storeTs(1)

set(akj . . . a1)

Sem

The bud Dj(~a) and the used twig Ts together determine the call step completely. We
thus only have |B| · |T| many call transitions.

Storing the Old Substitution and Flushing It on the Twig

We implement a chain over N which stores the connection between Ts’s name n∗ and
a link name if there is one, and simply proceeds, if there is none (Ts : n∗ = ∅). We
need a transition set ranging over all possible link names L for the case of a connection
to be stored intermediately (n∗ = l for that particular l). The flushing of the old
substitution is already integrated by emptying Ts : n∗ = l and filling Ts : n∗ = ∅.

store(L)

test

storeTs(∗) Ts : n∗ = L

n∗ = L n∗ = ∅

Ts : n∗ = ∅storeTs
(∗+ 1)

Per name n∗ and twig Ts we need |L| many store transitions and one test transition.
This makes O((c+ κ) · |T| · |L|) many transitions over all names n1 to nc+κ and twigs
Ts ∈ T. We may again modify the last transition to fill the next chain’s initiator setTs

rather than storeTs
(c+ κ+ 1).

Setting the New Substitution

The set procedure links the stored old substitution with the actually called parameters
maintained on set(akj . . . a1) in order to determine the new values for ~x. The test
on setTs

is not only necessary to guarantee that store and flush are done but also to
determine the correct twig Ts. We use the reverse parameter vector starting with xkj
since the remaining number of parameters, ∗, then corresponds to the name x∗ for
which we should set the substitution next.

79

setsetTs

set(a∗ . . . a1)

set(a∗−1 . . . a1)

Ts : x∗ = l

a∗ = l

Ts : x∗ = ∅

Each set transitions’ target x∗ is determined by the length ∗ of a∗ . . . a1, which is
bound by κ. Thus, each chain may only consist of up to κ many transitions. Over all
twigs Ts, link names l, and possible start combinations ~a, whose number is bound by
|B|, we thus have O(|T| · |L| · |B| · κ) many transitions.
The last transition consumes setTs

rather than testing on it. Also, it sets
flushstore(1) instead of set() to prepare for the flushing of the intermediate store:

setsetTs

set(a1)

flushstore(1)

Ts : x1 = l

a1 = l

Ts : x1 = ∅ .

Flushing the Intermediate Storage

This last N iterator removes any intermediately stored link n∗ = L. Per fixed name n∗
each link name is considered. The last transition set can finally restore the semaphore.

flushstore

teststore

flushstore(∗)

flushstore(∗+ 1)

n∗ = L

n∗ = ∅

Per name n∗ and twig Ts we again need |L| many flushstore transitions and one
teststore transition. This makes O((c+ κ) · |T| · |L|) many transitions over all names
and twigs.

80

B Overview: The Transitions

We depict all MA-PN transitions with their respective purposes but without any
explanation or analysis. The appendix is designed for quick readers who want to skip
the explanatory introduction of the transitions in Section 5.2 on page 38 and for those
who wish to check the proofs of Section 6.1 on page 50.

In analogy to Section 5.2 on page 38 this section is divided into two parts where the
first part shows all transition (chains) which form MA-PN actions and the second part
gives all equivalence transformations. We use distinct identifiers out of the associated
MA-PN sets, namely Ts, Tt ∈ T, ai, aj , ak ∈ A, l ∈ L, r ∈ R, and p ∈ P. This will
allow us to distinguish distinct elements of the same set within one transition. In the
case of the test chain we iterate over all ambient names so that we additionally use ad
to indicate the chain’s last element. The transition a∗ 7→ L \ {r} stands for the set
of similar transitions for each element in L \ {r} per fixed restricted link name r and
varying but per set fixed ambient a∗.

B.1 Transitions for rMA Actions

In:

aj → aiaj 6→ aiai → akai 7→ laj → akaj 6→ ak

in l.P

Ts → aj Ts =̂ in l.P Ts =̂PSem

81

Out:

aj → aiaj 6→ aiai → akai 7→ laj → akaj 6→ ak

out l.P

Ts → aj Ts =̂ in l.P Ts =̂PSem

Open:

M = T ∪ (A \ {ai, aj}), |M | = m = b+ (c+ κ) · b+ d− 2

ai → ajai 6→ aj ai 7→ l

open l.P

Ts =̂ open l.P Ts =̂P release(ai, aj)M∗

Ts → aj

aiX

Sem

release((M∗ → ai) aj) M∗ → ai

M∗ 6→ ajM∗ → aj

M∗ 6→ aitest((M∗ 6→ ai) aj)

release(ai, aj)M∗

release(ai, aj)M∗+1

82

release((Mm → ai) aj) Mm → ai

Mm 6→ ajMm → aj

Mm 6→ aitest((Mm 6→ ai) aj)

release(ai, aj)Mm

Sem

Call:

K(~a) Ts =̂KσK(~x/~a)

Ts =̂K(~a)Sem

Used:

1 ≤ i ≤ 2 · b

used(r) Ts =̂P

Ts =̂used(r).P

Sem

s(r) = i+ 1

s(r) = i

used(p) Ts =̂PTs =̂used(p).P

Unused:

2 ≤ i ≤ 2 · b

unused(r) Ts =̂P

Ts =̂unused(r).P

Sem

s(r) = i− 1

s(r) = i

83

unused(r) Ts =̂P

Ts =̂unused(r).P

Sem

unused(r)a1

s(r) = 1

unused(p) Ts =̂PTs =̂unused(p).P

B.2 Transitions for Equivalence Transformations

Test Chain:

a∗ 7→ L \ {r}

a∗X

unused(r)a∗

unused(r)a∗+1

a∗ 7→ L \ {r}

a∗X

ad 7→ L \ {r}

adX

ad 7→ L \ {r}unused(r)ad

rX adX

Spawn:

l[P]

aiX ai 7→ l

Sem

Ts =̂P

Ts =̂ l[P]

ai → aj

ai 6→ aj

Ts → ai Ts 6→ ai Ts → aj

Ts 6→ aj

84

Restriction:

νn. P Ts =̂ νn. P

Ts =̂Pσν(n/r)

rX

Sem

s(r) = 1

0 Removal:

Ts → root

Ts 6→ root

disappear

Ts =̂ 0

Sem

TsX

at least two?

Sem

Ts → ai

Tt → ai

yes(ai)

wrong guess

aj → ai ambient?

yes(ai)

Ts → ai

Ts =̂ 0

disappear

Ts 6→ ai

TsX

Sem

85

Parallel Composition:

split

Ts → ai

Ts =̂P |Q

Ts =̂P

Tt =̂Q

Tt → ai

Tt 6→ ai

TtX

Sem

86

References

[BZ09] Nadia Busi and Gianluigi Zavattaro. Deciding reachability problems in
turing-complete fragments of mobile ambients. Mathematical Structures in
Computer Science, 19:1223–1263, 12 2009.

[CEP95] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results for
1-safe nets. Theor. Comput. Sci., 147(1&2):117–136, 1995.

[CG98] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice
Nivat, editor, Foundations of Software Science and Computation Structures,
volume 1378 of Lecture Notes in Computer Science, pages 140–155. Springer
Berlin Heidelberg, 1998.

[CG00] Luca Cardelli and Andrew D. Gordon. Anytime, anywhere: modal logics
for mobile ambients. In Proceedings of the 27th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, POPL ’00, pages
365–377, New York, NY, USA, 2000. ACM.

[CZG+01] Witold Charatonik, Silvano Zilio, AndrewD. Gordon, Supratik Mukhopad-
hyay, and Jean-Marc Talbot. The complexity of model checking mobile
ambients. In Furio Honsell and Marino Miculan, editors, Foundations
of Software Science and Computation Structures, volume 2030 of Lecture
Notes in Computer Science, pages 152–167. Springer Berlin Heidelberg,
2001.

[Dam96] Mads Dam. Model checking mobile processes. Information and Computa-
tion, 129(1):35 – 51, 1996.

[EN94] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a
survey. Bulletin of the EATCS, 52:244–262, 1994.

[GC03] Andrew D. Gordon and Luca Cardelli. Equational properties of mobile
ambients. Mathematical Structures in Computer Science, 13(3):371–408,
2003.

[KK06] Barbara König and Vitali Kozioura. Counterexample-guided abstraction
refinement for the analysis of graph transformation systems. In Holger
Hermanns and Jens Palsberg, editors, TACAS, volume 3920 of Lecture
Notes in Computer Science, pages 197–211. Springer, 2006.

[KM69] Richard M. Karp and Raymond E. Miller. Parallel program schemata.
Journal of Computer and System Sciences, 3(2):147 – 195, 1969.

[LS03] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. ACM Trans.
Program. Lang. Syst., 25(1):1–69, January 2003.

[Mey08] Roland Meyer. On boundedness in depth in the pi-calculus. In In Procedings
of IFIP TCS 2008, volume 273 of IFIP, pages 477–489. Springer, 2008.

87

[Mey09] Roland Meyer. A theory of structural stationarity in the pi-calculus. Acta
Informatica, 46(2):87–137, 2009.

[MG09] Roland Meyer and Roberto Gorrieri. On the relationship between pi-
calculus and finite place/transition petri nets. In In Procedings of CONCUR
2009, volume 5710 of LNCS, pages 463–480. Springer, 2009.

[MH02] Massimo Merro and Matthew Hennessy. Bisimulation congruences in safe
ambients. In Proceedings of the 29th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’02, pages 71–80, New
York, NY, USA, 2002. ACM.

[Mil89] R. Milner. Communication and concurrency. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[Mil99] Robin Milner. Communicating and mobile systems - the Pi-calculus. Cam-
bridge University Press, 1999.

[MKH12] Roland Meyer, Victor Khomenko, and Reiner Hüchting. A polynomial
translation of pi-calculus (fcp) to safe petri nets. In Maciej Koutny and
Irek Ulidowski, editors, CONCUR 2012 – Concurrency Theory, volume
7454 of Lecture Notes in Computer Science, pages 440–455. Springer Berlin
Heidelberg, 2012.

[MKS08] Roland Meyer, Victor Khomenko, and Tim Strazny. A practical approach
to verification of mobile systems using net unfoldings. In KeesM. Hee and
Rüdiger Valk, editors, Applications and Theory of Petri Nets, volume 5062
of Lecture Notes in Computer Science, pages 327–347. Springer Berlin
Heidelberg, 2008.

[MP05] Sergio Maffeis and Iain Phillips. On the computational strength of pure
ambient calculi. Theoretical Computer Science, 2005.

[Oqu04] Flavio Oquendo. Pi-adl: an architecture description language based on the
higher-order typed pi-calculus for specifying dynamic and mobile software
architectures. SIGSOFT Softw. Eng. Notes, pages 1–14, 2004.

[OTK04] Shougo Ogata, Tatsuhiro Tsuchiya, and Tohru Kikuno. Sat-based veri-
fication of safe petri nets. In Farn Wang, editor, Automated Technology
for Verification and Analysis, volume 3299 of Lecture Notes in Computer
Science, pages 79–92. Springer Berlin Heidelberg, 2004.

[RT86] G. Rozenberg and P.S. Thiagarajan. Petri nets: Basic notions, structure,
behaviour. In J.W. Bakker, W.-P. Roever, and G. Rozenberg, editors,
Current Trends in Concurrency, volume 224 of Lecture Notes in Computer
Science, pages 585–668. Springer Berlin Heidelberg, 1986.

[RVMS12] Fernando Rosa-Velardo and María Martos-Salgado. Multiset rewriting
for the verification of depth-bounded processes with name binding. Inf.
Comput., 215:68–87, June 2012.

88

[SW01] Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile
processes. Cambridge University Press, 2001.

[TZH02] David Teller, Pascal Zimmer, and Daniel Hirschkoff. Using ambients to
control resources*. In Luboš Brim, Mojmír Křetínský, Antonín Kučera,
and Petr Jančar, editors, CONCUR 2002 — Concurrency Theory, volume
2421 of Lecture Notes in Computer Science, pages 288–303. Springer Berlin
Heidelberg, 2002.

[UAUC10] Devrim Unal, Ozan Akar, and M. Ufuk Caglayan. Model checking of
location and mobility related security policy specifications in ambient
calculus. In Igor Kotenko and Victor Skormin, editors, Computer Network
Security, volume 6258 of Lecture Notes in Computer Science, pages 155–168.
Springer Berlin Heidelberg, 2010.

[Val98] Antti Valmari. The state explosion problem. In Lectures on Petri Nets
I: Basic Models, Advances in Petri Nets, the volumes are based on the
Advanced Course on Petri Nets, pages 429–528, London, UK, UK, 1998.
Springer-Verlag.

[WZH10] Thomas Wies, Damien Zufferey, and Thomas A. Henzinger. Forward
analysis of depth-bounded processes. In C.-H. Luke Ong, editor, FOSSACS,
volume 6014 of Lecture Notes in Computer Science, pages 94–108. Springer,
2010.

89

