SS 2014 25.06.2014

Exercises to the lecture Concurrency Theory Sheet 10

Roland Meyer, Viktor Vafeiadis

Delivery until 01.07.2014 at 12h

Exercise 10.1

Prove the following lemma from the lecture:

- a) If $\operatorname{Tr}_{TSO}(P) = \operatorname{Tr}_{SC}(P)$ then $\operatorname{Reach}_{TSO}(P) = \operatorname{Reach}_{SC}(P)$.
- b) The opposite implication does not hold.

Exercise 10.2

Prove the lemma by Shasha and Snir:

A trace $T(\tau)$ is in $Tr_{SC}(P)$ if and only if \rightarrow_{hb} is acyclic.

Exercise 10.3

Consider two traces $\tau = \alpha.a.b.\gamma$ and $\tau' = \alpha'.a.\beta.b.\gamma'$ where thread $(c) \neq \text{thread}(a)$ and thread $(c) \neq \text{thread}(b)$ for all $c \in \beta$. Prove the following:

If
$$a \to_{hb} b$$
 in $Tr(\tau)$ then $a \to_{hb}^+ b$ in $Tr(\tau')$

Exercise 10.4

Consider the following program implementing an instance of the *non-blocking write* protocol by H. Kopetz and J. Reisinger:

Prove that the program is not robust under TSO. Initially assume mem[g] = 0 and $g \neq x$.

Delivery until 01.07.2014 at 12h into the box next to 34-401.4