Exercises to the lecture
 Complexity Theory
 Sheet 9

Prof. Dr. Roland Meyer
Thomas Haas
Delivery until 21.02.2022 at 15:00
Exercise 9.1 (Matrix Decomposition)
Let $M \in \mathbb{N}^{m \times \ell}$ be a matrix with m rows and ℓ columns over the natural numbers. We define the grand sum of M, denoted by $\mathrm{gs}(M)$, to be the sum over all entries of M. Let $M_{1} \in \mathbb{N}^{r_{1} \times \ell}$ and $M_{2} \in \mathbb{N}^{r_{2} \times \ell}$ be submatrices of M. This means that M_{1} and M_{2} are matrices that are build by putting together r_{1} (r_{2} respectively) rows of M. The matrices M_{1} and M_{2} are said to decompose M if $r_{1}+r_{2}=m$. In other words, putting the rows of M_{1} and M_{2} together in the correct order rebuilds M.
In the following problem we compute the minimal number of submatrices of M that are needed to decompose M in such a way that each of the submatrices M_{i} satisfies $\operatorname{gs}\left(M_{i}\right) \leq D$ for a given bound $D \in \mathbb{N}$.

Matrix Decomposition

Input: \quad A matrix $M \in \mathbb{N}^{m \times \ell}$ and a bound $D \in \mathbb{N}$.
Parameter: The number of rows m.
Question: Find the minimal $t \in \mathbb{N}$ such that M can be decomposed into submatrices M_{1}, \ldots, M_{t} with $M_{i} \in \mathbb{N}^{r}{ }^{r} \times \ell$ and $\operatorname{gs}\left(M_{i}\right) \leq D$.

Given an algorithm for the problem running in time $2^{m} \cdot n^{\mathcal{O}(1)}$.
Hint: Use the fast subset convolution.

Exercise 9.2 (Packing Product)

The packing product of two functions $f, g: \mathcal{P}(V) \rightarrow \mathbb{Z}$ is a function $\left(f *_{p} g\right): \mathcal{P}(V) \rightarrow \mathbb{Z}$ such that

$$
\left(f *_{p} g\right)(X)=\sum_{\substack{A, B \subseteq X \\ A \cap B=\emptyset}} f(A) \cdot g(B) .
$$

Show that all the 2^{n} values of the packing product can be computed in time $2^{n} \cdot n^{\mathcal{O}(1)}$, where $n=|V|$.

Hint: Represent the packing product in terms of the subset convolution.

Exercise 9.3 (Separators)

Let $G=(V, E)$ be a graph and $A, B \subseteq V$. Prove that (A, B) is a separation of G if and only if $A \cup B=V$ and $\delta(A) \subseteq A \cap B$.

Exercise 9.4 (Treewidth)
A forest is an undirected graph the connected components of which are all trees. Phrased differently, a forest is a disjoint union of trees.

Determine the treewidth of a forest.
Exercise 9.5 (Treewidth of Cliques)
Let G be a graph and $\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$ a tree decomposition of G. Show that each clique in G is contained in a single bag of $\left(T,\left\{X_{t}\right\}_{t \in V(T)}\right)$.

Derive that $t w(G) \geq \omega(G)-1$, where $\omega(G)$ is the maximal size of a clique in G.
Hint: Let C be the set of vertices of a clique and let st be an edge in the tree T. Use the separation lemma to show that either $C \subseteq V_{s}$ or $C \subseteq V_{t}$, where $V_{s}=\bigcup_{u \in T_{s}} X_{u}$ and $V_{t}=\bigcup_{u \in T_{t}} X_{u}$. Like in the separation lemma, the trees T_{s} and T_{t} are obtained from removing the edge st from T.

