WS 2021/2022

02.02.2021

Exercises to the lecture Complexity Theory Sheet 7

Prof. Dr. Roland Meyer Thomas Haas

Delivery until 07.02.2022 at 15:00

Exercise 7.1 (Triangle Packing)

We want to construct a randomized algorithm for the following problem:

Triangle Packing (TP)	
Input:	An undirected graph G , and a bound $k \in \mathbb{N}$.
Parameter:	<i>k</i> .
Question:	Does G contain k triangles that do not share any vertex?

- a) Use Color Coding (with 3k colors) to reduce the problem to a colorful version.
- b) Find a dynamic programming algorithm for the problem in a), running in $\mathcal{O}(2^{3k} \cdot n^3)$.
- c) State an algorithm for TP. What is the runtime if we want constant error probability?
- d) Derandomize your algorithm using hash functions. What is the resulting runtime?

Exercise 7.2 (Tree Subgraph Isomorphism)

Consider the following problem:

Tree Subgraph	Isomorphism (TSI)
Input:	An undirected graph G , and a tree T with k nodes.
Parameter:	<i>k</i> .
Question:	Is there a subgraph of G that is isomorphic to T ?

Develop a randomized algorithm for **TSI** with constant error probability. Base the algorithm on Color Coding.

Hint: Proceed like above. First, reduce the problem to a colorful formulation. Then solve the colorful problem via dynamic programming. To this end, root the tree at some node r and let T_x denote the subtree of T, rooted in a node x. Moreover, let S denote a set of colors and let V_i be those vertices of G that are colored by i. Use a function $Tree[S, T_x, v]$, which returns true if and only if $|S| = |V(T_x)| - 1$, the color of v is not in S and there is a colorful subgraph of $G[\bigcup_{i \in S} V_i \cup \{v\}]$ which is isomorphic to T_x such that v corresponds to x in the isomorphism. Find a suitable recurrence and deduce an algorithm for TSI. We wish you a merry Christmas and a happy new year 2018. Enjoy your vacation!

Delivery until 07.02.2022 at 15:00 to https://cloudstorage.tu-braunschweig. de/preparefilelink?folderID=2UBADHPF6dDgmphBeAHkK.