Exercises to the lecture
 Complexity Theory
 Sheet 6

Prof. Dr. Roland Meyer
Thomas Haas
Delivery until 24.01.2022 at 15:00
Exercise 6.1 (Maximal satisfiability)
We construct a kernelization for the following problem:

```
Maximal Satisfiability (MAXSAT)
Input: A Boolean formula }\varphi=\\\i=1 Ci, where the Ci are clauses, and k\in\mathbb{N}
Parameter: k\in\mathbb{N}\mathrm{ .}
Question: Is there a variable assignment that satisfies at least k clauses of \varphi?
```

Let (φ, k) be an instance of the problem. The first step of the kernelization is to delete all trivial clauses. We call a clause trivial if it contains a variable and its negation.
a) Show that by removing all trivial clauses, we can reduce (φ, k) to an instance $\left(\psi, k^{\prime}\right)$ such that $k^{\prime} \leq k$ and $\left(\psi, k^{\prime}\right) \in$ MAXSAT if and only if $(\varphi, k) \in$ MAXSAT.

In the next step, we delete long clauses, clauses that contain more than k^{\prime} literals.
b) Prove the following: If ψ contains more than k^{\prime} long clauses, then $\left(\psi, k^{\prime}\right) \in$ MAXSAT.
c) Let t denote the number of long clauses in ψ and set $\hat{k}=k^{\prime}-t$. Show that by removing all long clauses, we can reduce $\left(\psi, k^{\prime}\right)$ to an instance (ρ, \hat{k}) such that $(\rho, \hat{k}) \in$ MAXSAT if and only if $\left(\psi, k^{\prime}\right) \in$ MAXSAT.

Hence, we obtain an instance that only consists of clauses of size at most k^{\prime}. We argue that we are only interested in such formulas the size of which is bounded by the parameter.
d) Prove the following: If (ρ, \hat{k}) has more than $2 \hat{k}$ clauses, then (ρ, \hat{k}) is in MAXSAT.
e) Summarize the reduction steps in an algorithm and show that the size of the kernel (the size of the obtained instance) is bounded by $\mathcal{O}\left(k^{2}\right)$.

Exercise 6.2 (Set Cover)

Consider the following problem:

Set Cover

Input: A family of sets $\left(S_{i}\right)_{i \in[1 . . m]}$ over a universe $U=\bigcup_{i \in[1 . . m]} S_{i}$ with n elements, and an $\ell \in \mathbb{N}$.
Parameter: $|U|=n \in \mathbb{N}$.
Question: \quad Are there ℓ sets $S_{i_{1}}, \ldots, S_{i_{\ell}}$ from the family such that $U=\bigcup_{j \in[1 . . \ell]} S_{i_{j}}$?
Develop an algorithm for Set Cover that relies on the Inclusion/Exclusion principle. Show that it runs in time $\mathcal{O}^{*}\left(2^{n}\right)$.

Hint: This is quite similar to the algorithm for computing the chromatic number.

Exercise 6.3 (Count TSP)

In this exercise, we want to establish an algorithm for the following problem:
Counting Traveling Salesperson (Count TSP)
Input: A complete (each two vertices are connected) graph $G=(V, E)$ and a weight function $w: E \rightarrow\{0, \ldots, W\}$.
Parameter: $\quad|V|=n \in \mathbb{N}$.
Question: What is the number of Hamiltonian cycles that admit minimal weight?
Let $\pi=v_{0} v_{1} \ldots v_{k}$ be a path or cycle in G. Then the weight of π is $w(\pi)=\sum_{i=0}^{k-1} w\left(v_{i} v_{i+1}\right)$. The problem asks for the number of Hamiltonian cycles the weight of which is minimal among all Hamiltonian cycles.

Develop an algorithm for Count TSP based on the Inclusion/Exclusion principle, that runs in $\mathcal{O}^{*}\left(2^{n}\right)$ time.

Hint: It is easier if you fix the weight in the universe. For each weight j of a Hamiltonian cycle, define the universe U_{j} to be the cycles of length n, starting in v_{0}, of weight j. Then proceed as in the Inclusion/Exclusion-algorithm for Hamil Cycle. At some point, one has to count the number of cycles that have weight j in a certain graph. Use a dynamic programming approach for this task.

