WS 2021/202

11.01.2021

Exercises to the lecture Complexity Theory Sheet 5

Prof. Dr. Roland Meyer Thomas Haas

Delivery until 17.01.2022 at 15:00

Exercise 5.1 (Parameterized SAT)

Consider the following parameterized problem:

Boolean Satisfiability (SAT)Input:A Boolean formula $\varphi(x_1, \ldots, x_k)$.Parameter: $k \in \mathbb{N}$.Question:Is there a satisfying assignment for φ ?

Construct a search tree for SAT and show that the problem is FPT.

Exercise 5.2 (Unions of cliques)

A *clique* is a graph K = (V, E) such that for all $u, v \in V$ we have $uv \in E$. This means that any pair of vertices has a connecting edge. The following problem asks how *far away* a given graph is from being a union of cliques.

Cluster Editing (CLUSTER)	
Input:	A graph $G = (V, E)$ and a $k \in \mathbb{N}$.
Parameter:	$k \in \mathbb{N}.$
Question:	Is it possible to add or remove at most k edges to/from E such that
	the resulting graph is a disjoint union of cliques?

- a) Show that a graph G consists of disjoint cliques if and only if there are no three distinct vertices $u, v, w \in V$ with $uv, vw \in E$ and $uw \notin E$.
- b) Prove that CLUSTER is FPT.

Delivery until 17.01.2022 at 15:00 to https://cloudstorage.tu-braunschweig. de/preparefilelink?folderID=2UBADHPF6dDgmphBeAHkK.