Exercises to the lecture
Complexity Theory
Sheet 4
Prof. Dr. Roland Meyer
Thomas Haas
Delivery until 10.01.2022 at 12:00
Exercise 4.1 (Collapse of the Polynomial Hierarchy)
In this exercise, we prove what is sufficient for a collapse of the polynomial hierarchy.
a) Assume we have an $i \in \mathbb{N}$ so that $\Sigma_{i}^{\mathrm{P}}=\Sigma_{i+1}^{\mathrm{P}}$. Show that $\Pi_{i}^{\mathrm{P}}=\Pi_{i+1}^{\mathrm{P}}$.
b) Prove the following: If we have an $i \in \mathbb{N}$ with $\Sigma_{i}^{\mathrm{P}}=\Pi_{i}^{\mathrm{P}}$, then for any $i^{\prime} \geq i$ we have that $\Sigma_{i^{\prime}}^{\mathrm{P}}=\Pi_{i^{\prime}}^{\mathrm{P}}=\Sigma_{i}^{\mathrm{P}}$. Hence, the polynomial hierarchy collapses to the i-th level. Hint: Prove the statement by an induction on i^{\prime}. For the induction step, make use of the fact that $\Sigma_{i^{\prime}+1}$ QBF is $\Sigma_{i^{\prime}+1^{\prime}}^{\mathrm{P}}$-hard.
c) Show that the existence of an $i \in \mathbb{N}$ with $\Sigma_{i}^{\mathrm{P}}=\Sigma_{i+1}^{\mathrm{P}}$ is already sufficient to cause a collapse of the polynomial hierarchy to the i-th level.

Exercise 4.2 (Unbounded Fan-In)
Let g be a gate in a circuit. The Fan-In of g is the indegree of g, the number of incoming edges. A circuit has Fan-In bounded by $k \in \mathbb{N}$ if for any gate, the Fan-In is bounded by k. In the definition of NC, we restricted to circuits of Fan-In bounded by 2. In this exercise, we show that the restriction is reasonable.

Let C be a circuit of unbounded Fan-In with n input variables. Let size $(C)=s(n)$ and $\operatorname{depth}(C)=d(n)$. Show that there is a circuit C^{\prime} that has Fan-In bounded by 2 and

- $C^{\prime}(x)=C(x)$ for all inputs x,
- $\operatorname{size}\left(C^{\prime}\right) \in \mathcal{O}\left(s(n)^{2}\right)$, and
- $\operatorname{depth}\left(C^{\prime}\right) \in \mathcal{O}(d(n) \cdot \log s(n))$.

Deduce that $\mathrm{AC}^{i} \subseteq \mathrm{NC}^{i+1}$.
Exercise 4.3 (Addition with parallel carry computation)
In this exercise we want to solve the addition problem using circuits:

Addition (ADD)
Input: $\quad 2 n$ variables a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}, the binary representation of the two natural numbers a and b.
Question: Output the $n+1$ variables s_{1}, \ldots, s_{n+1} that represent $s=a+b$.
A first approach to this problem would use full adders. A full adder for the i-th bits would compute $a_{i}+b_{i}+c_{i}$, where c_{i} is the carry. The adder would output the sum bit and a new carry bit. This new carry bit could then be used as input for the full adder for the $(i+1)$-st bits. Seen as a circuit, this would have depth $\mathcal{O}(n)$. We want to do better:
a) Construct a circuit C_{i} of unbounded Fan-In that computes the i-th carry bit c_{i}, has size $\mathcal{O}(i)$, and constant depth.
Hint: In contrast to the circuit described above, the computation of c_{i} should not depend on c_{i-1}. Note that c_{i} is 1 if and only if there is a position $j<i$, where the carry is generated and propagated to position i. Construct a Boolean formula for this condition - this may also depend on a_{1}, \ldots, a_{i-1} and b_{1}, \ldots, b_{i-1}. Then transform the formula into a circuit.
b) Use Part a) to construct a circuit for ADD that has size $\mathcal{O}\left(n^{2}\right)$ and constant depth.
c) Conclude that there is a circuit of Fan-In bounded by 2 that decides ADD, has polynomial size, and logarithmic depth.

Exercise 4.4 (Logspace reductions and the class NC)
Let A, B be two languages so that $A \leq_{m}^{\text {log }} B$ and $B \in \operatorname{NC}$. Show that A is in NC.

