
58

Decoupling Lock-Free Data Structures from

Memory Reclamation for Static Analysis

ROLAND MEYER, TU Braunschweig, Germany

SEBASTIAN WOLFF, TU Braunschweig, Germany

Verification of concurrent data structures is one of the most challenging tasks in software verification. The topic

has received considerable attention over the course of the last decade. Nevertheless, human-driven techniques

remain cumbersome and notoriously difficult while automated approaches suffer from limited applicability.

The main obstacle for automation is the complexity of concurrent data structures. This is particularly true in

the absence of garbage collection. The intricacy of lock-free memory management paired with the complexity

of concurrent data structures makes automated verification prohibitive.

In this work we present a method for verifying concurrent data structures and their memory management

separately. We suggest two simpler verification tasks that imply the correctness of the data structure. The

first task establishes an over-approximation of the reclamation behavior of the memory management. The

second task exploits this over-approximation to verify the data structure without the need to consider the

implementation of the memory management itself. To make the resulting verification tasks tractable for

automated techniques, we establish a second result. We show that a verification tool needs to consider only

executions where a single memory location is reused. We implemented our approach and were able to verify

linearizability of Michael&Scott’s queue and the DGLM queue for both hazard pointers and epoch-based

reclamation. To the best of our knowledge, we are the first to verify such implementations fully automatically.

CCSConcepts: •Theory of computation→Data structures design and analysis;Programverification;

Shared memory algorithms; Program specifications; Program analysis;

Additional Key Words and Phrases: static analysis, lock-free data structures, verification, linearizability, safe

memory reclamation, memory management

ACM Reference Format:

Roland Meyer and Sebastian Wolff. 2019. Decoupling Lock-Free Data Structures from Memory Reclamation

for Static Analysis. Proc. ACM Program. Lang. 3, POPL, Article 58 (January 2019), 31 pages. https://doi.org/10.

1145/3290371

1 INTRODUCTION

Data structures are a basic building block of virtually any program. Efficient implementations

are typically a part of a programming language’s standard library. With the advent of highly

concurrent computing being available even on commodity hardware, concurrent data structure

implementations are needed. The class of lock-free data structures has been shown to be particularly

efficient. Using fine-grained synchronization and avoiding such synchronization whenever possible

results in unrivaled performance and scalability.

Unfortunately, this use of fine-grained synchronization is what makes lock-free data structures

also unrivaled in terms of complexity. Indeed, bugs have been discovered in published lock-free

Authors’ addresses: Roland Meyer, TU Braunschweig, Germany, roland.meyer@tu-bs.de; Sebastian Wolff, TU Braunschweig,

Germany, sebastian.wolff@tu-bs.de.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/1-ART58

https://doi.org/10.1145/3290371

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3290371
https://doi.org/10.1145/3290371

58:2 Roland Meyer and Sebastian Wolff

data structures [Doherty et al. 2004a; Michael and Scott 1995]. This confirms the need for formal

proofs of correctness. The de facto standard correctness notion for concurrent data structures is

linearizability [Herlihy and Wing 1990]. Intuitively, linearizability provides the illusion that the

operations of a data structure appear atomically. Clients of linearizable data structures can thus

rely on a much simpler sequential specification.

Establishing linearizability for lock-free data structures is challenging. The topic has received

considerable attention over the past decade (cf. Section 7). For instance, Doherty et al. [2004b]

give a mechanized proof of a lock-free queue. Such proofs require a tremendous effort and a deep

understanding of the data structure and the verification technique. Automated approaches remove

this burden. Vafeiadis [2010a,b], for instance, verifies singly-linked structures fully automatically.

However, many linearizability proofs rely on a garbage collector. What is still missing are

automated techniques that can handle lock-free data structures with manual memory management.

The major obstacle in automating proofs for such implementations is that lock-free memory

management is rather complicatedÐin some cases even as complicated as the data structure using

it. The reason for this is that memory deletions need to be deferred until all unsynchronized,

concurrent readers are done accessing the memory. Coping with lock-free memory management

is an active field of research. It is oftentimes referred to as Safe Memory Reclamation (SMR). The

wording underlines its focus on safely reclaiming memory for lock-free programs. This results in

the system design depicted in Figure 1. The clients of a lock-free data structure are unaware of

how it manages its memory. The data structure uses an allocator to acquire memory, for example,

using malloc. However, it does not free the memory itself. Instead, it delegates this task to an SMR

algorithm which defers the free until it is safe. The deferral can be controlled by the data structure

through an API the functions of which depend on the actual SMR algorithm.

Client

LFDS SMR

Allocator

API

malloc free

this paper

Fig. 1. Typical interaction between the com-

ponents of a system. Lock-free data structures

(LFDS) perform all their reclamation through

an SMR component.

In this paper we tackle the challenge of verifying

lock-free data structures which use SMR. To make the

verification tractable, we suggest a compositional ap-

proach which is inspired by the system design from

Figure 1. We observe that the only influence the SMR

implementation has on the data structure are the free

operations it performs. So we introduce SMR specifica-

tions that capture when a free can be executed depend-

ing on the history of invoked SMR API functions. With

such a specification at hand, we can verify that a given

SMR implementation adheres to the specification. More

importantly, it allows for a compositional verification

of the data structure. Intuitively, we replace the SMR

implementation with the SMR specification. If the SMR

implementation adheres to the specification, then the

specification over-approximates the frees of the imple-

mentation. Using this over-approximation for verifying the data structure is sound because frees

are the only influence the SMR implementation has on the data structure.

Although our compositional approach localizes the verification effort, it leaves the verification

tool with a hard task: verifying shared-memory programs with memory reuse. Our second finding

eases this task by taming the complexity of reasoning about memory reuse. We prove sound that it

suffices to consider reusing a single memory location only. This result relies on data structures being

invariant to whether or not memory is actually reclaimed and reused. Intuitively, this requirement

boils down to ABA freedom and is satisfied by data structures from the literature.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:3

To substantiate the usefulness of our approach, we implemented a linearizability checker which

realizes the approaches presented in this paper, compositional verification and reduction of reuse to

a single address. Our tool is able to establish linearizability of well-known lock-free data structures,

such as Treiber’s stack [Treiber 1986], Michael&Scott’s queue [Michael and Scott 1996], and the

DGLM queue [Doherty et al. 2004b], when using SMR, like Hazard Pointers [Michael 2002] and

Epoch-Based Reclamation [Fraser 2004]. We remark that we needed both results for the benchmarks

to go through. To the best of our knowledge, we are the first to verify lock-free data structures

with SMR fully automatically. We are also the first to automatically verify the DGLM queue with

any manual memory management.

Our contributions and the outline of our paper are summarized as follows:

ğ4 introduces a means for specifying SMR algorithms and establishes how to perform composi-

tional verification of lock-free data structures and SMR implementations,

ğ5 presents a sound verification approach which considers only those executions of a program

where at most a single memory location is reused,

ğ6 evaluates our approach on well-known lock-free data structures and SMR algorithms, and

demonstrates its practicality.

We illustrate our contributions informally in ğ2, introduce the programing model in ğ3, discuss

related work in ğ7, and conclude the paper in ğ8. This paper comes with a companion technical

report [Meyer and Wolff 2018] containing missing details.

2 THE VERIFICATION APPROACH ON AN EXAMPLE

The verification of lock-free data structures is challenging due to their complexity. One source

of this complexity is the avoidance of traditional synchronization. This leads to subtle thread

interactions and imposes a severe state space explosion. The problem becomes worse in the absence

of garbage collection. This is due to the fact that lock-free memory reclamation is far from trivial.

Due to the lack of synchronization it is typically impossible for a thread to judge whether or not

certain memory will be accessed by other threads. Hence, naively deleting memory is not feasible.

To overcome this problem, programmers employ SMR algorithms. While this solves the memory

reclamation problem, it imposes a major obstacle for verification. For one, SMR implementations

are oftentimes as complicated as the data structure using it. This makes the already hard verification

of lock-free data structures prohibitive.

We illustrate the above problems on the lock-free queue fromMichael and Scott [1996]. It is a prac-

tical example in that it is used for Java’s ConcurrentLinkedQueue and C++ Boost’s lockfree::queue,

for instance. The implementation is given in Figure 2 (ignore the lines marked by H for a moment).

The queue maintains a NULL-terminated singly-linked list of nodes. New nodes are enqueued at the

end of that list. If the Tail pointer points to the end of the list, a new node is appended by linking

Tail-> next to the new node. Then, Tail is updated to point to the new node. If Tail is not pointing

to the end of the list, the enqueue operation first moves Tail to the last node and then appends a

new node as before. The dequeue operation on the other hand removes nodes from the front of the

queue. To do so, it first reads the data of the second node in the queue (the first one is a dummy node)

and then swings Head to the subsequent node. Additionally, dequeues ensure that Head does not

overtake Tail. Hence, a dequeue operation may have to move Tail towards the end of the list before

it moves Head. It is worth pointing out that threads read from the queue without synchronization.

Updates synchronize on single memory words using atomic Compare-And-Swap (CAS).

In terms of memory management, the queue is flawed. It leaks memory because dequeued nodes

are not reclaimed. A naive fix for this leak would be to uncomment the delete head statement in

Line 40. However, other threads may still hold and dereference pointers to the then deleted node.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/ConcurrentLinkedQueue.html
https://www.boost.org/doc/libs/1_68_0/boost/lockfree/queue.hpp

58:4 Roland Meyer and Sebastian Wolff

1 struct Node { data_t data; Node* next; };

2 shared Node* Head , Tail;

3 atomic init() { Head = new Node (); Head ->next = NULL; Tail = Head; }

4 void enqueue(data_t input) {

5 Node* node = new Node ();

6 node ->data = input;

7 node ->next = NULL;

8 while (true) {

9 Node* tail = Tail;

10 H protect(tail , 0);

11 H if (tail != Tail) continue;

12 Node* next = tail ->next;

13 if (tail != Tail) continue;

14 if (next != NULL) {

15 CAS(&Tail , tail , next);

16 continue;

17 }

18 if (CAS(&tail ->next , next , node))

19 break

20 }

21 CAS(&Tail , tail , node);

22 H unprotect (0);

23 }

24 data_t dequeue () {

25 while (true) {

26 Node* head = Head;

27 H protect(head , 0);

28 H if (head != Head) continue;

29 Node* tail = Tail;

30 Node* next = head ->next;

31 H protect(next , 1);

32 if (head != Head) continue;

33 if (next == NULL) return EMPTY;

34 if (head == tail) {

35 CAS(&Tail , tail , next);

36 continue;

37 } else {

38 data_t output = next ->data;

39 if (CAS(&Head , head , next)) {

40 // delete head;

41 H retire(head);

42 H unprotect (0); unprotect (1);

43 return output;

44 } } } }

Fig. 2. Michael&Scott’s non-blocking queue [Michael and Scott 1996] extended with hazard pointers [Michael

2002] for safe memory reclamation. The modifications needed for using hazard pointers are marked with H.

The implementation requires two hazard pointers per thread.

Such use-after-free dereference are unsafe. In C/C++, for example, the behavior is undefined and can

result in a system crash due to a segfault.

To avoid both memory leaks and unsafe accesses, programmers employ SMR algorithms like

Hazard Pointers (HP) [Michael 2002]. An example HP implementation is given in Figure 3. Each

thread holds a HPRec record containing two single-writer multiple-reader pointers hp0 and hp1. A

thread can use these pointers to protect nodes it will subsequently access without synchronization.

Put differently, a thread requests other threads to defer the deletion of a node by protecting it.

The deferred deletion mechanism is implemented as follows. Instead of explicitly deleting nodes,

threads retire them. Retired nodes are stored in a thread-local retiredList and await reclamation.

Eventually, a thread tries to reclaim the nodes collected in its list. Therefore, it reads the hazard

pointers of all threads and copies them into a local protectedList. The nodes in the intersection of

the two lists, retiredList∩ protectedList, cannot be reclaimed because they are still protected by

some thread. The remaining nodes, retiredList \ protectedList, are reclaimed.

Note that the HP implementation from Figure 3 allows for threads to join and part dynamically. In

order to join, a thread allocates an HPRec and appends it to a shared list of such records. Afterwards,

the thread uses the hp0 and hp1 fields of that record to issue protections. Subsequent reclaim

invocations of any thread are aware of the newly added hazard pointers since reclaim traverses

the shared list of HPRec records. To part, threads simply unprotect their hazard pointers. They do

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:5

45 struct HPRec { HPRec* next; Node* hp0; Node* hp1; }

46 shared HPRec* Records;

47 threadlocal HPRec* myRec;

48 threadlocal List <Node*> retiredList;

49 atomic init() { Records = NULL; }

50 void join() {

51 myRec = new HPRec ();

52 while (true) {

53 HPRec* rec = Records;

54 myRec ->next = rec;

55 if (CAS(Records , rec , myRec))

56 break;

57 }

58 }

59

60 void part() {

61 unprotect (0); unprotect (1);

62 }

63

64 void protect(Node* ptr , int i) {

65 if (i == 0) myRec ->hp0 = ptr;

66 if (i == 1) myRec ->hp1 = ptr;

67 assert(false);

68 }

69

70 void unprotect(int i) {

71 protect(NULL , i);

72 }

73 void retire(Node* ptr) {

74 if (ptr != NULL)

75 retiredList.add(ptr);

76 if (*) reclaim ();

77 }

78

79 void reclaim () {

80 List <Node*> protectedList;

81 HPRec* cur = Records;

82 while (cur != NULL) {

83 Node* hp0 = cur ->hp0;

84 Node* hp1 = cur ->hp1;

85 protectedList.add(hp0);

86 protectedList.add(hp1);

87 cur = cur ->next;

88 }

89 for (Node* ptr : retiredList) {

90 if (protectedList.contains(ptr))

91 continue;

92 retiredList.remove(ptr);

93 delete ptr;

94 }

95 }

Fig. 3. Simplified hazard pointer implementation [Michael 2002]. Each thread is equipped with two hazard

pointers. Threads can dynamically join and part. Note that the record used to store a thread’s hazard pointers

is not reclaimed upon parting.

not reclaim their HPRec record [Michael 2002]. The reason for this is that reclaiming would yield

the same difficulties that we face when reclaiming in lock-free data structures, as discussed before.

To use hazard pointers with Michael&Scott’s queue we have to modify the implementation to

retire dequeued nodes and to protect nodes that will be accessed without synchronization. The

required modifications are marked by H in Figure 2. Retiring dequeued nodes is straight forward,

as seen in Line 41. Successfully protecting a node is more involved. A typical pattern to do this is

implemented by Lines 26 to 28, for instance. First, a local copy head of the shared pointer Head is

created, Line 26. The node referenced by head is subsequently protected, Line 27. Simply issuing

this protection, however, does not have the intended effect. Another thread could concurrently

execute reclaim from Figure 3. If the reclaiming thread already computed its protectedList, i.e.,

executed reclaim up to Line 89, then it does not see the later protection and thus may reclaim

the node referenced by head. The check from Line 28 safeguards the queue from such situations.

It ensures that head has not been retired since the protection was issued.1 Hence, no concurrent

1The reasoning is a bit more complicated. We discuss this in more detail in Section 5.3.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:6 Roland Meyer and Sebastian Wolff

reclaim considers it for deletion. This guarantees that subsequent dereferences of head are safe.

This pattern exploits a simple temporal property of hazard pointers, namely that a retired node is

not reclaimed if it has been protected continuously since before the retire [Gotsman et al. 2013].

As we have seen, the verification of lock-free data structures becomes much more complex when

considering SMR code. On the one hand, the data structure needs additional logic to properly use

the SMR implementation. On the other hand, the SMR implementation is complex in itself. It is

lock-free (as otherwise the data structure would not be lock-free) and uses multiple lists.

Our contributions make the verification tractable. First, we suggest a compositional verification

technique which allows us to verify the data structure and the SMR implementation separately.

Second, we reduce the impact of memory management for the two new verification tasks. We

found that both contributions are required to automate the verification of data structures like

Michael&Scott’s queue with hazard pointers.

2.1 Compositional Verification

We propose a compositional verification technique. We split up the single, monolithic task of

verifying a lock-free data structure together with its SMR implementation into two separate tasks:

verifying the SMR implementation and verifying the data structure implementation without the

SMR implementation. At the heart of our approach is a specification of the SMR behavior. Crucially,

this specification has to capture the influence of the SMR implementation on the data structure.

Our main observation is that it has none, as we have seen conceptually in Figure 1 and practically in

Figures 2 and 3. More precisely, there is no direct influence. The SMR algorithm influences the data

structure only indirectly through the underlying allocator: the data structure passes to-be-reclaimed

nodes to the SMR algorithm, the SMR algorithm eventually reclaims those nodes using free of the

allocator, and then the data structure can reuse the reclaimed memory with malloc of the allocator.

In order to come up with an SMR specification, we exploit the above observation as follows.We let

the specification define when reclaiming retired nodes is allowed. Then, the SMR implementation is

correct if the reclamations it performs are a subset of the reclamations allowed by the specification.

For verifying the data structure, we use the SMR specification to over-approximate the reclamation

of the SMR implementation. This way we over-approximate the influence the SMR implementation

has on the data structure, provided that the SMR implementation is correct. Hence, our approach is

sound for solving the original verification task.

Towards lightweight SMR specifications, we rely on the insight that SMR implementations,

despite their complexity, implement rather simple temporal properties [Gotsman et al. 2013]. We

have already seen that hazard pointers implement that a retired node is not reclaimed if it has

been protected continuously since before the retire. These temporal properties are incognizant of

the actual SMR implementation. Instead, they reason about those points in time when a call of

an SMR function is invoked or returns. We exploit this by having SMR specifications judge when

reclamation is allowed based on the history of SMR invocations and returns.

For the actual specification we use observer automata. A simplified specification for hazard

pointers is given in Figure 4. The automaton OHP (t,a, i) is parametrized by a thread t , an address a,

and an integer i. Intuitively, OHP (t,a, i) specifies when the i-th hazard pointer of t forces a free of

a to be deferred. Technically, the automaton reaches an accepting state if a free is performed that

should have been deferred. That is, we let observers specify bad behavior. We found this easier

than to formalize the good behavior. For an example, consider the following histories:

h1 = inv :protect(t1,a, 0). ret :protect(t1,a, 0). inv :retire(t2,a). ret :retire(t2,a). free(a) and

h2 = inv :protect(t1,a, 0). inv :retire(t2,a). ret :protect(t1,a, 0). ret :retire(t2,a). free(a) .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:7

OHP (t,a, i)

l1 l2 l3 l4 l5

inv

protect(t , a, i)

ret

protect(t , a, i)

inv

retire(∗, a) free(a)

inv :unprotect(t , i)

Fig. 4. Automaton for specifying negative HP behavior for thread t , address a, and index i. It states that if a

was protected by thread t using hazard pointer i before a is retired by any thread (denoted by ∗), then freeing

a must be deferred. Here, "must be deferred" is expressed by reaching a final state upon a free of a.

History h1 leads OHP (t,a, i) to an accepting state. Indeed, that a is protected before being retired

forbids a free of a. History h2 does not lead to an accepting state because the retire is issued before

the protection has returned. The free of a can be observed if the threads are scheduled in such a

way that the protection of t1 is not visible while t2 computes its retiredList, as in the scenario

described above for motivating why the check at Line 28 is required.

Now, we are ready for compositional verification. Given an observer, we first check that the SMR

implementation is correct wrt. to that observer. Second, we verify the data structure. To that end,

we strip away the SMR implementation and let the observer execute the frees. More precisely, we

non-deterministically free those addresses which are allowed to be freed according to the observer.

Theorem 2.1 (Proven by Theorem 4.2). Let D(R) be a data structure D using an SMR implemen-

tation R. Let O be an observer. If R is correct wrt. O and if D(O) is correct, then D(R) is correct.

A thorough discussion of the illustrated concepts is given in Section 4.

2.2 Taming Memory Management for Verification

Factoring out the implementation of the SMR algorithm and replacing it with its specification

reduces the complexity of the data structure code under scrutiny. What remains is the challenge

of verifying a data structure with manual memory management. As suggested by Abdulla et al.

[2013]; Haziza et al. [2016] this makes the analysis scale poorly or even intractable. To overcome

this problem, we suggest to perform verification in a simpler semantics. Inspired by the findings

of the aforementioned works we suggest to avoid reallocations as much as possible. As a second

contribution we prove the following theorem.

Theorem 2.2 (Proven by Theorem 5.20). For a sound verification of safety properties it suffices to

consider executions where at most a single address is reused.

The rational behind this theorem is the following. From the literature we know that avoiding

memory reuse altogether is not sound for verification [Michael and Scott 1996]. Put differently,

correctness under garbage collection (GC) does not imply correctness under manual memory

management (MM). The difference of the two program semantics becomes evident in the ABA

problem. An ABA is a scenario where a pointer referencing address a is changed to point to address

b and changed back to point to a again. Under MM a thread might erroneously conclude that the

pointer has never changed if the intermediate value was not seen due to a certain interleaving.

Typically, the root of the problem is that address a is removed from the data structure, deleted,

reallocated, and reenters the data structure. Under GC, the exact same code does not suffer from

this problem. A pointer referencing a would prevent it from being reused.

From this we learn that avoiding memory reuse does not allow for a sound analysis due to the

ABA problem. So we want to check with little overhead to a GC analysis whether or not the program

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:8 Roland Meyer and Sebastian Wolff

cond ::= p = q | p , q | x = y | x , y | x < y

com ::= p := q | p := q.next | p.next := q | x := op(x1, . . . , xn) | x := q.data

| p.data := x | assert cond | p := malloc | enter func(p̄, x̄) | exit | smr

smr ::= free(p) | . . .

Fig. 5. The syntax of atomic commands. Here, x, y ∈ DVar are data variables, and p, q ∈ PVar are pointer

variables. We write p̄ instead of p1, . . . , pn and similarly for x̄. Besides free, SMR implementations may use

not further specified commands smr .

under scrutiny suffers from the ABA problem. If not, correctness under GC implies correctness

under MM. Otherwise, we reject the program as buggy.

To check whether a program suffers from ABAs it suffices to check for first ABAs. Fixing the

address a of such a first ABA allows us to avoid reuse of any address except a while retaining

the ability to detect the ABA. Intuitively, this is the case because the first ABA is the first time

the program reacts differently on a reused address than on a fresh address. Hence, replacing

reallocations with allocations of fresh addresses before the first ABA retains the behavior of the

program.

A formal discussion of the presented result is given in Section 5.

3 PROGRAMSWITH SAFE MEMORY RECLAMATION

We define shared-memory programs that use an SMR library to reclaim memory. Here, we focus

on the program. We leave unspecified the internal structure of SMR libraries (typically, they use

the same constructs as programs), our development does not depend on it. We show in Section 4

how to strip away the SMR implementation for verification.

Memory. A memory m is a partial function m : PExp ⊎ DExp ↛ Adr ⊎ {seg} ⊎ Dom which

maps pointer expressions PExp to addresses from Adr ⊎ {seg} and data expressions DExp to values

from Dom, respectively. A pointer expression is either a pointer variable or a pointer selector:

PExp = PVar ⊎ PSel. Similarly, we have DExp = DVar ⊎ DSel. The selectors of an address a are

a.next ∈ PSel and a.data ∈ DSel. A generalization to arbitrary selectors is straight forward. We

use seg < Adr to denote undefined/uninitialized pointers. We write m(e) = ⊥ if e < dom(m). An

address a is in-use if it is referenced by some pointer variable or if one of its selectors is defined.

The set of such in-use addresses in m is adr(m).

Programs. We consider computations of data structures D using an SMR library R, written D(R).

A computation τ is a sequence of actions. An action act is of the form act = (t, com, up). Intuitively,

act states that thread t executes command com resulting in the memory update up. An action stems

either from executing D or from executing functions offered by R.

The commands are given in Figure 5. The commands of D include assignments, memory accesses,

assertions, and allocations with the usual meaning. We make explicit when a thread enters and

exits a library function with enter and exit, respectively. That is, we assume that computations

are well-formed in the sense that no commands from D and all commands from R of a thread occur

between enter and exit. Besides deallocations we leave the commands of R unspecified.

The memory resulting from a computation τ , denoted by mτ , is defined inductively by its

updates. Initially, pointer variables p are uninitialized,mϵ (p) = seg, and data variables x are default

initialized, mϵ (x) = 0. For a computation τ .act with act = (t, com, up) we have mτ .act = mτ [up].

With the memory update m′
= m[e 7→ v] we mean m′(e) = v and m′(e′) = m(e′) for all e′ , e.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:9

Semantics. The semantics of D(R) is defined relative to a set X ⊆ Adr of addresses that may be

reused. It is the set of allowed executions, denoted by [[D(R)]]X . To make the semantics precise,

let fresh(τ) and freed(τ) be those sets of addresses which have never been allocated and have been

freed since their last allocation, respectively. Then, the semantics is defined inductively. In the base

case we have the empty execution ϵ ∈ [[D(R)]]X . In the induction step we have τ .act ∈ [[D(R)]]X if

one of the following rules applies.

(Malloc) If act = (t, p := malloc, [p 7→ a,a.next 7→ seg,a.data 7→ d]) where d ∈ Dom is

arbitrary and a ∈ Adr is fresh or available for reuse, that is, a ∈ fresh(τ) or a ∈ freed(τ) ∩ X .

(FreePtr) If act = (t, free(p), [a.next 7→ ⊥,a.data 7→ ⊥]) with mτ (p) = a ∈ Adr .

(Enter) If act = (t, enter func(p̄, x̄),�) with p̄ = p1, . . . , pk and mτ (pi) ∈ Adr for all 1 ≤ i ≤ k .

(Exit) If act = (t, exit,�).

(Assign1) If act = (t, p := q, [p 7→ mτ (q)]).

(Assign2) If act = (t, p.next := q, [a.next 7→ mτ (q)]) with mτ (p) = a ∈ Adr .

(Assign3) If act = (t, p := q.next, [p 7→ mτ (a.next)]) with mτ (q) = a ∈ Adr .

(Assign4) If act = (t, x := op(y1, . . . , yn), [x 7→ d]) with d = op(mτ (y1), . . . ,mτ (yn)).

(Assign5) If act = (t, p.data := y, [a.data 7→ mτ (y)]) with mτ (p) = a ∈ Adr .

(Assign6) If act = (t, x := q.data, [x 7→ mτ (a.data)]) with mτ (q) = a ∈ Adr .

(Assert) If act = (t, assert lhs ≜ rhs,�) if mτ (lhs) ≜ mτ (rhs).

We assume that computations respect the control flow (program order) of threads. The control

location after τ is denoted by ctrl(τ). We deliberately leave this unspecified as we will express only

properties of the form ctrl(τ) = ctrl(σ) to state that after τ and σ the threads can execute the same

commands.

4 COMPOSITIONAL VERIFICATION

Our first contribution is a compositional verification approach for data structures D(R) which use

an SMR library R. The complexity of SMR implementations makes the verification of data structure

and SMR implementation in a single analysis prohibitive. To overcome this problem, we suggest

to verify both implementations independently of each other. More specifically, we (i) introduce

a means for specifying SMR implementations, then (ii) verify the SMR implementation R against

its specification, and (iii) verify the data structure D relative to the SMR specification rather than

the SMR implementation. If both verification tasks succeed, then the data structure using the SMR

implementation, D(R), is correct.

Our approach compares favorably to existing techniques. Manual techniques from the literature

consider a monolithic verification task where both the data structure and the SMR implementaetion

are verfied together [Fu et al. 2010; Gotsman et al. 2013; Krishna et al. 2018; Parkinson et al. 2007; To-

fan et al. 2011]. Consequently, only simple implementations using SMR have been verified. Existing

automated techniques rely on non-standard program semantics and support only simplistic SMR

techniques [Abdulla et al. 2013; Haziza et al. 2016]. Refer to Section 7 for a more detailed discussion.

Towards our result, we first introduce observer automata for specifying SMR algorithms. Then

we discuss the two new verification tasks and show that they imply the desired correctness result.

Observer Automata. An observer automaton O consists of observer locations, observer variables,

and transitions. There is a dedicated initial location and some accepting locations. Transitions are

of the form l−−−−−→
f (r̄), g

l′ with observer locations l, l′, event f (r̄), and guard g. Events f (r̄) consist of a

type f and parameters r̄ = r1, . . . , rn . The guard is a Boolean formula over equalities of observer

variables and the parameters r̄ . An observer state s is a tuple (l,φ) where l is a location and φ

maps observer variables to values. Such a state is initial if l is initial, and similarly accepting if l

is accepting. Then, (l,φ)−−−→
f (v̄)

(l′,φ) is an observer step, if l−−−−−→
f (r̄), g

l′ is a transition and φ(g[r̄ 7→ v̄])

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:10 Roland Meyer and Sebastian Wolff

OBase

l6 l7 l8

free(a), a = v

retire(t , a), a = v

free(a), a = v

(a) Observer specifying that address v may be freed only if it has been retired and not been freed since.

OHP

l9 l10 l11 l12 l13

protect(t , a, i),

t = u ∧ a = v ∧ i = w

exit(t),

t = u

retire(t , a),

a = v

free(a),

a = v

protect(t , a, i), t = u∧a , v ∧ i = w

unprotect(t , i), t = u ∧ i = w

(b) Observer specifying when HP defers frees. A retired cell v may not be freed if it has been protected

continuously by the w-th hazard pointer of thread u since before being retired.

Fig. 6. Observer OBase × OHP characterizes the histories that violate the Hazard Pointer specification. Three

observer variables, u, v, and w, are used to observe a thread, an address, and an integer, respectively. For

better legibility we omit self-loops for every location and every event that is missing an outgoing transition

from that location.

evaluates to true. With φ(g[r̄ 7→ v̄])we mean g where the formal parameters r̄ are replaced with the

actual values v̄ and where the observer variables are replaced by their φ-mapped values. Initially,

the valuation φ is chosen non-deterministically; it is not changed by observer steps.

A history h = f1(v̄1) . . . fn(v̄n) is a sequence of events. We write s−→h s′ if there are steps

s−−−−→
f1(v̄1) · · · −−−−−→

fn (v̄n) s′. If s′ is accepting, then we say that h is accepted by s. We use observers to

characterize bad behavior. So we say h is in the specification of s, denoted by h ∈ S(s), if it is not

accepted by s. Formally, the specification of s is the set S(s) := {h | ∀s′. s−→h s′ =⇒ s′ not final}

of histories that are not accepted by s. The specification of O is the set of histories that are not

accepted by any initial state of O, S(O) :=
⋂

{S(s) | s initial}. The cross-product O1 × O2 denotes

an observer with S(O1 × O2) = S(O1) ∩ S(O2).

SMR Specifications. To use observers for specifying SMR algorithms, we have to instantiate appro-

priately the histories they observe. Our instantiation crucially relies on the fact that programmers of

lock-free data structures rely solely on simple temporal properties that SMR algorithms implement

[Gotsman et al. 2013]. These properties are typically incognizant of the actual SMR implementation.

Instead, they allow reasoning about the implementation’s behavior based on the temporal order

of function invocations and responses. With respect to our programming model, enter and exit

actions provided the necessary means to deduce from the data structure computation how the SMR

implementation behaves.

We instantiate observers for specifying SMR as follows. As event types we use (i) func1, . . . , funcn ,

the functions offered by the SMR algorithm, (ii) exit, and (iii) free. The parameters to the events

are (i) the executing thread and the parameters to the call in case of type funci , (ii) the executing

thread for type exit, and (iii) the parameters to the call for type free. Here, type funci represents

the corresponding enter command of a call to funci . The corresponding exit event is uniquely

defined because both funci and exit events contain the executing thread.

For an example, consider the hazard pointer specification OBase ×OHP from Figure 6. It consists of

two observers. First, OBase specifies that no address must be freed that has not been retired. Second,

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:11

OHP implements the temporal property that no address must be freed if it has been protected

continuously since before the retire. For observer OBase × OHP we assume that no address is retired

multiple times before being reclaimed (freed) by the SMR implementation. This avoids handling

such double-retire scenarios in the observer, keeping it smaller and simpler. The assumption is

reasonable because in a setting where SMR is used a double-retire is the analogue of a double-free

and thus avoided. Our experiments confirm this intuition.

With an SMR specification in form of an observerOSMR at hand, our task is to checkwhether or not

a given SMR implementation R satisfies this specification. We do this by converting a computation

τ of R into its induced historyH(τ) and check ifH(τ) ∈ S(OSMR). The induced historyH(τ) is a

projection of τ to enter, exit, and free actions. This projection replaces the formal parameters in τ

with their actual values. For example,H(τ .(t, protect(p, x), up)) = H(τ).protect(t,mτ (p),mτ (x)).

Then, τ satisfiesOSMR ifH(τ) ∈ S(OSMR). The SMR implementation R satisfiesOSMR if every possible

usage of R produces a computation that satisfies OSMR. To generate all such computations, we use a

most general client (MGC) for R which concurrently executes arbitrary sequences of SMR functions.

Definition 4.1 (SMR Correctness). An SMR implementation R is correct wrt. a specification OSMR,

denoted by R |= OSMR, if for every τ ∈ [[MGC(R)]]Adr we haveH(τ) ∈ S(OSMR).

From the above definition follows the first new verification task: prove that the SMR implemen-

tation R cannot possibly violate the specification OSMR. Intuitively, this boils down to a reachability

analysis of accepting states in the cross-product ofMGC(R) and OSMR. Since we can understand R

as a lock-free data structure itself, this task is similar to our next one, namely verifying the data

structure relative to OSMR. In the remainder of the paper we focus on this second task because it is

harder than the first one. The reason for this lies in that SMR implementations typically do not

reclaim the memory they use. This holds true even if the SMR implementation supports dynamic

thread joining and parting [Michael 2002] (cf. part() from Figure 3). The absence of reclamation

allows for a simpler2 and more efficient analysis. We confirm this in our experiments where we

automatically verify the Hazard Pointer implementation from Figure 3 wrt. OBase × OHP .

Compositionality. The next task is to verify the data structure D(R) avoiding the complexity of R.

We have already established correctness of R wrt. a specification OSMR. Intuitively, we now replace

R by OSMR. Because OSMR is an observer, and not program code like R, we cannot just execute

OSMR in place of R. Instead, we remove the SMR implementation from D(R). The result is D(ϵ) the

computations of which correspond to the ones of D(R) with SMR-specific actions between enter

and exit being removed. To account for the frees that R executes, we introduce environment steps.

We non-deterministically check for every address a whether or not OSMR allows freeing it. If so,

we free the address. Formally, the semantics [[D(OSMR)]]X corresponds to [[D(ϵ)]]X as defined in

Section 3 plus a new rule for frees from the environment.

(Free) If τ ∈ [[D(ϵ)]]X and a ∈ Adr can be freed, i.e., H(τ).free(a) ∈ S(OSMR), then we have

τ .act ∈ [[D(ϵ)]]X with act = (t, free(a), [a.next 7→ ⊥,a.data 7→ ⊥]).

Note that free(a) from the environment has the same update as free(p) from R if p points to a.

With this definition, D(OSMR) performs more frees than D(R) provided R |= OSMR.

With the semantics of data structures with respect to an SMR specification rather than an SMR

implementation set up, we can turn to the main result of this section. It states that the correctness

of R wrt. OSMR and the correctness of D(OSMR) entail the correctness of the original program D(R).

Here, we focus on the verification of safety properties. It is known that this reduces to control

2In terms of Section 5, the absence of reclamation results in SMR implementations being free from pointer races and harmful

ABAs since pointers do not become invalid. Intuitively, this allows us to combine our results with ones from Haziza et al.

[2016] and verify the SMR implementation in a garbage-collected semantics.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:12 Roland Meyer and Sebastian Wolff

location reachability [Vardi 1987]. So we can assume that there is a dedicated bad control location

in D the unreachability of which is equivalent to the correctness of D(R). To establish the result, we

require that the interaction between D and R follows the one depicted in Figure 1 and discussed on

an example in Section 2. That is, the only influence R has on D are frees. In particular, this means

that R does not modify the memory accessed by D. We found this restriction to be satisfied by

many SMR algorithms from the literature. We believe that our development can be generalized

to reflect memory modifications performed by the SMR algorithm. A proper investigation of the

matter, however, is beyond the scope of this paper.

Theorem 4.2 (Compositionality). Let R |= OSMR. If [[D(OSMR)]]Adr is correct, so is [[D(R)]]Adr .

Compositionality is a powerful tool for verification. It allows us to verify the data structure and

the SMR implementation independently of each other. Although this simplifies the verification,

reasoning about lock-free programs operating on a shared memory remains hard. In Section 5 we

build upon the above result and propose a sound verification of [[D(OSMR)]]Adr which considers

only executions reusing a single addresses.

5 TAMING MEMORY REUSE

As a second contribution we demonstrate that one can soundly verify a data structure D(OSMR) by

considering only those computations where at most a single cell is reused. This avoids the need for

a state space exploration of full [[D(OSMR)]]Adr . Such explorations suffer from a severe state space

explosion. In fact, we were not able to make our analysis from Section 6 go through without this

second contribution. Previous works [Abdulla et al. 2013; Haziza et al. 2016; Holík et al. 2017] have

not required such a result since they did not consider fully fledged SMR implementations like we

do. For a thorough discussion of related work refer to Section 7.

Our results are independent of the actual safety property and the actual observer OSMR specifying

the SMR algorithm. To achieve this, we establish that for every computation from [[D(OSMR)]]Adr
there is a similar computation which reuses only a single address. We construct such a similar

computation by eliding reuse in the original computation. With elision we mean that we replace in

a computation a freed address with a fresh one. This allows a subsequent allocation to malloc the

elided address fresh instead of reusing it. Our notion of similarity makes sure that in both computa-

tions the threads reach the same control locations. This allows for verifying safety properties.

The remainder of the section is structured as follows. Section 5.1 introduces our notion of

similarity. Section 5.2 formalizes requirements on D(OSMR) such that the notion of similarity

suffices to prove the desired result. Section 5.3 discusses how the ABA problem can affect soundness

of our approach and shows how to detect those cases. Section 5.4 presents the reduction result.

5.1 Similarity of Computations

Our goal is to mimic a computation τ where memory is reused arbitrarily with a computation

σ where memory reuse is restricted. As noted before, we want that the threads in τ and σ reach

the same control locations in order to verify safety properties of τ in σ . We introduce a similarity

relation among computations such that τ and σ are similar if they can execute the same actions.

This results in both reaching the same control locations as desired. However, control location

equality alone is insufficient for σ to mimic subsequent actions of τ , that is, to preserve similarity

for subsequent actions. This is because most actions involve memory interaction. Since σ reuses

memory differently than τ , the memory of the two computations is not equal. Similarity requires a

non-trivial correspondence wrt. the memory. Towards a formal definition let us consider an example.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:13

Example 5.1. Let τ1 be a computation of a data structure D(OBase × OHP) using hazard pointers:

τ1 = (t, p := malloc, [p 7→ a, . . .]). (t, retire(p),�). (t, free(a), [. . .]). (t, exit,�).

(t, q := malloc, [q 7→ a, . . .]) .

In this computation, thread t uses pointer p to allocate address a. The address is then retired and

freed. In the subsequent allocation, t acquires another pointer q to a; a is reused.

If σ1 is a computation where a shall not be reused, then σ1 is not able to execute the exact same

sequence of actions as τ1. However, it can mimic τ1 as follows:

σ1 = (t, p := malloc, [p 7→ b, . . .]). (t, retire(p),�). (t, free(b), [. . .]). (t, exit,�).

(t, q := malloc, [q 7→ a, . . .]) ,

where σ1 coincides with τ1 up to replacing the first allocation of a with another address b. We say

that σ1 elides the reuse of a. Note that the memories of τ1 and σ1 differ on p and agree on q.

In the above example, p is a dangling pointer. Programmers typically avoid using such pointers

because it is unsafe. For a definition of similarity, this practice suggests that similar computations

must coincide only on the non-dangling pointers and may differ on the dangling ones. To make

precise which pointers in a computation are dangling, we use the notion of validity. That is, we

define a set of valid pointers. The dangling pointers are then the complement of the valid pointers.

We take this detour because we found it easier to formalize the valid pointers.

Initially, no pointer is valid. A pointer becomes valid if it receives its value from an allocation or

another valid pointer. A pointer becomes invalid if its referenced memory location is deleted or it

receives its value from an invalid pointer. A deletion of a memory cell makes invalid its pointer

selectors and all pointers to that cell. A subsequent reallocation of that cell makes valid only the

receiving pointer; all other pointers to that cell remain invalid. Assertions of the form p = q validate

p if q is valid, and vice versa. We omit the formal definition of the valid pointers in a computation

τ , denoted by validτ .

Example 5.2 (Continued). In both τ1 and σ1 from the previous example, the last allocation renders

valid pointer q. On the other hand, the free to a in τ1 renders p invalid. The reallocation of a does

not change the validity of p, it remains invalid. In σ1, address b is allocated and freed rendering p

invalid. It remains invalid after the subsequent allocation of a. That is, both τ1 and σ1 agree on the

validity of q and the invalidity of p. Moreover, τ1 and σ1 agree on the valuation of the valid q and

disagree (here by chance) on the valuation of the invalid p.

The above example illustrates that eliding reuse of memory leads to a different memory valuation.

However, the elision can be performed in such a way that the valid memory is not affected. So we say

that two computations are similar if they agree on the resulting control locations of threads and the

valid memory. The valid memory includes the valid pointer variables, the valid pointer selectors, the

data variables, and the data selectors of addresses that are referenced by a valid pointer variable/se-

lector. Formally, this is a restriction of the entire memory to the valid pointers, written mτ |validτ .

Definition 5.3 (Restrictions). A restriction of m to a set P ⊆ PExp, denoted by m|P , is a new m′

with dom(m′) := P ∪ DVar ∪ {a.data ∈ DExp | a ∈ m(P)} and m(e) = m′(e) for all e ∈ dom(m′).

We are now ready to formalize the notion of similarity among computations. Two computations

are similar if they agree on the control location of threads and the valid memory.

Definition 5.4 (Computation Similarity). Two computations τ and σ are similar, denoted by τ ∼ σ ,

if ctrl(τ) = ctrl(σ) and mτ |validτ = mσ |validσ .

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:14 Roland Meyer and Sebastian Wolff

If two computations τ and σ are similar, then each action enabled after τ can be mimicked in σ .

An action act = (t, com, up) can be mimicked by another action act ′ = (t, com, up′). Both actions

agree on the executing thread and the executed command but may differ in the memory update.

The reason for this is that similarity does not relate the invalid parts of the memory. This may give

another update in σ if com involves invalid pointers.

Example 5.5 (Continued). Consider the following continuation of τ1 and σ1:

τ2 = τ1 . (t, p := p, up) and σ2 = σ1 . (t, p := p, up′) ,

wherewe append an assignment of p to itself. The prefixes τ1 andσ1 are similar, τ1 ∼ σ1. Nevertheless,

the updates up and up′ differ because they involve the valuation of the invalid pointer p which

differs in τ1 and σ1. The updates are up = [p 7→ a] and up′ = [p 7→ b]. Since the assignment leaves

p invalid, similarity is preserved by the appended actions, τ2 ∼ σ2. We say that act ′ mimics act.

Altogether, similarity does not guarantee that the exact same actions are executable. It guarantees

that every action can be mimicked such that similarity is preserved.

In the above we omitted an integral part of the program semantics. Memory reclamation is not

based on the control location of threads but on an observer examining the history induced by a

computation. The enabledness of a free is not preserved by similarity. On the one hand, this is

due to the fact that invalid pointers can be (and in practice are) used in SMR calls which lead to

different histories. On the other hand, similar computations end up in the same control location but

may perform different sequences of actions to arrive there, for instance, execute different branches

of conditionals. That is, to mimic free actions we need to correlate the behavior of the observer

rather than the behavior of the program. We motivate the definition of an appropriate relation.

Example 5.6 (Continued). Consider the following continuation of τ2 and σ2:

τ3 = τ2 . (t, protect(p, i),�). (t, exit,�). (t, retire(q),�). (t, exit,�)

and σ3 = σ2 . (t, protect(p, i),�). (t, exit,�). (t, retire(q),�). (t, exit,�) ,

where t issues a protection and a retirement using p and q, respectively. The histories induced by

those computations are:

H(τ3) = H(τ1) . protect(t,a, i). exit(t). retire(t,a). exit(t)

and H(σ3) = H(σ1). protect(t,b, i). exit(t). retire(t,a). exit(t) .

Recall that τ2 and σ2 are similar. Similarity guarantees that the events of the retire call coincide

because q is valid. The events of the protect call differ because the valuations of the invalid p differ.

That is, SMR calls do not necessarily emit the same event in similar computations. Consequently,

the observer states after τ3 and σ3 differ. More precisely, OHP from Figure 6b has the following runs

from the initial observer state (l9,φ) with φ = {u 7→ t, v 7→ a,w 7→ i}:

(l9,φ)−−−−→
H(τ1) (l9,φ)−−−−−−−−−−−→

protect(t ,a,i)
(l10,φ)−−−−−→

exit(t)
(l11,φ)−−−−−−−−−→

retire(t ,a)
(l12,φ)−−−−−→

exit(t)
(l12,φ)

and (l9,φ)−−−−→
H(σ1) (l9,φ)−−−−−−−−−−−→

protect(t ,b ,i)
(l9,φ) −−−−−→

exit(t)
(l9,φ) −−−−−−−−−→

retire(t ,a)
(l9,φ) −−−−−→

exit(t)
(l9,φ) .

This prevents a from being freed after τ3 (a free(a) would lead to the final state (l13,φ) and is thus

not enabled) but allows for freeing it after σ3.

The above example shows that eliding memory addresses to avoid reuse changes observer runs.

The affected runs involve freed addresses. Like for computation similarity, we define a relation

among computations which captures the observer behavior on the valid addresses, i.e., those

addresses that are referenced by valid pointers, and ignores all other addresses. Here, we do not use

an equivalence relation. That is, we do not require observers to reach the exact same state for valid

addresses. Instead, we express that the mimicking σ allows for more observer behavior on the valid

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:15

addresses than the mimicked τ does. We define an observer behavior inclusion among computations.

This is motivated by the above example. There, address a is valid because it is referenced by a valid

pointer, namely q. Yet the observer runs for a differ in τ3 and σ3. After σ3 more behavior is possible;

σ3 can free a while τ3 cannot.

To make this intuition precise, we need a notion of behavior on an address. Recall that the goal of

the desired behavior inclusion is to enable us to mimic frees. Intuitively, the behavior allowed by

OSMR on address a is the set of those histories that lead to a free of a.

Definition 5.7 (Observer Behavior). The behavior allowed by OSMR on address a after history h is

the set F (h, a) := {h′ | h.h′ ∈ S(OSMR) ∧ frees(h′) ⊆ a}.

Note that h′ ∈ F (h, a) contains free events for address a only. This is necessary because an

address may become invalid before being freed if, for instance, the address becomes unreachable

from valid pointers. The mimicking computation σ may have already freed such an address while

τ has not, despite similarity. Hence, the free is no longer allowed after σ but still possible after τ .

To prevent such invalid addresses from breaking the desired inclusion on valid addresses, we strip

from F (h, a) all frees that do not target a. Note that we do not even retain frees of valid addresses

here. This way, only actions which emit an event influence F (h, a).

The observer behavior inclusion among computations is defined such that σ includes at least the

behavior of τ on the valid addresses. Formally, the valid addresses in τ are adr(mτ |validτ).

Definition 5.8 (Observer Behavior Inclusion). Computation σ includes the (observer) behavior of τ ,

denoted by τ ⋖σ , if F (τ , a) ⊆ F (σ , a) holds for all a ∈ adr(mτ |validτ).

5.2 Preserving Similarity

The development in Section 5.1 is idealized. There are cases where the introduced relations do not

guarantee that an action can be mimicked. All such cases have in common that they involve the

usage of invalid pointers. More precisely, (i) the computation similarity may not be strong enough

to mimic actions that dereference invalid pointers, and (ii) the observer behavior inclusion may

not be strong enough to mimic calls involving invalid pointers. For each of those cases we give an

example and restrict our development. We argue throughout this section that our restrictions are

reasonable. Our experiments confirm this. We begin with the computation similarity.

Example 5.9 (Continued). Consider the following continuation of τ3 and σ3:

τ4 = τ3 . (t, q.next := q, [a.next 7→ a]). (t, p.next := p, [a.next 7→ a])

and σ4 = σ3 . (t, q.next := q, [a.next 7→ a]). (t, p.next := p, [b .next 7→ b]) .

The first appended action updates a.next in both computations to a. Since q is valid after both

τ3 and σ3 this assignment renders valid a.next. The second action assigns to a.next in τ4. This

results in a.next being invalid after τ4 because the right-hand side of the assignment is the invalid

p. In σ4 the second action updates b .next which is why a.next remains valid. That is, the valid

memories of τ4 and σ4 differ. We have executed an action that cannot be mimicked on the valid

memory despite the computations being similar.

The problem in the above example is the dereference of an invalid pointer. The computation

similarity does not give any guarantees about the valuation of such pointers. Consequently, it

cannot guarantee that an action using invalid pointers can be mimicked. To avoid such problems,

we forbid programs to dereference invalid pointers.

The rational behind this is as follows. Recall that an invalid pointer is dangling. That is, the

memory it references has been freed. If the memory has been returned to the underlying operating

system, then a subsequent dereference is unsafe, that is, prone to a system crash due to a segfault.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:16 Roland Meyer and Sebastian Wolff

Hence, such dereferences should be avoided. The dereference is only safe if the memory is guar-

anteed to be accessible. To decide this, the invalid pointer needs to be compared with a definitely

valid pointer. As we mentioned in Section 5.1, such a comparison renders valid the invalid pointer.

This means that dereferences of invalid pointers are always unsafe. We let verification fail if unsafe

accesses are performed. That performance-critical and lock-free code is free from unsafe accesses

was validated experimentally by Haziza et al. [2016] and is confirmed by our experiments.

Definition 5.10 (Unsafe Access). A computation τ .(t, com, up) performs an unsafe access if com

contains p.data or p.next with p < validτ .

Forbidding unsafe accesses makes the computation similarity strong enough to mimic all desired

actions. A discussion of cases where the observer behavior inclusion cannot be preserved is in

order. We start with an example.

Example 5.11 (Continued). Consider the following continuations of τ1 and σ1 from Example 5.1:

τ5 = τ1 . (t, retire(p),�) with H(τ5) = H(τ1) . retire(t,a)

and σ5 = σ1 . (t, retire(p),�) with H(σ5) = H(σ1). retire(t,b) .

The observer behavior of τ1 is included in σ1, τ1 ⋖σ1. After τ5 a deletion of a is possible because it

was retired. After σ5 a deletion of a is prevented by OBase because a was not retired. Technically,

we have free(a) ∈ F (τ5, a) and free(a) < F (σ5, a). However, a is a valid address because it is

referenced by the valid pointer q. That is, the behavior inclusion among τ1 and σ1 is not preserved

by the subsequent action.

The above example showcases that calls to the SMR algorithm can break the observer behavior

inclusion. This is the case because an action can emit different events in similar computations. The

event emitted by an SMR call differs only if it involves invalid pointers.

The naive solution would prevent using invalid pointers in calls altogether. In practice, this is

too strong a requirement. As discussed in Section 2, a common pattern for protecting an address

(cf. Figure 2, Lines 26 to 28) is to (i) read a pointer p into a local variable q, (ii) issue a protection using

q, and (iii) repeat the process if p and q do not coincide. After reading into q and before protecting

q the referenced memory may be freed. Hence, the protection is prone to use invalid pointers.

Forbidding such protections would render our theory inapplicable to lock-free data structures using

hazard pointers.

To fight this problem, we forbid only those calls involving invalid pointers which are prone

to break the observer behavior inclusion. Intuitively, this is the case if a call with the values of

the invalid pointers replaced arbitrarily allows for more behavior on the valid addresses than the

original call. Actually, we keep precise the address the behavior of which is under consideration.

This allows us to support more scenarios where invalid pointers are used.

Definition 5.12 (Racy SMRCalls). A computationτ .act with act = (t, enterfunc(p̄, x̄),�),H(τ) = h,

mτ (p̄) = ā, and mτ (x̄) = d̄ performs a racy call if:

∃ c ∃ b̄ .
(

∀i . (ai = c ∨ pi ∈ validτ) =⇒ ai = bi
)

∧ F (h.func(t, b̄, d̄), c) ⊈ F (h.func(t, ā, d̄), c) .

It follows immediately that calls containing valid pointers only are not racy. In practice, retire

is always called using valid pointers, thus avoiding the problematic scenario from Example 5.11. The

rational behind this is that freeing invalid pointers may lead to system crashes, just like dereferences.

For protect calls of hazard pointers one can show that they never race. We have already seen

this in Example 5.6. There, a call to protect with invalid pointers has not caused the observer

relation to break. Instead, the mimicking computation (σ3) could perform (strictly) more frees than

the computation it mimicked (τ3).

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:17

We uniformly refer to the above situations where the usage of an invalid pointer can break the

ability to mimic an actions as a pointer race. It is a race indeed because the usage and the free of a

pointer are not properly synchronized.

Definition 5.13 (Pointer Race). A computation τ .act is a pointer race if act performs (i) an unsafe

access, or (ii) a racy SMR call.

With pointer races we restrict the class of supported programs. The restriction to pointer race

free programs is reasonable in that we can handle common non-blocking data structures from the

literature as shown in our experiments. Since we want to give the main result of this section in a

general fashion that does not rely on the actual observer used to specify the SMR implementation,

we have to restrict the class of supported observers as well.

We require that the observer supports the elision of reused addresses, as done in Example 5.1.

Intuitively, elision is a two-step process the observer must be insensitive to. First, an address a is

replaced with a fresh address b upon an allocation where a should be reused but cannot. In the

resulting computation, a is fresh and thus the allocation can be performed without reusing a. The

process of replacing a with b must not affect the behavior of the observer on addresses other than a

and b. Second, the observer must allow for more behavior on the fresh address than on the reused

address. This is required to preserve the observer behavior inclusion because the allocation of a

renders it a valid address.

Additionally, we require a third property: the observer behavior on an address must not be

influenced by frees to another address. This is needed because computation similarity and behavior

inclusion do not guarantee that frees of invalid addresses can be mimicked, as discussed before.

Since such frees do not affect the valid memory they need not be mimicked. The observer has to

allow us to do so, that is, simply skip such frees when mimicking a computation.

For a formal definition of our intuition we write h[a/b] to denote the history that is constructed

from h by replacing every occurrence of a with b.

Definition 5.14 (Elision Support). The observer OSMR supports elision of memory reuse if

(i) for all h1,h2,a,b, c with a , c , b and h2 = h1[a/b] we have F (h1, c) = F (h2, c),

(ii) for all h1,h2,a,b with F (h1, a) ⊆ F (h2, a) and b ∈ fresh(h2) we have F (h1, b) ⊆ F (h2, b), and

(iii) for all h,a,b with a , b we have F (h.free(a), b) = F (h, b).

We found this definition practical in that the observers we use for our experiments support

elision (cf. Section 6.1). The hazard pointer observer OBase × OHP , for instance, supports elision.

5.3 Detecting ABAs

So far we have introduced restrictions, namely pointer race freedom and elision support, to rule

out cases where our idea of eliding memory reuse would not work, that is, break the similarity or

behavior inclusion. If those restrictions were strong enough to carry out our development, then

we could remove any reuse from a computation and get a similar one where no memory is reused.

That the resulting computation does not reuse memory means, intuitively, that it is executed under

garbage collection. As shown in the literature [Michael and Scott 1996], the ABA problem is a

subtle bug caused by manual memory management which is prevented by garbage collection. So

eliding all reuses jeopardizes soundness of the analysisÐit could miss ABAs which result in a safety

violation. With this observation, we elide all reuses except for one address per computation. This

way we analyse a semantics that is close to garbage collection, can detect ABA problems, and is

much simpler than full [[D(OSMR)]]Adr .

The semantics that we suggest to analyse is [[D(OSMR)]]one :=
⋃

a∈Adr [[D(OSMR)]]{a } . It is the

set of all computations that reuse at most a single address. A single address suffices to detect the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:18 Roland Meyer and Sebastian Wolff

ABA problem. The ABA problem manifests as an assertion of the form assert p = q where the

addresses held by p and q coincide but stem from different allocations. That is, one of the pointers

has received its address, the address was freed and then reallocated, before the pointer is used in

the assertion. Note that this implies that for an assertion to be ABA one of the involved pointers

must be invalid. Pointer race freedom does not forbid this. Nor do we want to forbid such assertions.

In fact, most programs using hazard pointers contain ABAs. They are written in a way that ensures

that the ABA is harmless. Consider an example.

Example 5.15 (ABAs in Michael&Scott’s queue using hazard pointers). Consider the code of

Michael&Scott’s queue from Figure 2. More specifically, consider Lines 26 to 28. In Line 26 the

value of the shared pointer Head is read into the local pointer head. Then, a hazard pointer is used

in Line 27 to protect head from being freed. In between reading and protecting head, its address

could have been deleted, reused, and reentered the queue. That is, when executing Line 28 the

pointers Head and head can coincide although the head pointer stems from an earlier allocation. This

scenario is an ABA. Nevertheless, the queue’s correctness is not affected by this ABA. The ABA

prone assertion is only used to guarantee that the address protected in Line 27 is indeed protected

after Line 28. Wrt. to the observer OHP from Figure 6, the assertion guarantees that the protection

was issued before a retirement (after the latest reallocation) so that OHP is guaranteed to be in l11
and thus prevent future retirements from freeing the protected memory. The ABA does not void

this guarantee, it is harmless.

The above example shows that lock-free data structures may perform ABAs which do not affect

their correctness. To soundly verify such algorithms, our approach is to detect every ABA and

decide whether it is harmless indeed. If so, our verification is sound. Otherwise, we report to the

programmer that the implementation suffers from a harmful ABA problem.

A discussion of how to detect ABAs is in order. Let τ ∈ [[D(OSMR)]]Adr and σ ∈ [[D(OSMR)]]{a } be

two similar computations. Intuitively, σ is a computation which elides the reuses from τ except

for some address a. The address a can be used in σ in exactly the same way as it is used in τ . Let

act = (t, assert p = q,�) be an ABA assertion which is enabled after τ . To detect this ABA under

[[D(OSMR)]]{a } we need act to be enabled after σ . We seek to have σ .act ∈ [[D(OSMR)]]{a } . This is

not guaranteed. Since act is an ABA it involves at least one invalid pointer, say p. Computation

similarity does not guarantee that p has the same valuation in both τ and σ . However, if p points

to a in τ , then it does so in σ because a is (re)used in σ in the same way as in τ . Thus, we end

up with mτ (p) = mσ (p) although p is invalid. In order to guarantee this, we introduce a memory

equivalence relation. We use this relation to precisely track how the reusable address a is used.

Definition 5.16 (Memory Equivalence). Two computations τ and σ are memory equivalent wrt.

address a, denoted by τ ≃a σ , if

∀p ∈ PVar . mτ (p) = a ⇐⇒ mσ (p) = a

and ∀b ∈ mτ (validτ). mτ (b .next) = a ⇐⇒ mσ (b .next) = a

and a ∈ fresh(τ) ∪ freed(τ) ⇐⇒ a ∈ fresh(σ) ∪ freed(σ)

and F (τ , a) ⊆ F (σ , a) .

The first line in this definition states that the same pointer variables in τ and σ are pointing to a.

Similarly, the second line states this for the pointer selectors of valid addresses. We have to exclude

the invalid addresses here because τ and σ may differ on the in-use addresses due to eliding reuse.

The third line states that a can be allocated in τ iff it can be allocated in σ . The last line states that

the observer allows for more behavior on a in σ than in τ . These properties combined guarantee

that σ can mimic actions of τ involving a no matter if invalid pointers are used.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:19

The memory equivalence lets us detect ABAs in [[D(OSMR)]]one. Intuitively, we can only detect

first ABAs because we allow for only a single address to be reused. Subsequent ABAs on different

addresses cannot be detected. To detect ABA sequences of arbitrary length, an arbitrary number

of reusable addresses is required. To avoid this, i.e., to avoid an analysis of full [[D(OSMR)]]Adr , we

formalize the idea of harmless ABA from before. We say that an ABA is harmless if executing it

leads to a system state which can be explored without performing the ABA. That the system state

can be explored without performing the ABA means that every ABA is also a first ABA. Thus,

any sequence of ABAs is explored by considering only first ABAs. Note that this definition is

independent of the actual correctness notion.

Definition 5.17 (Harmful ABA). [[D(OSMR)]]one is free from harmful ABAs if the following holds:

∀σa .act ∈ [[D(OSMR)]]{a } ∀σb ∈ [[D(OSMR)]]{b } ∃σ
′
b ∈ [[D(OSMR)]]{b } .

σa ∼ σb ∧ act = (_, assert _, _) =⇒ σa .act ∼ σ ′
b ∧ σb ≃b σ ′

b ∧ σa .act ⋖σ
′
b .

To understand how the definition implements our intuition, consider some τ .act ∈ [[D(OSMR)]]Adr
where act performs an ABA on address a. Our goal is to mimic τ .act in [[D(OSMR)]]{b } , that is, we

want to mimic the ABA without reusing address a (for instance, to detect subsequent ABAs on

address b). Assume we are given some σb ∈ [[D(OSMR)]]{b } which is similar and memory equivalent

wrt. b to τ . This does not guarantee that act can be mimicked after σb ; the ABA may not be enabled

because it involves invalid pointers the valuation of which may differ in τ and σb . However, we can

construct a computation σa which is similar and memory equivalent wrt. a to τ . After σa the ABA is

enabled, i.e., we have σa .act ∈ [[D(OSMR)]]{a } . For those two computations σa .act and σb we invoke

the above definition. It yields another computation σ ′
b
∈ [[D(OSMR)]]{b } which, intuitively, coincides

with σb but where the ABA has already been executed. Put differently, σ ′
b
is a computation which

mimics the execution of act after σb (although act is not enabled).

Example 5.18 (Continued). Consider the following computation of Michael&Scott’s queue:

τ = τ6 . (t, head := Head, [head 7→ a]).τ7 . free(a).τ8 .

(t, enter protect(head, 0),�). (t, exit,�). (t, assert head = Head,�) .

This computation resembles a thread t executing Lines 26 to 28 while an interferer frees address a

referenced by head. Note that the assert resembles the conditional from Line 28 and states that

the condition evaluates to true. That is, the last action in τ is an ABA.

Reusing address a allows us to mimic τ with a computation σa ∈ [[D(OSMR)]]{a } which detects the

ABA. For simplicity, assume τ = σa . Mimicking τ with another computation σb ∈ [[D(OSMR)]]{b } is

not possible. In σb ∈ [[D(OSMR)]]{b } the first allocation of a will be elided such that the assertion is

not enabled. However, rescheduling the actions gives rise to σ ′
b
∈ [[D(OSMR)]]{b } which coincides

with σb but where the assertion has also been executed:

σ ′
b = τ6 .τ7 . free(a).τ8 . (t, head := Head, [head 7→ a]).

(t, enter protect(head, 0),�). (t, exit,�). (t, assert head = Head,�) .

Requiring the existence of such a σ ′
b
guarantees that an analysis can see past ABAs on address a,

although a is not reused.

A key aspect of the above definition is that checking for harmful ABAs can be done in the simpler

semantics [[D(OSMR)]]one. Altogether, this means that we can rely on [[D(OSMR)]]one for both the

actual analysis and a soundness (absence of harmful ABAs) check. Our experiments show that the

above definition is practical. There were no harmful ABAs in the benchmarks we considered.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:20 Roland Meyer and Sebastian Wolff

5.4 Reduction Result

We show how to exploit the concepts introduced so far to soundly verify safety properties in the

simpler semantics [[D(OSMR)]]one instead of full [[D(OSMR)]]Adr .

Lemma 5.19. Let [[D(OSMR)]]one be free from pointer races and harmful ABAs, and let OSMR support

elision. For all τ ∈ [[D(OSMR)]]Adr and a ∈Adr there is σ ∈ [[D(OSMR)]]{a } with τ ∼σ , τ ⋖σ , and τ ≃a σ .

Proof Sketch. We construct σ inductively by mimicking every action from τ and eliding reuses

as needed. For the construction, consider τ .act ∈ [[D(OSMR)]]Adr and assume we have already

constructed, for every a ∈ Adr , an appropriate σa ∈ [[D(OSMR)]]{a } . Consider some address a ∈ Adr .

The task is to mimic act in σa . If act is an assignment or an SMR call, then pointer race freedom

guarantees that we can mimic act by executing the same command with a possibly different update.

We discussed this in Section 5.2. The interesting cases are ABAs, frees, and allocations.

First, consider the case where act executes an ABA assertion assert p = q. That the assertion is

an ABA means that at least one of the pointers is invalid, say p. That is, act may not be enabled

after σa . Let p point to b in τ . By induction, we have already constructed σb for τ . The ABA is

enabled after σb . This is due to τ ≃b σb . It implies that p points to b in τ iff p points to b in σb
(independent of the validity), and likewise for q. That is, the comparison has the same outcome

in both computations. Now, we can exploit the absence of harmful ABAs to find a computation

mimicking τ .act for a. Applying Definition 5.17 to σb .act and σa yields some σ ′
a that satisfies the

required properties.

Second, consider the case of act performing a free(b). If act is enabled after σa nothing needs

to be shown. In particular, this is the case if b is a valid address or a = b. Otherwise, b must be

an invalid address. Freeing an invalid address does not change the valid memory. It also does not

change the control location of threads as frees are performed by the environment. Hence, we have

τ .act ∼ σa . By the definition of elision support, Definition 5.14iii, the free does not affect the

behavior of the observer on other addresses. So we get τ .act ⋖σa . With the same arguments we

conclude τ .act ≃a σa . That is, we do not need to mimic frees of invalid addresses.

Last, consider act executing an allocation p := malloc of address b. If b is fresh in σa or a = b,

then act is enabled. The allocation makes b a valid address. That ⋖ holds for this address follows

from elision support, Definition 5.14ii. Otherwise, act is not enabled because b cannot be reused.

We replace in σa every occurrence of b with a fresh address c . Let us denote the result with σa[b/c].

Relying on elision support, Definition 5.14i, one can show σa ≺ σa[b/c] and thus τ ≺ σa[b/c] for

all ≺ ∈ {∼,⋖,≃a}. Since b is fresh in σa[b/c], we conclude by enabledness of act. □

From the above follows the second result of the paper. It states that for every computation there

is a similar one which reuses at most a single address. Since similarity implies control location

equality, our result allows for a much simpler verification of safety properties. We stress that the

result is independent of the actual observer used.

Theorem 5.20. If [[D(OSMR)]]one is pointer race free, supports elision, and is free from harmful ABAs,

then [[D(OSMR)]]Adr ∼ [[D(OSMR)]]one .

One can generalize the above results to a strictly weaker premise, see [Meyer and Wolff 2018].

6 EVALUATION

We implemented our approach in a tool. It is a thread-modular analysis for (i) verifying linearizability

of singly-linked lock-free data structures using SMR specifications, and (ii) verifying SMR imple-

mentations against their specification. In the following, we elaborate on the SMR implementations

used for our benchmarks and the implemented analysis, and evaluate our tool.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:21

OEBR

l14 l15 l16 l17 l18

leaveQ(t),

t = u

exit(t),

t = u

retire(t , a),

a = v

free(a),

a = v

enterQ(t), t = u

Fig. 7. Observer specifying when EBR/QSBR defers deletion using two variables, u and v, to observe a

thread and an address, respectively. The observer implements the property that a cell v retired during the

non-quiescent phase of a thread u may not be freed until the thread becomes quiescent. The full specification

of EBR/QSBR is the observer OBase × OEBR .

6.1 SMR Algorithms

For our experiments, we consider two well-known SMR algorithms: Hazard Pointers (HP) and Epoch-

Based Reclamation (EBR). Additionally, we include as a baseline for our experiments a simplistic GC

SMR algorithm which does not allow for memory to be reclaimed. We already introduced HP and

gave a specification (cf. Figure 6) in form of the observer OBase × OHP . We briefly introduce EBR.

Epoch-based reclamation [Fraser 2004] relies on two assumption: (i) threads cannot have pointers

to any node of the data structure in-between operation invocations, and (ii) nodes are retired only

after being removed from the data structure, i.e., after being made unreachable from the shared

variables. Those assumptions imply that no thread can acquire a pointer to a removed node if every

thread has been in-between an invocation since the removal. So it is safe to delete a retired node

if every thread has been in-between an invocation since the retire. Technically, EBR introduces

epoch counters, a global one and one for each thread. Similar to hazard pointers, thread epochs

are single-writer multiple-reader counters. Whenever a thread invokes an operation, it reads the

global epoch e and announces this value by setting its thread epoch to e . Then, it scans the epochs

announced by the other threads. If they all agree on e , the global epoch is set to e + 1. The fact that

all threads must have announced the current epoch e for it to be updated to e + 1 means that all

threads have invoked an operation after the epoch was changed from e − 1 to e . That is, all threads

have been in-between invocations. Thus, deleting nodes retired in the global epoch e − 1 becomes

safe from the moment when the global epoch is updated from e to e + 1. To perform those deletions,

every thread keeps a list of retired nodes for every epoch and stores nodes passed to retire in the

list for the current thread epoch. For the actual deletion it is important to note that the thread-local

epoch may lack behind the global epoch by up to 1. As a consequence, a thread may put a node

retired during the global epoch e into its retire-list for epoch e − 1. So for a thread during its local

epoch e . it is not safe to delete the nodes in the retired-list for e − 1 because it may have been retired

during the global epoch e . It is only safe to delete the nodes contained in the retired-list for epochs

e − 2 and smaller. Hence, it suffices to maintaining three retire-lists. Progressing to epoch e + 1

allows for deleting the nodes from the local epoch e − 2 and to reuse that retire-list for epoch e + 1.

Quiescent-State-Based Reclamation (QSBR) [McKenney and Slingwine 1998] generalizes EBR by

allowing the programmer to manually identify when threads are quiescent. A thread is quiescent if

it does not hold pointers to any node from the data structure. Threads signal this by calling enterQ

and leaveQ upon entering and leaving a quiescent phase, respectively.

We use the observer OBase × OEBR from Figure 7 for specifying both EBR and QSBR (they have

the same specification). As for HP, we use OBase to ensure that only those addresses are freed that

have been retired. Observer OEBR implements the actual EBR/QSBR behavior described above.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:22 Roland Meyer and Sebastian Wolff

To use HP and EBR with our approach for restricting reuse during an analysis, we have to show

that their observers support elision. This is established by the following lemma. We consider it

future work to extend our tool such that it performs the appropriate checks automatically.

Lemma 6.1. The observers OBase × OHP and OBase × OEBR support elision.

6.2 Thread-Modular Linearizability Analysis

Proving a data structure correct for an arbitrary number of client threads requires a thread-modular

analysis [Berdine et al. 2008; Jones 1983]. Such an analysis abstracts a system state into so-called

views, partial configurations reflecting a single thread’s perception of the system state. A view

includes a thread’s program counter and, in the case of shared-memory programs, the memory

reachable from the shared and thread-local variables. An analysis then saturates a setV of reachable

views. This is done by computing the least solution to the recursive equationV = V ∪seq(V)∪int(V).

Function seq computes a sequential step, the views obtained from letting each thread execute an

action on its own views. Function int accounts for interference among threads. It updates the shared

memory of views by actions from other threads. We follow the analysis from Abdulla et al. [2013,

2017]. There, int is computed by combining two views, letting one thread perform an action, and

projecting the result to the other thread. More precisely, computing int(V) requires for every pair

of views υ1,υ2 ∈ V to (i) compute a combined view ω of υ1 and υ2, (ii) perform for ω a sequential

step for the thread of υ2, and (iii) project the result of the sequential step to the perception of the

thread from υ1. This process is required only for views υ1 and υ2 thatmatch, i.e., agree on the shared

memory both views have in common. Otherwise, the views are guaranteed to reflect different

system states. Thus, interference is not needed for an exhaustive state space exploration.

To check for linearizability, we assume that the program under scrutiny is annotated with

linearization points, points at which the effect of operations take place logically and become visible

to other threads. Whether or not the sequence of emitted linearization points is indeed linearizable

can be checked using an observer automaton implementing the desired specification [Abdulla et al.

2013, 2017], in our case the one for stacks and queues. The state of this automaton is stored in the

views. If a final state is reached, verification fails.

For brevity, we omit a discussion of the memory abstraction we use. It is orthogonal to the

analysis. For more details, we refer the reader to [Abdulla et al. 2013, 2017]. We are not aware of

another memory abstraction which can handle reuse and admits automation.

We extend the above analysis by our approach to integrate SMR and restrict reuse to a single

address. To integrate SMR, we add the necessary observers to views. Note that observers have

a pleasant interplay with thread-modularity. In a view for thread t only those observer states

are required where t is observed. For the hazard pointer observer OBase × OHP this means that

only observer states with u capturing t need to be stored in the view for t . Similarly, the memory

abstraction induces a set of addresses that need to be observed (by v). However, we do not keep

observer states for shared addresses, i.e., addresses that are reachable from the shared variables.

Instead, we maintain the invariant that they are never retired nor freed. For the analysis, we then

assume that the ignored observer states are arbitrary (but not in observer locations implying

retiredness or freedness of shared addresses). We found that all benchmark programs satisfied this

invariant and that the resulting precision allowed for successful verification. Altogether, this keeps

the number of observer states per view small in practice.

As discussed in Section 4, observers OBase × OHP and OBase × OEBR assume that a client does not

perform double-retires. We integrate a check for this invariant, relying on observer OBase: if OBase

is in a state (l8,φ), then a double-retire occurs if an event of the form retire(_,φ(v)) is emitted.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:23

To guarantee that the restriction of reuse to a single cell is sound, we have to check for pointer

races and harmful ABAs. To check for pointer races we annotate views with validity information.

This information is updated accordingly during sequential and interference steps. If a pointer

race is detected, verification fails. For this check, we rely on Lemma 6.2 below and deem racy any

invocation of retire with invalid pointers. That is, the pointer race check boils down to scanning

dereferences and retire invocations for invalid pointers.

Lemma 6.2. If a call is racy wrt. OBase × OEBR or OBase × OHP , then it is a call of function retire

using an invalid pointer.

Last, we add a check for harmful ABAs on top of the state space exploration. This check has to

implement Definition 5.17. That a computation σa .act contains a harmful ABA can be detected in

the view υa for thread t which performs act. Like for computations, the view abstraction υb of σb
for t cannot perform the ABA. To establish that the ABA is harmless, we seek a υ ′

b
which is similar

to υa , memory equivalent to υb , and includes the observer behavior of υb . (The relations introduced

in Section 5 naturally extend from computations to views.) If no such υ ′
b
exists, verification fails.

In the thread-modular setting one has to be careful with the choice of υ ′
b
. It is not sufficient to

find just some υ ′
b
satisfying the desired relations. The reason lies in that we perform the ABA check

on a thread-modular abstraction of computations. To see this, assume the view abstraction of σb is

α(σb) = {υb ,υ} where υb is the view for thread t which performs the ABA in σa .act. For just some

υ ′
b
it is not guaranteed that there is a computation σ ′

b
such that α(σ ′

b
) = {υ ′

b
,υ}. The sheer existence

of υ ′
b
and υ in V does not guarantee that there is a computation the abstraction of which yields

those two views. Put differently, we cannot construct computations from views. Hence, a simple

search for υ ′
b
cannot prove the existence of the required σ ′

b
.

To overcome this problem, we use a method to search for a υ ′
b
that guarantees the existence of

σ ′
b
; in terms of the above example, guarantees that there is σ ′

b
with α(σ ′

b
) = {υ ′

b
,υ}. We take the

view υb that cannot perform the ABA. We apply sequential steps to υb until it comes back to the

same program counter. The rational behind is that ABAs are typically conditionals that restart the

operation if the ABA is not executable. Restarting the operation results in reading out pointers anew

(this time without interference from other threads). Consequently, the ABA is now executable. The

resulting view is a candidate for υ ′
b
. If it does not satisfy Definition 5.17, verification fails. Although

simple, this approach succeeded in all benchmarks.

6.3 Linearizability Experiments

We implemented the above analysis in a C++ tool.3 We evaluated the tool on singly-linked lock-free

data structures from the literature, like Treiber’s stack [Michael 2002; Treiber 1986], Michael&Scott’s

lock-free queue [Michael 2002; Michael and Scott 1996], and the DGLM lock-free queue [Doherty

et al. 2004b]. The findings are listed in Table 1. They include (i) the time taken for verification, i.e.,

to explore exhaustively the state space and check linearizability, (ii) the size of the explored state

space, i.e., the number of reachable views, (iii) the number of ABA prone views, i.e., views where a

thread is about to perform an assert containing an invalid pointer, (iv) the time taken to establish

that no ABA is harmful, and (v) the verdict of the linearizability check. The experiments were

conducted on an Intel Xeon X5650@2.67GHz running Ubuntu 16.04 and using Clang version 6.0.

Our approach is capable of verifying lock-free data structures using HP and EBR. We were able

to automatically verify Treiber’s stack, Michael&Scott’s queue, and the DGLM queue. To the best of

our knowledge, we are the first to verify data structures using the aforementioned SMR algorithms

3Available at: https://github.com/Wolff09/TMRexp/releases/tag/POPL19-chkds

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://github.com/Wolff09/TMRexp/releases/tag/POPL19-chkds

58:24 Roland Meyer and Sebastian Wolff

Table 1. Experimental results for verifying singly-linked data structures using SMR. The experiments were

conducted on an Intel Xeon X5650@2.67GHz running Ubuntu 16.04 and using Clang 6.0.

Programa SMR Time Verif. States ABAs Time ABA Linearizable

Coarse stack GC 0.44s 300 0 0s yes

None 0.5s 300 0 0s yes

Coarse queue GC 1.7s 300 0 0s yes

None 1.7s 300 0 0s yes

Treiber’s stack GC 3.2s 806 0 0s yes

EBR 16s 1822 0 0s yes

HP 19s 2606 186 0.06s yes

Opt. Treiber’s stack HP 0.8s Ð Ð Ð nob

Michael&Scott’s queue GC 414s 2202 0 0s yes

EBR 2630s 7613 0 0s yes

HP 7075s 19028 536 0.9s yes

DGLM queue GC 714s 9934 0 0s yesc

EBR 3754s 27132 0 0s yesc

HP 7010s 41753 2824 26s yesc

aThe code for the benchmark programs can be found in [Meyer and Wolff 2018].
bPointer race due to an ABA in push: the next pointer of the new node becomes invalid and the CAS succeeds.

cImprecision in the memory abstraction required hinting that Head cannot overtake Tail by more than one node.

fully automatically. Moreover, we are also the first to verify automatically the DGLM queue under

any manual memory management technique.

An interesting observation throughout the entire test suite is that the number of ABA prone views

is rather small compared to the total number of reachable views. Consequently, the time needed to

check for harmful ABAs is insignificant compared to the verification time. This substantiates the

usefulness of ignoring ABAs during the actual analysis and checking afterwards that no harmful

ABA exists.

96 struct Node {/* ... */}

97 shared Node* ToS;

98 void push(data_t input) {

99 Node* node = new Node ();

100 node ->data = input;

101 while (true) {

102 Node* top = ToS;

103 node ->next = top;

104 if (CAS&ToS , top , next)

105 break;

106 }

Fig. 8. The push operation of Treiber’s lock-

free stack [Treiber 1986].

Our tool could not establish linearizability for the op-

timized version of Treiber’s stack with hazard pointers

by Michael [2002]. The reason for this is that the push

operation does not use any hazard pointers. This leads

to pointer races and thus verification failure although

the implementation is correct. To see why, consider

the code of push from Figure 8. The operation allocates

a new node, reads the top-of-stack pointer into a lo-

cal variable top in Line 102, links the new node to the

top-of-stack in Line 103, and swings the top-of-stack

pointer to the new node in Line 104. Between Line 102

and Line 103 the node referenced by top can be popped,

reclaimed, reused, and reinserted by an interferer. That

is, the CAS in Line 104 is ABA prone. The reclamation of

the node referenced by top renders both the top pointer

and the next field of the new node invalid. As discussed

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:25

Table 2. Experimental results for verifying SMR implementations against their observer specifications. The

experiments were conducted on an Intel Xeon X5650@2.67GHz running Ubuntu 16.04 and using Clang 6.0.

SMR Implementationa Specification Verification Time States Correct

Hazard Pointers OBase × OHP 1.5s 5437 yes

Epoch-Based Reclamation OBase × OEBR 11.2s 11528 yes

aThe code for the benchmark programs can be found in [Meyer and Wolff 2018].

in Section 5, the comparison of the valid ToS with the invalid top makes top valid again. However,

the next field of the new node remains invalid. That is, the push succeeds and leaves the stack in a

state with ToS-> next being invalid. This leads to pointer races because no thread can acquire valid

pointers to the nodes following ToS. Hence, reading out data of such subsequent nodes in the pop

procedure, for example, raises a pointer race.

To solve this issue, the CAS in Line 104 has to validate the pointer node->next. One could annotate

the CAS with an invariant Tos == node-> next. Treating invariants and assertions alike would then

result in the CAS validating node->next (cf. Section 5.1) as desired. That the annotation is an invariant

indeed, could be checked during the analysis. We consider a proper investigation as future work.

For the DGLM queue, our tool required hints. The DGLM queue is similar to Michael&Scott’s

queue but allows the Head pointer to overtake the Tail pointer by at most one node. Due to

imprecision in the memory abstraction, our tool explored states with malformed lists where Head

overtook Tail by more than one node. We implemented a switch to increase the precision of the

abstraction and ignore cases where Head overtakes Tail by more than one node. This allowed us to

verifying the DGLM queue. While this change is ad hoc, it does not jeopardize the principledness

of our approach because it affects only the memory abstraction which we took from the literature.

6.4 Verifying SMR Implementations

It remains to verify that a given SMR implementation is correct wrt. an observer OSMR. As noted in

Section 4, an SMR implementation can be viewed as a lock-free data structure where the stored data

are pointers. Consequently, we can reuse the above analysis. We extended our implementation with

an abstraction for (sets of) data values.4 The main insight for a concise abstraction is that it suffices

to track a single observer state per view. If the SMR implementation is not correct wrt. OSMR, then

by definition there is τ ∈ [[MGC(R)]]Adr withH(τ) < S(OSMR). Hence, there must be some observer

state s with H(τ) < S(s). Consider the observers OBase × OHP and OBase × OEBR where s is of the

form s = (l, {u 7→ t, v 7→ a,w 7→ i}). This single state s induces a simple abstraction of data values

d : either d = a or d , a. Similarly, an abstraction of sets of data values simply tracks whether or

not the set contains a.

To gain adequate precision, we retain in every view the thread-local pointers of t . Wrt. Figure 3,

this keeps the thread-t-local HPRec in every view. It makes the analysis recognize that t has indeed

protected a. Moreover, we store in every view whether or not the last retire invocation stems from

the thread of that view. With this information, we avoid unnecessary matches during interference of

viewsυ1 andυ2: if both threads t1 ofυ1 and t2 ofυ2 have performed the last retire invocation, then t1
and t2 are the exact same thread. Hence, interference is not needed as threads have unique identities.

We found this extension necessary to gain the precision required to verify our benchmarks.

4Available at: https://github.com/Wolff09/TMRexp/releases/tag/POPL19-chksmr

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://github.com/Wolff09/TMRexp/releases/tag/POPL19-chksmr

58:26 Roland Meyer and Sebastian Wolff

Table 2 shows the experimental results for the HP implementation from Figure 3 and an EBR im-

plementation. Both SMR implementations allow threads to dynamically join and part. We conducted

the experiments in the same setup as before. As noted in Section 4, the verification is simpler and

thus more efficient than the previous one. The reason for this is the absence of memory reclamation.

7 RELATED WORK

We discuss the related work on SMR implementations and on the verification of linearizability.

Safe Memory Reclamation. Besides HP and EBR further SMR algorithms have been proposed in

the literature. Free-lists is the simplest such mechanism. Retired nodes are stored in a thread-local

free-list. The nodes in this list are never reclaimed. Instead, a thread can reuse nodes instead of

allocating new ones. Reference Counting (RC) adds to nodes a counter representing the number

of pointers referencing that node. Updating such counters safely in a lock-free fashion, however,

requires the use of hazard pointers [Herlihy et al. 2005] or double-word CAS [Detlefs et al. 2001],

which is not available on most hardware. Besides free-lists and RC, most SMR implementations

from the literature combine techniques. For example, DEBRA [Brown 2015] is an optimized QSBR

implementation. Harris [2001] extends EBR by adding epochs to nodes to detect when reclamation

is safe. Cadence [Balmau et al. 2016], the work by Aghazadeh et al. [2014], and the work by Dice

et al. [2016] are HP implementations improving on the original implementation due to Michael

[2002]. ThreadScan [Alistarh et al. 2015], StackTrack [Alistarh et al. 2014], and Dynamic Collect

[Dragojevic et al. 2011] borrow the mechanics of hazard pointers to protect single cells at a time.

Drop the Anchor [Braginsky et al. 2013], Optimistic Access [Cohen and Petrank 2015b], Automatic

Optimistic Access [Cohen and Petrank 2015a], QSense [Balmau et al. 2016], Hazard Eras [Ramalhete

and Correia 2017], and Interval-Based Reclamation [Wen et al. 2018] are combinations of EBR

and HP. Beware&Cleanup [Gidenstam et al. 2005] is a combination of HP and RC. Isolde [Yang

and Wrigstad 2017] is an implementation of EBR and RC. We omit Read-Copy-Update (RCU) here

because it does not allow for non-blocking deletion [McKenney 2004]. While we have implemented

an analysis for EBR and HP only, we believe that our approach can handle most of the above works

with little to no modifications. We refer the reader to [Meyer and Wolff 2018] for a more detailed

discussion.

Linearizability. Linearizability of lock-free data structures has received considerable attention

over the last decade. The proposed techniques for verifying linearizability can be classified roughly

into (i) testing, (ii) non-automated proofs, and (iii) automated proofs. Linearizability testing [Bur-

ckhardt et al. 2010; Cerný et al. 2010; Emmi and Enea 2018; Emmi et al. 2015; Horn and Kroening

2015; Liu et al. 2009, 2013; Lowe 2017; Travkin et al. 2013; Vechev and Yahav 2008; Yang et al.

2017; Zhang 2011] enumerates an incomplete portion of the state space and checks whether or

not the discovered computations are linearizable. This approach is useful for bug-hunting and for

analyzing huge code bases. However, it cannot prove an implementation linearizable as it might

miss non-linearizable computations.

In order to prove a given implementation linearizable, one can conduct a manual (pen&paper) or

a mechanized (tool-supported, not automated) proof. Such proofs are cumbersome and require a

human to have a deep understanding of both the implementation under scrutiny and the verification

technique used. Common verification techniques are program logics and simulation relations. Since

our focus lies on automated proofs, we do not discuss non-automated proof techniques in detail.

For a survey refer to [Dongol and Derrick 2014].

Interestingly, most non-automated proofs of lock-free code rely on a garbage collector [Bäumler

et al. 2011; Bouajjani et al. 2017; Colvin et al. 2005, 2006; Delbianco et al. 2017; Derrick et al. 2011;

Doherty and Moir 2009; Elmas et al. 2010; Groves 2007, 2008; Hemed et al. 2015; Jonsson 2012;

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:27

Khyzha et al. 2017; Liang and Feng 2013; Liang et al. 2012, 2014; O’Hearn et al. 2010; Sergey et al.

2015a,b] to avoid the complexity of memory reclamation. Henzinger et al. [2013]; Schellhorn et al.

[2012] verify a lock-free queue by Herlihy and Wing [1990] which does not reclaim memory.

There is less work on manual verification in the presence of reclamation. Doherty et al. [2004b]

verify a lock-free queue implementation using tagged pointers and free-lists. Dodds et al. [2015]

verify a time-stamped stack using tagged pointers. Krishna et al. [2018] verify Harris’ list [Harris

2001] with reclamation. Finally, there are works [Fu et al. 2010; Gotsman et al. 2013; Parkinson et al.

2007; Tofan et al. 2011] which verify implementations using safe memory reclamation. With the

exception of [Gotsman et al. 2013], they only consider implementations using HP. Gotsman et al.

[2013] in addition verify implementations using EBR. With respect to lock-free data structures,

these works prove linearizability of stacks. Unlike in our approach, data structure and SMR code are

verified together. In theory, those works are not limited to such simple data structures. In practice,

however, we are not aware of any work that proves linearizable more complicated implementations

using HP. The (temporal) specifications for HP and EBR from Gotsman et al. [2013] are reflected in

our observer automata.

Alglave et al. [2013]; Desnoyers et al. [2013]; Kokologiannakis and Sagonas [2017]; Liang et al.

[2018] test RCU implementations. Gotsman et al. [2013]; Tassarotti et al. [2015] specify RCU and

verify data structures using it non-automatically. We do not discuss such approaches because

memory reclamation in RCU is blocking.

Automated approaches relieve a human checker from the complexity of manual/mechanized

proofs. In turn, they have to automatically synthesize invariants and finitely encode all possible

computations. The state-of-the-art methodology to do so is thread-modularity [Berdine et al. 2008;

Jones 1983]. We have already discussed this technique in Section 6.2. Its main advantage is the

ability to verify library code under an unbounded number of concurrent clients.

Similar to non-automated verification, most automated approaches assume a garbage collector

[Abdulla et al. 2016; Amit et al. 2007; Berdine et al. 2008; Segalov et al. 2009; Sethi et al. 2013;

Vafeiadis 2010a,b; Vechev et al. 2009; Zhu et al. 2015]. Garbage collection has the advantage of

ownership: an allocation is always owned by the allocating thread, it cannot be accessed by any

other thread. This allows for guiding thread-modular techniques, resulting in faster convergence

times and more precise analyses. Despite this, there are many techniques that suffer from poor

scalability. To counteract the state space explosion, they neglect SMR code making the programs

under scrutiny simpler (and shorter).

Few works [Abdulla et al. 2013; Haziza et al. 2016; Holík et al. 2017] address the challenge of

verifying lock-free data structures under manual memory management. These works assume that

accessing deleted memory is safe and that tag fields are never overwritten with non-tag values.

Basically, they integrate free-lists into the semantics. Their tools are able to verify Treiber’s stack

and Micheal&Scott’s queue using tagged pointers. For our experiments we implemented an analysis

based on [Abdulla et al. 2013; Haziza et al. 2016]. For our theoretical development, we borrowed

the observer automata from Abdulla et al. [2013] as a specification means for SMR algorithms.

From Haziza et al. [2016] we borrowed the notion of validity and pointer races. We modified the

definition of validity to allow for ABAs and lifted the pointer race definition to SMR calls. This

allowed us to verify lock-free data structures without the complexity of SMR implementations and

without considering all possible reallocations. With our approach we could verify the DGLM queue

which has not been verified automatically for manual memory management before.

To the best of our knowledge, there are no works which propose an automated approach for

verifying linearizability of lock-free data structures similar to ours. We are the first to (i) propose

a method for automatically verifying linearizability which decouples the verification of memory

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

58:28 Roland Meyer and Sebastian Wolff

reclamation from the verification of the data structure, and (ii) propose a method for easing the

verification task by avoiding reuse of memory except for a single memory location.

8 CONCLUSION AND FUTURE WORK

In this paper, we have shown that the way lock-free data structures and their memory reclamation

are implemented allows for compositional verification. The memory reclamation can be verified

against a simple specification. In turn, this specification can be used to verify the data structure

without considering the implementation of the memory reclamation. This breaks verification into

two tasks each of which has to consider only a part of the original code under scrutiny.

However, the resulting tasks remain hard for verification tools. To reduce their complexity and

make automation tractable, we showed that one can rely on a simpler semantics without sacrificing

soundness. The semantics we proposed is simpler in that, instead of arbitrary reuse, only a single

memory location needs to be considered for reuse. To ensure soundness, we showed how to check

in such a semantics for ABAs. We showed how to tolerate certain, harmless ABAs to handle SMR

implementations like hazard pointers. That is, we need to give up verification only if there are

harmful ABAs, that is, true bugs.

We evaluated our approach in an automated linearizability checker. Our experiments confirmed

that our approach can handle complex data structures with SMR the verification of which is beyond

the capabilities of existing automatic approaches.

As future work we would like to extend our implementation to support more data structures

and more SMR implementations from the literature. As stated before, this may require some

generalizations of our theory.

ACKNOWLEDGMENTS

We thank the POPL’19 reviewers for their valuable feedback and suggestions for improvements.

REFERENCES

Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. 2013. An Integrated Specification

and Verification Technique for Highly Concurrent Data Structures. In TACAS (LNCS), Vol. 7795. Springer, 324ś338.

https://doi.org/10.1007/978-3-642-36742-7_23

Parosh Aziz Abdulla, Frédéric Haziza, Lukás Holík, Bengt Jonsson, and Ahmed Rezine. 2017. An Integrated Specification

and Verification Technique for Highly Concurrent Data Structures. STTT 19, 5 (2017), 549ś563. https://doi.org/10.1007/

s10009-016-0415-4

Parosh Aziz Abdulla, Bengt Jonsson, and Cong Quy Trinh. 2016. Automated Verification of Linearization Policies. In SAS

(LNCS), Vol. 9837. Springer, 61ś83. https://doi.org/10.1007/978-3-662-53413-7_4

Zahra Aghazadeh, Wojciech M. Golab, and Philipp Woelfel. 2014. Making objects writable. In PODC. ACM, 385ś395.

https://doi.org/10.1145/2611462.2611483

Jade Alglave, Daniel Kroening, and Michael Tautschnig. 2013. Partial Orders for Efficient Bounded Model Checking of

Concurrent Software. In CAV (LNCS), Vol. 8044. Springer, 141ś157. https://doi.org/10.1007/978-3-642-39799-8_9

Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev, and Nir Shavit. 2014. StackTrack: an automated

transactional approach to concurrent memory reclamation. In EuroSys. ACM, 25:1ś25:14. https://doi.org/10.1145/2592798.

2592808

Dan Alistarh, William M. Leiserson, Alexander Matveev, and Nir Shavit. 2015. ThreadScan: Automatic and Scalable Memory

Reclamation. In SPAA. ACM, 123ś132. https://doi.org/10.1145/2755573.2755600

Daphna Amit, Noam Rinetzky, Thomas W. Reps, Mooly Sagiv, and Eran Yahav. 2007. Comparison Under Abstraction for

Verifying Linearizability. In CAV (LNCS), Vol. 4590. Springer, 477ś490. https://doi.org/10.1007/978-3-540-73368-3_49

Oana Balmau, Rachid Guerraoui, Maurice Herlihy, and Igor Zablotchi. 2016. Fast and Robust Memory Reclamation for

Concurrent Data Structures. In SPAA. ACM, 349ś359. https://doi.org/10.1145/2935764.2935790

Simon Bäumler, Gerhard Schellhorn, Bogdan Tofan, and Wolfgang Reif. 2011. Proving linearizability with temporal logic.

Formal Asp. Comput. 23, 1 (2011), 91ś112. https://doi.org/10.1007/s00165-009-0130-y

Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel Sagiv. 2008. Thread Quantification for Concurrent

Shape Analysis. In CAV (LNCS), Vol. 5123. Springer, 399ś413. https://doi.org/10.1007/978-3-540-70545-1_37

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://doi.org/10.1007/978-3-642-36742-7_23
https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/s10009-016-0415-4
https://doi.org/10.1007/978-3-662-53413-7_4
https://doi.org/10.1145/2611462.2611483
https://doi.org/10.1007/978-3-642-39799-8_9
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/2755573.2755600
https://doi.org/10.1007/978-3-540-73368-3_49
https://doi.org/10.1145/2935764.2935790
https://doi.org/10.1007/s00165-009-0130-y
https://doi.org/10.1007/978-3-540-70545-1_37

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:29

Ahmed Bouajjani, Michael Emmi, Constantin Enea, and Suha Orhun Mutluergil. 2017. Proving Linearizability Using Forward

Simulations. In CAV (2) (LNCS), Vol. 10427. Springer, 542ś563. https://doi.org/10.1007/978-3-319-63390-9_28

Anastasia Braginsky, Alex Kogan, and Erez Petrank. 2013. Drop the anchor: lightweight memory management for non-

blocking data structures. In SPAA. ACM, 33ś42. https://doi.org/10.1145/2486159.2486184

Trevor Alexander Brown. 2015. Reclaiming Memory for Lock-Free Data Structures: There has to be a Better Way. In PODC.

ACM, 261ś270. https://doi.org/10.1145/2767386.2767436

Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy Tan. 2010. Line-up: a complete and automatic linearizability

checker. In PLDI. ACM, 330ś340. https://doi.org/10.1145/1806596.1806634

Pavol Cerný, Arjun Radhakrishna, Damien Zufferey, Swarat Chaudhuri, and Rajeev Alur. 2010. Model Checking of

Linearizability of Concurrent List Implementations. In CAV (LNCS), Vol. 6174. Springer, 465ś479. https://doi.org/10.

1007/978-3-642-14295-6_41

Nachshon Cohen and Erez Petrank. 2015a. Automatic memory reclamation for lock-free data structures. In OOPSLA. ACM,

260ś279. https://doi.org/10.1145/2814270.2814298

Nachshon Cohen and Erez Petrank. 2015b. Efficient Memory Management for Lock-Free Data Structures with Optimistic

Access. In SPAA. ACM, 254ś263. https://doi.org/10.1145/2755573.2755579

Robert Colvin, Simon Doherty, and Lindsay Groves. 2005. Verifying Concurrent Data Structures by Simulation. Electr. Notes

Theor. Comput. Sci. 137, 2 (2005), 93ś110. https://doi.org/10.1016/j.entcs.2005.04.026

Robert Colvin, Lindsay Groves, Victor Luchangco, and Mark Moir. 2006. Formal Verification of a Lazy Concurrent List-Based

Set Algorithm. In CAV (LNCS), Vol. 4144. Springer, 475ś488. https://doi.org/10.1007/11817963_44

Germán Andrés Delbianco, Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2017. Concurrent Data Structures

Linked in Time. In ECOOP (LIPIcs), Vol. 74. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 8:1ś8:30. https:

//doi.org/10.4230/LIPIcs.ECOOP.2017.8

John Derrick, Gerhard Schellhorn, and Heike Wehrheim. 2011. Mechanically verified proof obligations for linearizability.

ACM Trans. Program. Lang. Syst. 33, 1 (2011), 4:1ś4:43. https://doi.org/10.1145/1889997.1890001

Mathieu Desnoyers, Paul E. McKenney, and Michel R. Dagenais. 2013. Multi-core systems modeling for formal verification

of parallel algorithms. Operating Systems Review 47, 2 (2013), 51ś65. https://doi.org/10.1145/2506164.2506174

David Detlefs, Paul Alan Martin, Mark Moir, and Guy L. Steele Jr. 2001. Lock-free reference counting. In PODC. ACM,

190ś199. https://doi.org/10.1145/383962.384016

Dave Dice, Maurice Herlihy, and Alex Kogan. 2016. Fast non-intrusive memory reclamation for highly-concurrent data

structures. In ISMM. ACM, 36ś45. https://doi.org/10.1145/2926697.2926699

Mike Dodds, Andreas Haas, and Christoph M. Kirsch. 2015. A Scalable, Correct Time-Stamped Stack. In POPL. ACM,

233ś246. https://doi.org/10.1145/2676726.2676963

Simon Doherty, David Detlefs, Lindsay Groves, Christine H. Flood, Victor Luchangco, Paul Alan Martin, Mark Moir, Nir

Shavit, and Guy L. Steele Jr. 2004a. DCAS is not a silver bullet for nonblocking algorithm design. In SPAA. ACM, 216ś224.

https://doi.org/10.1145/1007912.1007945

Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. 2004b. Formal Verification of a Practical Lock-Free

Queue Algorithm. In FORTE (LNCS), Vol. 3235. Springer, 97ś114. https://doi.org/10.1007/978-3-540-30232-2_7

Simon Doherty and Mark Moir. 2009. Nonblocking Algorithms and Backward Simulation. In DISC (LNCS), Vol. 5805.

Springer, 274ś288. https://doi.org/10.1007/978-3-642-04355-0_28

Brijesh Dongol and John Derrick. 2014. Verifying linearizability: A comparative survey. CoRR abs/1410.6268 (2014).

http://arxiv.org/abs/1410.6268

Aleksandar Dragojevic, Maurice Herlihy, Yossi Lev, and Mark Moir. 2011. On the power of hardware transactional memory

to simplify memory management. In PODC. ACM, 99ś108. https://doi.org/10.1145/1993806.1993821

Tayfun Elmas, Shaz Qadeer, Ali Sezgin, Omer Subasi, and Serdar Tasiran. 2010. Simplifying Linearizability Proofs with

Reduction and Abstraction. In TACAS (LNCS), Vol. 6015. Springer, 296ś311. https://doi.org/10.1007/978-3-642-12002-2_25

Michael Emmi and Constantin Enea. 2018. Sound, complete, and tractable linearizability monitoring for concurrent

collections. PACMPL 2, POPL (2018), 25:1ś25:27. https://doi.org/10.1145/3158113

Michael Emmi, Constantin Enea, and Jad Hamza. 2015. Monitoring refinement via symbolic reasoning. In PLDI. ACM,

260ś269. https://doi.org/10.1145/2737924.2737983

Keir Fraser. 2004. Practical lock-freedom. Ph.D. Dissertation. University of Cambridge, UK. http://ethos.bl.uk/OrderDetails.

do?uin=uk.bl.ethos.599193

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In CONCUR (LNCS), Vol. 6269. Springer, 388ś402. https://doi.org/10.1007/978-3-642-15375-4_27

Anders Gidenstam, Marina Papatriantafilou, Håkan Sundell, and Philippas Tsigas. 2005. Efficient and Reliable Lock-Free

Memory Reclamation Based on Reference Counting. In ISPAN. IEEE Computer Society, 202ś207. https://doi.org/10.1109/

ISPAN.2005.42

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://doi.org/10.1007/978-3-319-63390-9_28
https://doi.org/10.1145/2486159.2486184
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/1806596.1806634
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1007/978-3-642-14295-6_41
https://doi.org/10.1145/2814270.2814298
https://doi.org/10.1145/2755573.2755579
https://doi.org/10.1016/j.entcs.2005.04.026
https://doi.org/10.1007/11817963_44
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.4230/LIPIcs.ECOOP.2017.8
https://doi.org/10.1145/1889997.1890001
https://doi.org/10.1145/2506164.2506174
https://doi.org/10.1145/383962.384016
https://doi.org/10.1145/2926697.2926699
https://doi.org/10.1145/2676726.2676963
https://doi.org/10.1145/1007912.1007945
https://doi.org/10.1007/978-3-540-30232-2_7
https://doi.org/10.1007/978-3-642-04355-0_28
http://arxiv.org/abs/1410.6268
https://doi.org/10.1145/1993806.1993821
https://doi.org/10.1007/978-3-642-12002-2_25
https://doi.org/10.1145/3158113
https://doi.org/10.1145/2737924.2737983
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599193
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1109/ISPAN.2005.42
https://doi.org/10.1109/ISPAN.2005.42

58:30 Roland Meyer and Sebastian Wolff

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory Reclamation Algorithms with

Grace. In ESOP (LNCS), Vol. 7792. Springer, 249ś269. https://doi.org/10.1007/978-3-642-37036-6_15

Lindsay Groves. 2007. Reasoning about Nonblocking Concurrency using Reduction. In ICECCS. IEEE Computer Society,

107ś116. https://doi.org/10.1109/ICECCS.2007.39

Lindsay Groves. 2008. Verifying Michael and Scott’s Lock-Free Queue Algorithm using Trace Reduction. In CATS (CRPIT),

Vol. 77. Australian Computer Society, 133ś142. http://crpit.com/abstracts/CRPITV77Groves.html

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In DISC (LNCS), Vol. 2180. Springer,

300ś314. https://doi.org/10.1007/3-540-45414-4_21

Frédéric Haziza, Lukás Holík, Roland Meyer, and Sebastian Wolff. 2016. Pointer Race Freedom. In VMCAI (LNCS), Vol. 9583.

Springer, 393ś412. https://doi.org/10.1007/978-3-662-49122-5_19

Nir Hemed, Noam Rinetzky, and Viktor Vafeiadis. 2015. Modular Verification of Concurrency-Aware Linearizability. In

DISC (LNCS), Vol. 9363. Springer, 371ś387. https://doi.org/10.1007/978-3-662-48653-5_25

Thomas A. Henzinger, Ali Sezgin, and Viktor Vafeiadis. 2013. Aspect-Oriented Linearizability Proofs. In CONCUR (LNCS),

Vol. 8052. Springer, 242ś256. https://doi.org/10.1007/978-3-642-40184-8_18

Maurice Herlihy, Victor Luchangco, Paul A. Martin, and Mark Moir. 2005. Nonblocking memory management support for

dynamic-sized data structures. ACM Trans. Comput. Syst. 23, 2 (2005), 146ś196. https://doi.org/10.1145/1062247.1062249

Maurice Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness Condition for Concurrent Objects. ACM Trans.

Program. Lang. Syst. 12, 3 (1990), 463ś492. https://doi.org/10.1145/78969.78972

Lukás Holík, Roland Meyer, Tomás Vojnar, and Sebastian Wolff. 2017. Effect Summaries for Thread-Modular Analysis -

Sound Analysis Despite an Unsound Heuristic. In SAS (LNCS), Vol. 10422. Springer, 169ś191. https://doi.org/10.1007/

978-3-319-66706-5_9

Alex Horn and Daniel Kroening. 2015. Faster Linearizability Checking via P-Compositionality. In FORTE (LNCS), Vol. 9039.

Springer, 50ś65. https://doi.org/10.1007/978-3-319-19195-9_4

Cliff B. Jones. 1983. Tentative Steps Toward a Development Method for Interfering Programs. ACM Trans. Program. Lang.

Syst. 5, 4 (1983), 596ś619. https://doi.org/10.1145/69575.69577

Bengt Jonsson. 2012. Using refinement calculus techniques to prove linearizability. Formal Asp. Comput. 24, 4-6 (2012),

537ś554. https://doi.org/10.1007/s00165-012-0250-7

Artem Khyzha, Mike Dodds, Alexey Gotsman, and Matthew J. Parkinson. 2017. Proving Linearizability Using Partial Orders.

In ESOP (LNCS), Vol. 10201. Springer, 639ś667. https://doi.org/10.1007/978-3-662-54434-1_24

Michalis Kokologiannakis and Konstantinos Sagonas. 2017. Stateless model checking of the Linux kernel’s hierarchical

read-copy-update (tree RCU). In SPIN. ACM, 172ś181. https://doi.org/10.1145/3092282.3092287

Siddharth Krishna, Dennis E. Shasha, and Thomas Wies. 2018. Go with the flow: compositional abstractions for concurrent

data structures. PACMPL 2, POPL (2018), 37:1ś37:31. https://doi.org/10.1145/3158125

Hongjin Liang and Xinyu Feng. 2013. Modular verification of linearizability with non-fixed linearization points. In PLDI.

ACM, 459ś470. https://doi.org/10.1145/2462156.2462189

Hongjin Liang, Xinyu Feng, and Ming Fu. 2012. A rely-guarantee-based simulation for verifying concurrent program

transformations. In POPL. ACM, 455ś468. https://doi.org/10.1145/2103656.2103711

Hongjin Liang, Xinyu Feng, and Ming Fu. 2014. Rely-Guarantee-Based Simulation for Compositional Verification of

Concurrent Program Transformations. ACM Trans. Program. Lang. Syst. 36, 1 (2014), 3:1ś3:55. https://doi.org/10.1145/

2576235

Lihao Liang, Paul E. McKenney, Daniel Kroening, and Tom Melham. 2018. Verification of tree-based hierarchical read-copy

update in the Linux kernel. In DATE. IEEE, 61ś66. https://doi.org/10.23919/DATE.2018.8341980

Yang Liu, Wei Chen, Yanhong A. Liu, and Jun Sun. 2009. Model Checking Linearizability via Refinement. In FM (LNCS),

Vol. 5850. Springer, 321ś337. https://doi.org/10.1007/978-3-642-05089-3_21

Yang Liu, Wei Chen, Yanhong A. Liu, Jun Sun, Shao Jie Zhang, and Jin Song Dong. 2013. Verifying Linearizability via

Optimized Refinement Checking. IEEE Trans. Software Eng. 39, 7 (2013), 1018ś1039. https://doi.org/10.1109/TSE.2012.82

Gavin Lowe. 2017. Testing for linearizability. Concurrency and Computation: Practice and Experience 29, 4 (2017). https:

//doi.org/10.1002/cpe.3928

Paul E. McKenney. 2004. Exploiting Deferred Destruction: an Analysis of Read-Copy-Update Techniques in Operating System

Kernels. Ph.D. Dissertation. Oregon Health & Science University.

Paul E. McKenney and John D. Slingwine. 1998. Read-copy Update: Using Execution History to Solve Concurrency Problems.

Roland Meyer and Sebastian Wolff. 2018. Decoupling Lock-Free Data Structures from Memory Reclamation for Static

Analysis. CoRR abs/1810.10807 (2018). http://arxiv.org/abs/1810.10807

Maged M. Michael. 2002. Safe memory reclamation for dynamic lock-free objects using atomic reads and writes. In PODC.

ACM, 21ś30. https://doi.org/10.1145/571825.571829

Maged M. Michael and Michael L. Scott. 1995. Correction of a Memory Management Method for Lock-Free Data Structures.

Technical Report. Rochester, NY, USA.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://doi.org/10.1007/978-3-642-37036-6_15
https://doi.org/10.1109/ICECCS.2007.39
http://crpit.com/abstracts/CRPITV77Groves.html
https://doi.org/10.1007/3-540-45414-4_21
https://doi.org/10.1007/978-3-662-49122-5_19
https://doi.org/10.1007/978-3-662-48653-5_25
https://doi.org/10.1007/978-3-642-40184-8_18
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1145/78969.78972
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-319-66706-5_9
https://doi.org/10.1007/978-3-319-19195-9_4
https://doi.org/10.1145/69575.69577
https://doi.org/10.1007/s00165-012-0250-7
https://doi.org/10.1007/978-3-662-54434-1_24
https://doi.org/10.1145/3092282.3092287
https://doi.org/10.1145/3158125
https://doi.org/10.1145/2462156.2462189
https://doi.org/10.1145/2103656.2103711
https://doi.org/10.1145/2576235
https://doi.org/10.1145/2576235
https://doi.org/10.23919/DATE.2018.8341980
https://doi.org/10.1007/978-3-642-05089-3_21
https://doi.org/10.1109/TSE.2012.82
https://doi.org/10.1002/cpe.3928
https://doi.org/10.1002/cpe.3928
http://arxiv.org/abs/1810.10807
https://doi.org/10.1145/571825.571829

Decoupling Lock-Free Data Structures from Memory Reclamation for Static Analysis 58:31

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking Concurrent Queue

Algorithms. In PODC. ACM, 267ś275. https://doi.org/10.1145/248052.248106

Peter W. O’Hearn, Noam Rinetzky, Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2010. Verifying linearizability with

hindsight. In PODC. ACM, 85ś94. https://doi.org/10.1145/1835698.1835722

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verification of a non-blocking stack. In POPL.

ACM, 297ś302. https://doi.org/10.1145/1190216.1190261

Pedro Ramalhete and Andreia Correia. 2017. Brief Announcement: Hazard Eras - Non-Blocking Memory Reclamation. In

SPAA. ACM, 367ś369. https://doi.org/10.1145/3087556.3087588

Gerhard Schellhorn, Heike Wehrheim, and John Derrick. 2012. How to Prove Algorithms Linearisable. In CAV (LNCS),

Vol. 7358. Springer, 243ś259. https://doi.org/10.1007/978-3-642-31424-7_21

Michal Segalov, Tal Lev-Ami, Roman Manevich, Ganesan Ramalingam, and Mooly Sagiv. 2009. Abstract Transformers for

Thread Correlation Analysis. In APLAS (LNCS), Vol. 5904. Springer, 30ś46. https://doi.org/10.1007/978-3-642-10672-9_5

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015a. Mechanized verification of fine-grained concurrent

programs. In PLDI. ACM, 77ś87. https://doi.org/10.1145/2737924.2737964

Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. 2015b. Specifying and Verifying Concurrent Algorithms with

Histories and Subjectivity. In ESOP (LNCS), Vol. 9032. Springer, 333ś358. https://doi.org/10.1007/978-3-662-46669-8_14

Divjyot Sethi, Muralidhar Talupur, and Sharad Malik. 2013. Model Checking Unbounded Concurrent Lists. In SPIN (LNCS),

Vol. 7976. Springer, 320ś340. https://doi.org/10.1007/978-3-642-39176-7_20

Joseph Tassarotti, Derek Dreyer, and Viktor Vafeiadis. 2015. Verifying read-copy-update in a logic for weak memory. In

PLDI. ACM, 110ś120. https://doi.org/10.1145/2737924.2737992

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. 2011. Formal Verification of a Lock-Free Stack with Hazard Pointers.

In ICTAC (LNCS), Vol. 6916. Springer, 239ś255. https://doi.org/10.1007/978-3-642-23283-1_16

Oleg Travkin, Annika Mütze, and Heike Wehrheim. 2013. SPIN as a Linearizability Checker under Weak Memory Models.

In Haifa Verification Conference (LNCS), Vol. 8244. Springer, 311ś326. https://doi.org/10.1007/978-3-319-03077-7_21

R.Kent Treiber. 1986. Systems programming: coping with parallelism. Technical Report RJ 5118. IBM.

Viktor Vafeiadis. 2010a. Automatically Proving Linearizability. In CAV (LNCS), Vol. 6174. Springer, 450ś464. https:

//doi.org/10.1007/978-3-642-14295-6_40

Viktor Vafeiadis. 2010b. RGSep Action Inference. In VMCAI (LNCS), Vol. 5944. Springer, 345ś361. https://doi.org/10.1007/

978-3-642-11319-2_25

Moshe Y. Vardi. 1987. Verification of Concurrent Programs: The Automata-Theoretic Framework. In LICS. IEEE Computer

Society, 167ś176.

Martin T. Vechev and Eran Yahav. 2008. Deriving linearizable fine-grained concurrent objects. In PLDI. ACM, 125ś135.

https://doi.org/10.1145/1375581.1375598

Martin T. Vechev, Eran Yahav, and Greta Yorsh. 2009. Experience with Model Checking Linearizability. In SPIN (LNCS),

Vol. 5578. Springer, 261ś278. https://doi.org/10.1007/978-3-642-02652-2_21

Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. 2018. Interval-based memory reclamation.

In PPOPP. ACM, 1ś13. https://doi.org/10.1145/3178487.3178488

Albert Mingkun Yang and Tobias Wrigstad. 2017. Type-assisted automatic garbage collection for lock-free data structures.

In ISMM. ACM, 14ś24. https://doi.org/10.1145/3092255.3092274

Xiaoxiao Yang, Joost-Pieter Katoen, Huimin Lin, and Hao Wu. 2017. Verifying Concurrent Stacks by Divergence-Sensitive

Bisimulation. CoRR abs/1701.06104 (2017). http://arxiv.org/abs/1701.06104

Shao Jie Zhang. 2011. Scalable automatic linearizability checking. In ICSE. ACM, 1185ś1187. https://doi.org/10.1145/1985793.

1986037

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2015. Poling: SMT Aided Linearizability Proofs. In CAV (2) (LNCS), Vol. 9207.

Springer, 3ś19. https://doi.org/10.1007/978-3-319-21668-3_1

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 58. Publication date: January 2019.

https://doi.org/10.1145/248052.248106
https://doi.org/10.1145/1835698.1835722
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1007/978-3-642-31424-7_21
https://doi.org/10.1007/978-3-642-10672-9_5
https://doi.org/10.1145/2737924.2737964
https://doi.org/10.1007/978-3-662-46669-8_14
https://doi.org/10.1007/978-3-642-39176-7_20
https://doi.org/10.1145/2737924.2737992
https://doi.org/10.1007/978-3-642-23283-1_16
https://doi.org/10.1007/978-3-319-03077-7_21
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-14295-6_40
https://doi.org/10.1007/978-3-642-11319-2_25
https://doi.org/10.1007/978-3-642-11319-2_25
https://doi.org/10.1145/1375581.1375598
https://doi.org/10.1007/978-3-642-02652-2_21
https://doi.org/10.1145/3178487.3178488
https://doi.org/10.1145/3092255.3092274
http://arxiv.org/abs/1701.06104
https://doi.org/10.1145/1985793.1986037
https://doi.org/10.1145/1985793.1986037
https://doi.org/10.1007/978-3-319-21668-3_1

	Abstract
	1 Introduction
	2 The Verification Approach on an Example
	2.1 Compositional Verification
	2.2 Taming Memory Management for Verification

	3 Programs with Safe Memory Reclamation
	4 Compositional Verification
	5 Taming Memory Reuse
	5.1 Similarity of Computations
	5.2 Preserving Similarity
	5.3 Detecting ABAs
	5.4 Reduction Result

	6 Evaluation
	6.1 SMR Algorithms
	6.2 Thread-Modular Linearizability Analysis
	6.3 Linearizability Experiments
	6.4 Verifying SMR Implementations

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References

