
Thread Summaries for Lock-Free Data Structures∗

Sebastian Wolff

Fraunhofer ITWM, Kaiserslautern, Germany
Technische Universität Kaiserslautern, Germany

s.wolff@cs.uni-kl.de

It is an indubitable fact that lock-free data structures are unrivaled in terms of scalability on
today’s multi-core platforms. Unfortunately, they are also unrivaled in terms of complexity
which is why automated verification is indispensable. However, static analyses suffer from poor
scalability as they have to consider an unbounded number of client threads. This requirement is
crucial since data structures are usually part of a library. Hence, one wants to verify the library
for all possible usage scenarios once instead of verifying every usage.

In the following, we address this challenge. Additionally, we permit low-level memory
interactions as known from languages like C. Currently, the most efficient verification technique
to tackle this problem is so-called thread-modular reasoning [2, 1]. It abstracts the state space
into a set of views. Each view captures information about an individual thread only – the
relations among different threads is lost. In order to explore the state space two rules are applied
exhaustively to generate new views from the existing ones. (1) Sequential rule: a view is changed
by an action from the thread that it represents. (2) Interference rule: a victim view is updated
according to the effect of a thread from another, interfering view taking an action. To do so
the victim and interfering views are combined, the interfering thread takes an action and is
finally projected away. This step is, however, problematic for two reasons: non-existent relations
among threads might give false-positives and an exhaustive application requires to consider
quadratically many pairs of views.

It is indeed this quadratic blow up during the state space exploration which makes thread-
modular reasoning scale rather poorly [1] even though optimizations exist [4]. Intuitively, we
want to avoid interference steps altogether in order to provide a truly scalable verification
approach. Technically, we introduce thread summaries for this task and rephrase the verification
problem in such a way that results for the modified problem carry over to the original one. Since
this is work in progress we discuss our approach rather informally to convey the idea.

Example As an example consider Michael&Scott’s queue the code of which is given in Listing 1.
It maintains a singly-linked list with the pointers Head and Tail pointing to the first and last
entry, respectively. The main problem introduced by lock-freedom is that adding a new entry to
the list and swinging the Tail pointer to the newly inserted entry requires two separate actions
which are not guarded from interfering threads. As a consequence, the data structure might
appear malformed because of Tail not pointing to the last node. To resolve this issue every
thread checks for this condition first and tries to fix the queue if needed.

In order to reason about the correctness of Micheal&Scott’s queue one has to understand
and exploit the underlying protocol. A protocol which is not unique to this implementation [3].
Figure 2 presents a modified version of the code which comprises the same protocol. However,
the complexity of the actual implementation is avoided by summarizing the intended effect.
That is, the original functions are rephrased as if they were executed atomically. It is worth
noting that those summaries have properties quite beneficial for program verification. They
avoid the read-copy-update cycle and the subtle interplay of threads. Moreover, they do not
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/* shared */ pointer_t Head , Tail;

void enqueue(data_t v) {

node = new Node(v);

node.next = NULL;

while (true) {

tail = Tail;

next = tail.next;

if (tail != Tail) continue;

if (next == NULL) {

if (CAS(Tail.next , next , node))

break;

} else { CAS(Tail , tail , next); }

}

CAS(Tail , tail , node);

}

bool dequeue(data_t* v) {

while (true) {

head = Head;

tail = Tail;

next = head.next;

if (head != Head) continue;

if (head == tail) {

if (next == NULL) return false;

CAS(Tail , tail , next);

} else {

*v = head.data;

if (CAS(Head , head , next)) {

delete head;

return true;

}}}}

Figure 1: Micheal&Scott’s non-blocking queue, adapted from [5].

void $enqueue () {

atomic {

if (Tail.next != NULL) {

Tail = Tail.next;

} else {

v = random_value ();

node = new Node(v);

node.next = NULL;

Tail.next = node;

}}}

void $dequeue () {

atomic {

if (Head == Tail) {

if (Tail.next != NULL)

Tail = Tail.next;

} else {

tmp = Head;

Head = Head.next;

delete tmp;

}}}

Figure 2: Thread summaries for Micheal&Scott’s queue.

require any local state but determine their behavior by inspecting the shared heap. Our ambition
is to use such summaries in order to enable more efficient static analyses.

Abstract System To overcome the poor scalability of static analyses for systems with an
unbounded number of client threads we introduce a novel abstraction. Our abstract system is
easier to analyse as it comes with just two concurrently operating threads: a low-level thread
which executes the program code under scrutiny and a high-level thread which executes thread
summaries like the ones presented above. Note that unlike before this system features two
different types of threads.

The main contribution of our work is a theorem which guarantees that safety properties of
the abstract system carry over to the concrete one. To that end, we instrument programs such
that bad states can be identified inspecting the shared heap, e.g. by using a shared auxiliary
variable. Thus, in order to verify safety properties it suffices that the reachable shared heap
configurations of the proposed abstract system over-approximate those of the concrete system.

Thread Summaries In order to derive the desired theorem we have to establish a tight
correspondence between the executions of the concrete and the abstract system. Intuitively,
given some execution of the concrete system we pick an arbitrary thread as the low-level thread
of the abstract system and replace every action of the other threads with summaries. We require
those summaries to only mimic on the shared heap the actions that they replace. That is, they
shall not modify the non-shared, local state of other threads, i.e. the low-level thread we just
picked. It is worth noting that choosing summaries like that simplifies their task as they can
ignore the local state of other threads. This results in fewer possibilities for summaries to react
and thus gives a smaller search space during an analysis – a major step towards a scalable



approach. However, for a sound analysis we have to prove that no thread may ever influence the
local state of another thread. We do so by enforcing a strict partitioning of the addresses in use
into shared and owned ones. Moreover, thread summaries must not leak memory. Hence, cells
owned by threads in the concrete system are freed in the abstract system if the owning thread
is not present. Together with checking for malicious memory accesses, which we showed to be
effective in previous work [4], we get adherence of both the high-level and the low-level thread to
that partitioning. In particular, this means that no low-level thread will ever rely on cells that
are owned by other threads in the concrete system as they appear freed in the abstract one.

Altogether, we come up with the following theorem which states the desired correspondence
between abstract and concrete executions and allows a sound analysis of safety properties.

Theorem. Let S be some concrete system with low-level threads t1, . . . , tn and let S′ be the
corresponding abstract system with some low-level thread ti and high-level thread ts. If the
summaries executed by ts can (i) mimic every ti action on the shared heap, and (ii) are stateless,
and if (iii) S′ adheres to the address partitioning, then

reachshared(S) ⊆ reachshared(S′) and reachlocal(ti, S) ' reachlocal(ti, S
′)

where reachshared yields the reachable configurations of the shared heap, reachlocal gives the
reachable configurations of the local heap and ' denotes isomorphism up to dangling pointers.

Lastly, let us briefly discuss why we include a low-level thread in the abstract system at all.
Why should we not just use a single high-level thread? In fact, keeping a low-level thread live in
the abstract system allows one to verify whether or not the used thread-summary is correct,
i.e. adheres to the requirements. This can be crucial. On the one hand, this enables refinement
loops to be used. On the other hand, it allows for user-defined summaries while guaranteeing a
sound analysis. Since we did not investigate how to effectively compute thread summaries yet
the latter argument makes our approach practical even at this early stage.

Experiments We implemented a prototype1 to check linearizability of lock-free data structures.
The prototype is based on our previous tool which uses thread-modular reasoning [4]. We
replaced interference steps with thread summaries and implemented all necessary checks to
ensure their correctness. Our experiments prove our new verification technique to be truly
superior to classical thread-modular reasoning in terms of scalability: while the analysis of
Treiber’s stack is only faster by factor 25, a more evident performance boost of factor 196 can
be observed for Michael&Scott’s queue. This substantiates the usefulness of our novel approach.

References
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1Available at: https://github.com/Wolff09/TMRexp/tree/NWPT16
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