UNIVERSITY OF KAISERSLAUTERN
DEPARTMENT OF COMPUTER SCIENCE

MASTER’S THESIS

Thread-Modular Reasoning for
Heap-Manipulating Programs:

Exploiting Pointer Race Freedom

Author:
Sebastian Wolff

submitted on:

22.10.2015

Supervisor
Prof. Dr. rer. nat. Roland Meyer

Reviewer

Dr. rer. nat. Annette Bieniusa

ii

Abstract

Correctness of software artefacts has become a major requirement in software
development processes for all sorts of systems. For parallel programs, however,
testing becomes insufficient as it cannot observer all possible interleavings of
threads. Hence, we employ model checking to automatically explore all be-
haviours of a concurrent system and thus allow proving its correctness. Today,
a core problem of model checking efforts is the dynamically evolving heap in
presence of low-level memory operations that stem from explicit memory man-
agement as known from C. Most approaches presently employ thread-modularity
to handle an unbounded number of threads. The scalability of this methodol-
ogy, however, suffers severely in the presence of explicit memory management.
To overcome this limitation, a novel approach has been proposed which intro-
duces a concept of ownership for explicitly managed memory if certain kinds
of programming bugs, so-called pointer races, are absent. In the present thesis
we extend an existing thread-modular analysis for concurrent data structures to
integrate the novel notion of pointer race free programs. We show that relying
on those programs is reasonable in the sense that even performance-critical non-
blocking algorithms can be handled. Moreover, we substantiate the usefulness
of this novel notion by providing experimental evidence for a speed-up of two
orders of magnitude compared to classical thread-modular reasoning for explicit
memory management.

Zusammenfassung

Die Korrektheit von Softwareartefakten ist immer mehr ein essentieller Bestand-
teil von Softwareentwicklungsprozessen geworden. Fiir nebenldufige Program-
me erweist sich das etablierte Testen gewisser Programmablédufe allerdings als
unzureichend, da die Vielzahl an mdglichen Ausfiihrungsabfolgen verschiede-
ner Threads nicht ausreichend getestet werden kann. Deshalb greifen wir auf
das Model-Checking zuriick, eine Technik die in der Lage ist automatisch alle
moglichen Ausfiihrungen eines parallelen Programms zu analysieren. Ein Kern-
problem dabei ist die korrekte Handhabe von dynamisch alloziertem Speicher
(Heap), wenn explizite Speicherverwaltung wie in C verwendet wird. Die meis-
ten Model-Checking-Verfahren verwenden eine Thread-modulare Vorgehenswei-
se um Korrektheit fiir eine beliebige Anzahl an Threads nachzuweisen. Das Pro-
blem hierbei ist, dass dieses Verfahren fiir explizite Speicherverwaltung schlecht
skaliert. Um dem entgegen zu wirken wurde der Begriff von sogenannten Pointer
Races gepragt. Es wurde gezeigt, dass Programme die keine Pointer Races bein-
halten selbst unter expliziter Speicherverwaltung einem gewissen Ownerhship
Prinzip folgen. In der vorliegenden Arbeit erweitern wir eine bestehende Thread-
modulare Analyse fiir nebenldufige Datenstrukturen, sodass sie den Fakt, dass
Programme als frei von Pointer Races angenommen werden, ausnutzt. Wir zei-
gen, dass diese Annahme begriindet ist, d.h. wir zeigen dass selbst hochgradig
nebenléufige Algorithmen, welche nicht-blockierende Synchronisation verwen-
den, mit dieser Methode behandelt werden konnen. Des Weiteren zeigen wir,
dass die neuartige Analyse niitzlich ist, da sie die Laufzeit, verglichen mit der
bisherigen Thread-modularen Analyse fiir explizite Speicherverwaltung, um das
hundertfache beschleunigt.

iii

iv

Contents

1.2.1 Memory Management|
1.2.2 on-Blocking Data Structures|

[1.2.3 Linearisability]

2.2 Observer Automatal

2.3 Thread-Modular Reasoning|

2.4 Shape Analysis| L o

I3 Instantiating a Thread-Modular Analysis|

8.1 Merging Views| oo oo

3.2 Sequential Steps| oo

3.3 Interterence Steps|.o

3.4 Summary| .

4 Improving Thread-Modular Verification|

4.1 Pointer Racesl

4.2 Adapting the Verification Procedure]

[4.2.1 Merging Views| oo

[4.2.2 Sequential Steps| oo

[4.2.3 Interference Steps| L.

4.3 Improving Interference| 0oL

5 _Evaluation|

.1 Prototype Implementation|.

BII Architecturel oo

[5.1.2 Implementation Details|

|5 2 (‘1 :w 1 I

[5.2.1 Single Lock Stackl. 0000,

[0.2.2 Single Lock Queue|o oo

b.2.3 Treiber’s Lock-Iree Stacld

[5.2.4 Michael&Scott’s Lock-Free Queue|

[5.2.5 Detecting Defects|.

15
15
16
19
21

23
24
25
31
35

37
37
42
42
43
46
48

51
o1
o1
54
595
95
o7
99
60
61

vi

List of Figures

[1.1 The ABA problem in an execution of Treiber’s stack|. 7
1.2 Language definition in EBNF style|. 10
2.1 Observer automata implementing the specification rules for stacks |
[and queues, adapted from 2] o000 18
2.2 A concrete heap and its shape representation.| 22
4.1 Counter example to pruning an interference step.| 49
b.1 Prototype data layer.|. o oo 52

List of Tables

3.1 List of all consistent triples of relations.| 26
5.1 Experimental results for coarse stack.| 56
b.2 Experimental results for coarse queue| 58
.3 Experimental results for Treiber’s lock-free stackf 60
p.4 Experimental results for erroneous programs.| 63

List of Algorithms

[L Compare-And-Swap.|o 4
[~ Treiber’s stack, adapted from [27[] 5
3 Treiber’s stack with version counters, adapted from |27]| 8
4 Coarsestack] 56
5] C0arse qUEUE.| . . .« v v v v v e e e e e e 58
|6 Treiber’s stack translated into our programming language.|. . . . 59
[7— Michael&Scott’s lock-free queue, adapted from [27[]. 62

vii

viii

Chapter 1

Introduction

This introduction provides a motivation why we are interested in verification
in general. Moreover, we motivate the dedication to automated verification
of concurrent data structures. Afterwards, we shortly discuss some founda-
tions including non-blocking algorithms and their correctness criteria as well as
common pitfalls that are associated with them. Then, we present a restricted
programming language that is used throughout this thesis. After the discussion
of related work, we continue with the contributions and the structure of the
present thesis.

1.1 Motivation

In the last decades we have seen a tremendous increase of electronic devices in
every imaginable aspect of our every day lives. Our society has grown depen-
dent on software systems. Those systems no longer solely improve quality of
live, but can oftentimes decide between life and death of their bearer. There
are a lot of examples where software failures caused horrific disasters. Among
those incidents are some with pure economical losses, like the destruction of
the Ariane 5 carrier rocket in 1996 [15]. But unfortunately there are scenarios
where software systems endanger people. For an example, consider the car in-
dustry. During the last decade some car manufactures decided to replace the
traditional, mechanical throttle control with an electronic one. That is, the
amount of fuel injected into a cars engine is controlled by a computer system
reacting to the input given through the acceleration pedal. Unfortunately, this
control unit reportedly failed to work properly in some cases due to software
bugs. This resulted in uncontrolled acceleration and a total of ninety people
rushing to death in dense traffic |4/5,[8l/14]. Examples like this should teach
us parsimonious and cautions use of embedded systems, but we still tend to
deliberately accept the risks for the sake of our own convenience.

Due to the potential of software failures endangering many lives, we need to
ensure that software systems operate normally. That is, we have to verify
that those systems cannot show unexpected or unwanted behaviour. This im-
poses two challenges for their development. On the one hand, precise and com-
plete specifications are needed. On the other hand, a methodology for verifying
that a certain software artefact properly implements its specification is needed.
Whereas the former challenge has to be solved with software engineering means,
the latter one can be solved with mathematics and theoretical computer science.
In the present thesis we want to focus on the theoretical part of formally showing
that a given software artefact implements certain properties.

Although Turing proposed to use formal methods to argue about program cor-
rectness in 1949, it was not before the late 1960s that a new branch of computer

science evolved which is since dedicated to the formal verification of computer
systems [28]. In the early stage of verification most approaches where human
driven. That is, verification was about humans giving correctness proofs — on

paper.

"The task of [manual] proof construction can be quite tedious, and
a good deal of ingenuity may be required." — E. M. Clarke and E.
A. Emerson |9

The above quote is from an early paper on automated verification by Clarke and
Emerson. They proposed to use automated verification instead of manual proofs
to establish correctness and correspondence to the specification. Additionally,
they observed that this kind of verification is the only reasonable means for
proving correctness of parallel programs. On the one hand, parallel programs
are usually too complex to be handled by a human checker. On the other hand,
testing is not sufficient as parallelism is inherently non-deterministic and certain
failures cannot be reproduced on purpose but only observed rarely.

So the idea of automated verification is to apply a so-called model check. This
checker has the sole task to compute proofs of correctness or to produce coun-
terexamples. Although this task sounds rather simple, it is in fact not. Due to
programming languages being Turing complete, there simply is no such model
checker which can solve this task for arbitrary programs.

Despite this theoretical limitation, many approaches to model checking have
been proposed which target restricted problem sets. In the present thesis we
want to address the challenge of verifying certain kinds of programs: data struc-
tures. In fact, verifying data structures is very important as they are the basic
building block of nearly every program. Due to the emerging parallelism in to-
day’s programs there is the need for those data structures to be thread-safe. For
those reasons we want to dedicate this thesis to the automated verification of
concurrent data structures. Our overall goal is to make the existing approaches
more practical by significantly improving their performance.

1.2 Foundations

This section gives an introduction to the fundamental concepts and assump-
tions used throughout this thesis. Therefore, we discusses two major memory
semantics and give an introduction to non-blocking data structures. Then, we
present a wide-spread concept of correctness for concurrent programs: linearis-
ability. Lastly, we discuss the ABA problem which corresponds to a class of
programming bugs that are related to multi-threading.

1.2.1 Memory Management

Memory management refers to the specific operations of a system when it comes
to handling dynamically allocated memory. There are two kinds of requests,
allocation and deallocation, that can be made by a program. An allocation

request, also called malloc, must provide the caller with a portion of heap mem-
ory. The memory management has to guarantee that newly allocated mem-
ory remains available at least until deallocation is requested. A deallocation
request, also called free, liberates the memory management from the guaran-
tees given by the allocation. In practice, there are two major sorts of memory
management systems, namely Garbage Collection (GC) and Ezxplicitly Managed
Memory (MM).

Garbage Collection This memory management system gives the strongest
guarantees for both malloc and free. It guarantees that an allocation request is
always served with fresh memory. That is, the portion of memory returned by an
allocation is not referenced by any other pointer in the program. Furthermore,
deallocation requests made by the program are ignored. Instead, memory is
automatically freed when it is not referenced any longer. Hence, segmentation
faults due to malicious memory accesses are mostly prevented due to the memory
management guarantees. Additionally, those guarantees are maintained even in
the presence of multi-threading.

Explicitly Managed Memory This memory management system allows for
more fine grained control over allocation and deallocation than garbage collec-
tion. In turn, the user has to ensure that allocated memory is freed in order to
avoid memory leaks. An allocation request may give a fresh cell like in garbage
collection, but could also decide to reallocated previously freed memory. Thus,
there might be dangling pointers to a newly allocated cell after an allocation.
Clearly, a program must avoid or detect those scenarios in order to prevent
unexpected behaviour.

Lastly, a deallocation request marks some portion of the memory available for
reallocation. For simplicity, however, we assume that accessing memory which
has been allocated before, but freed, does not result in a segmentation fault.
In programming languages like C, an access like the above has undefined be-
haviour |1]. That is, there are no guarantees that accessing freed memory will
not raise a segmentation fault. A segmentation fault might occur, for example,
if the runtime released the freed memory to the underlying operating system.
In such a case, further accesses to this memory are prevented due to security
reasons. In practice, however, the runtime avoids to release memory once al-
located since reallocating freed memory is much less expensive than requesting
memory from the operating system [6].

1.2.2 Non-Blocking Data Structures

Data structures are clearly on of the most important building blocks of pro-
gramming. Hence, we seek efficient implementations. In a multi-threaded envi-
ronment this means that there should be as little regions of mutual exclusion as
possible. To that end, implementations have been proposed which even aban-
don the traditional locking and mutual exclusion principles [27]. Those data
structures are called non-blocking. They usually rely on an atomic Compare-
And-Swap (CAS) command, which is defined as follows.

Definition 1 (Compare-And-Swap) The command CAS(&a,b,c) atomically
compares a and b, and if equal sets a to c. It returns true if the swap was con-
ducted, and false otherwise. For a C-like pseudo code representation, consider
Algorithm[1]

Algorithm 1 Compare-And-Swap.

bool CAS(T& a, T b, T ¢c) {
atomic {
if (a == b) { a = ¢; return true; }
else return false;

There is one main advantage of relying solely on CAS as only atomic command.
The x86 instruction set supports the CMPXCHG instruction which resembles ex-
actlyﬂ the cAs from above [11]. Hence, slower software based atomics and locking
mechanisms can be avoided.

A famous example of a non-blocking stack based on CAS is Treiber’s stack [12].
Algorithm 2] gives an example implementation.

The underlying principle inherent to the above stack implementation and other
non-blocking data structures is as follows. Instead of acquiring a lock to exclu-
sively access the global data, a local snapshot, i.e. a copy, is generated. The
following commands then operate on the local snapshot. In a multi-threaded
environment, another thread may now alter the global data, effectively invali-
dating the local copy. To cope with this problem, a sanity check is conducted.
Therefore, parts of the local snapshot are compared with the global data. If the
check succeeds, the local snapshot is written back to the global state. The last
two steps, herewith, employ the CAS operation to avoid interruption by another
thread. This approach reduces the mutual exclusion to the very minimum of
writing the global data during the CAS operation.

Compared to data structures which use locking, some work might be repeated
as it is conducted on an out-dated local snapshot. Hence, one could assume
that this has a negative effect on the performance of non-blocking algorithms.
Experiments by |27, however, do not validate this intuition.

1.2.3 Linearisability

Intuitively, not every data structure implementation is correct when used in
a multi-threaded environment. This is due to the fact that, at any time, a
thread might be interrupted by another one — potentially harming assumptions
made by the programmer. Hence, we need some notion of correctness that is
reasonable even in highly concurrent data structures like the non-blocking ones
described above.

ITo ensure that the instruction is executed atomically, a LOCK prefix is required [11].

Algorithm 2 Treiber’s stack, adapted from [27].

struct Node {
data_type data;
Node* next;

};
global Nodex ToS; // top of stack

void push(data_type wval) {
Node* node, top;
node = new Node();
node->data = val;
do {
top = ToS;
node->next = top;
} until (CAS(ToS, top, node));
}

bool pop(data_type& dst) {
Node* top, next;

do {
top = ToS;
if (top == NULL) {
return false;
}
next = ToS->next;

} until (CAS(ToS, top, node));
dst = top->data;

free(top);

return true;

The most common correctness criterion for concurrent data structures is lin-
earisability [20,21]. It provides the programmer with the illusion of functions
taking effect instantaneously in an atomic action. To prove linearisability we
need to instrument every function of a program with so-called linearisation
points. Those points mark the very moment in the function execution where
the effect of the function is known and takes place conceptually. When a lin-
earisation point is reached, a so-called linearisation event is emitted. This event
is of the form f(ini,...,in,,out) where f is the name of the called function,
iny,...,in, are the actual parameters passed to the function invocation and out
is the return value. Additionally, the event can be conditional. That is, reaching
a linearisation point might only emit a linearisation event if some condition is
met.

For an example, consider Treiber’s stack from above. The first linearisation
point is the CAS operation in the push function. It emits push(val) whenever the
Compare-And-Swap succeeds. The second linearisation point is the statement
top=ToS at the beginning of pop. It conditionally emits pop(&) if ToS==NULL
holds indicating that the stack is empty. Note here that one cannot emit this

linearisation event after the later if although it checks the same condition. This
is due to the fact that the result of the function call is defined by the value just
read. That is, pop returns false regardless what other interfering threads do. In
fact, when the function returns the stack might not be empty any more since
another thread could have pushed some value. Nevertheless, we consider the
returned value to be correct as the stack was empty at the moment when the
function took place logically. The last linearisation point is, similar to the first,
the CAS in pop. It emits pop(top.data) whenever the CAS succeeds.

With an instrumented program as above, we can prove linearisability by ob-
serving the emitted linearisation events. Intuitively, a concurrent program is
linearisable if every possible sequence of emitted events could have been emit-
ted by a single threaded program. Since we assume an instrumented program,
there is no need to track all possible histories, that is call and return events of
functions, as done in the original definition from [21]. This leads to a simpler,
more natural definition of linearisability as follows [3}31].

Definition 2 (Linearisability) An instrumented program P is linearisable if
Ypin) € Xpp) holds for all n € N, where ¥p,) denotes the set of all sequences
of linearisation events that can be emitted by some run of P with n concurrently
working threads.

Applying this definition to Treiber’s stack, we find that it is linearisable for
garbage collection but not for explicit memory management. The following
section discusses this problem and presents a solution making Treiber’s stack
linearisable in both environments.

1.2.4 The ABA Problem

For this section, recall Treiber’s stack from Algorithm [2] The implementation
is correct, i.e. linearisable, when executed in a garbage collected environment.
For explicitly managed memory, however, this is not true. In the latter case,
Treiber’s stack suffers from the so-called ABA problem. It arises as the CAS
operation cannot distinguish between dangling and valid pointers. That is, a
CAS operation might succeed although it should not.

A precise description of the ABA problem in Treiber’s stack is in order. There-
fore, we go along an example execution the heap of which is depicted in Fig-
ure The initial heap layout (Figure is as follows. The cells denoted by
a and c are the topmost and second topmost cells, respectively. The global vari-
able ToS points to the topmost element, i.e. a. Now, a victim thread prepares
to pop a from the stack. Therefore, the pointers top and next are positioned
to point to a and ¢, respectively (Figure . But instead of performing the
following CAS, the victim thread might be interrupted by an interfering thread.
Assume that the interfering thread executes the following commands. It pops a
(Figure and pushes b (Figure . Then, another push follows. Unfor-
tunately, the previously freed cell a is reallocated (Figure . Since ToS has
now come back to a, the victim thread cannot detect that its local copy has

ToS ToS
CIo—CIo—~(I9 GIo—CIo—CTo
top next

(a) Initial heap layout.

(b) A thread prepares to pop.

ToS
(free) ToS (free)
(alog—(c o= [(a]oF—(c|e5—([
top next top next

(¢) An interfering thread pops.

ToS

(d) An interferer pushes.

ToS

Gle) (Cleo—(C 1> (CEl¢) (o= [F>

top next top next

(e) An interfering push: a reallocated. (f) Heap after finished pop: b lost.

Figure 1.1: The ABA problem in an execution of Treiber’s stack.

been invalidated. Its CAS operation succeeds and the pointer ToS is redirected
to cell ¢ (Figure . Clearly, this redirection is not desirable as it drops cell b.
Moreover, it violates linearisability as the above scenario is not possible in a
sequential execution.

The core problem in the above example is that the CAS involving ToS and top
succeeds although ToS has been altered in between. Hence, in order to solve
the ABA problem, we need to detect this manipulation and enforce that the
cAs fails. To do so, we choose to equip the ToS pointer with a version counter
which reflects the number of updates it has experienced |27]. Additionally, every
comparison takes this counter into account and may only succeed if the versions
of the compared pointers coincide. A version of Treiber’s stack incorporating
those counters is given in Algorithm

With the above changes, we can effectively avoid the ABA problem [27]. Al-
though we now require the Compare-And-Swap routine to compare pointers and
their version counters, we can still employ hardware acceleration as described
in Section The x86 instruction set provides a double width version of the
previously mentioned CMPXCHG instruction [11]. That is, one can compare two
consecutive memory words with a single machine instruction.

7

Algorithm 3 Treiber’s stack with version counters, adapted from [27].

struct VPtr {
VNode* ptr;
unsigned int age;

};

struct VNode {
data_type data;
VPtr* next;

};

global VPtr ToS; // top of stack

void init {
ToS = NULL;
}

void push(data_type val) {
VPtr node, top;
node.ptr = new VNode();
node.ptr->data = val;
do {
top = ToS;
node.ptr->next = top;
} until (dCAS(ToS, top, node));

bool pop(data_type& dst) {
VPtr top, next;

do {
top = ToS;
if (top.ptr == NULL) return false;
next = ToS.ptr->next;

} until (dCAS(ToS, top, node));
dst = top.ptr->data;
free(top.ptr);

return true;

bool dCAS(VPtr a, VPtr b, VPtr c) {
atomic {
if (a.ptr == b.ptr && a.age == b.age) {
a.ptr = c.ptr;
a.ptr = b.ptr + 1;
return true;
}

else return false;

1.3 Programs

For the remainder of the present thesis we want to restrict programs in such a
way that they are easy to handle but yet powerful enough to implement reason-
able singly linked data structures as those described in Section Therefore,
we restrict the programs in such a way that they contain only pointer variables.
Moreover, we restrict the available classes to Node, VNode and VPtr as used for
Treiber’s stack above. The formal definition of those kind of programs is given
in Figure In order to allow uniform implementations that are independent
of the fact whether raw pointers or pointers with version counters are used,
we employ the two type aliases RawPtr and VPtr and make use of the pointer
selectors next, data and age. Depending on the used pointer type the selectors
are syntactic sugar for the following expressions.

RawPtr Using a pointer variable which is defined with the type alias RawPtr
corresponds to using raw pointers of type Node. For such pointers p the
selectors correspond to p->next and p->data, respectively. Since raw point-
ers do not offer version counters, using the age selector is not allowed.

VPtr Using pointers with version counters corresponds to using objects of type
VPtr and VNode. For those kind of special pointers p the selectors from
above correspond to p.ptr->next, p.ptr->data and p.age, respectively.
Moreover, we may simply use p in assignments instead of p.ptr.

Regarding data fields in our programming language, we use the type place holder
data_type. We do not restrict the domain D of this type. For convenience,
however, we assume that there are distinguished values @ € D and L € D
representing the absence of data and corrupt data, respectively. We will use
the former value to represent emptiness of data structures and the latter one in
cases where a value is not defined, e.g. when a variable is uninitialised.

Moreover, for some program P we use the sets Globalp and Localp in order to
refer to the global and local pointer variables of P. Hereafter, we may simply
write Global and Local if clear from the context. Also note that the local
variables are identical for each thread. This stems from the fact that they
are defined per program and not per function. This is no restriction to our
programming language but is convenient as we can uniformly refer to thread-
local variables without considering certain scopes.

Another restriction is the fact that we do not have explicit return statements.
Instead, we assume that non-void functions implicitly return the value written
to the special data variable _out_. Clearly, this does not limit the expressibility
of our language but simplifies its control flow.

In order to argue about certain runs of programs, it is convenient to define so-
called computations. Intuitively, a computation is a linearisation of a program
reflecting which thread executed which command. Formally, a computation 7
is a sequence of actions from Act*. An action act € Act is a pair of the form
act = (tid, com) consisting of a thread identifier tid and a command com. The
command reflects the executed program statement. Since we handle linearised
programs, however, conditionals are reflected by assertions with the correspond-

Program ::= VarDecl* Init Functionx

VarDecl ::= (global | local) Class Ptr;
Init void init () Block

Function void <function_name>(data_type _in_) Block
data_type <function_name>() Block
Stmt | { Stmtx* }

PtrAssign

DataAssign

AgeAssign

Ptr = malloc();

free(Ptr);

if (Condition) Block

if (Condition) Block else Block
while (true) Block

break;

atomic Block

Ptr = Ptr;

Ptr.next = Ptr;

Ptr = Ptr.next;

Ptr.data = _in_;

out = Ptr.data;

Ptr.age = Ptr.age;

Ptr.age++;

Ptr.next.age++;

Ptr == Ptr

Ptr == NULL

CAS(Ptr [.next], Ptr, Ptr)
dCAS(Ptr [.next], Ptr, Ptr)

Block
Stmt

PtrAssign

DataAssign ::

AgeAssign

Condition

Ptr.age == Ptr.age
Ptr : <pointer_variable_name >
Class ::= <RawPtr> | <VPtr>

Figure 1.2: Language definition in EBNF style.

ing condition of the conditional. That is, for example, if a thread enters the
else-branch of if (c¢) then the corresponding command would be assert(!c).
On top of those computations, we have an evaluation function h, which maps
pointer expressions to addresses from Adr. That is, h.(x) = a if z points to
address a € Adr.

1.4 Related Work

Amit et al. [3] verify linearisability by checking whether runs of the concurrent
program correspond to some sequential execution of the same program. There-
fore, they alternate between exploring the state space of the concurrent program
and a sequential reference execution. This technique deems a program buggy
when the concurrent program outputs a value that cannot be output by any
sequential run.

10

This approach is extended by Berdine et al. |7] in order to handle an unbounded
number of threads using a thread-modular shape analysis. The core idea of this
work is to use a Boolean heap abstraction as base domain and lift it to invari-
ants universally quantified over all threads. This procedure results in a similar
structure as our approach: one has to account for all possible interleavings of
threads by applying sequential and interference steps.

In order to avoid the many interleavings of threads, which makes such analyses
suffer from a state-space explosion and poor scalability, Gotsman et al. [17]
present a method to automatically infer resource invariants. This approach
allows one to neglect interference steps needed for a sound analysis following
the concepts of |7]. On the downside, this approach is limited to algorithms
using locks.

Another work fighting the state-space explosion problem is [30]. Segalov et
al. extend the thread-modular abstraction to relate the local states of different
threads. Comparing this work with |2], however, suggests that this approach
works well only for loosely coupled threads. That is, the analysis of non-blocking
data structures using this technique is not on par with the approach from [2].

A drawback of the previously mentioned approaches is the fact that one needs
to supply the proper linearisation points. Since identifying those in complex
algorithms can be rather difficult and error-prone, Liu et al. |25] present a
methodology for automatically inferring linearisation points.

Another approach to verifying linearisability is taken by Vafeiadis [32] using
RGSep. This combination of rely-guarantee and separation logic allows to es-
tablish correctness in the presence of an unbounded number of threads. How-
ever, it is required that the programmer annotates the code with pre and post
conditions describing the atomic effects of functions. Following the separation
logic approach, Vafeiadis [33] proposes an approach to automatically infer lin-
earisation points.

The closest related work is from Abdulla et al. [2] which is used as a building
block of this thesis. Compared to previous works, the main difference here is
a novel abstract domain which merges certain program states. Moreover, a
simpler shape analysis is used compared to the one from [7]. As we elaborate
on this work in Chapter [2] we skip the details here.

Gotsman et al. [18] study implicit synchronisation patterns in non-blocking data
structures for explicit memory management. They observe that such programs
implement a certain protocol to prohibit data corruption. These protocols,
however, are not reflected in the code but only used to argue about correctness.
To make them precise Gotsman et al. introduce the notion of grace periods.
A grace period allows a thread to access shared memory safely. That is, it is
guaranteed that no interfering thread frees the memory in between. However,
Gotsman et al. do not provide means for checking conformance to grace periods.

Besides the above mentioned grace periods, we are not aware of any ownership
concept other than [19] which is able to handle fine grained memory opera-
tions and thus provides effective means to improve thread-modular reasoning
for explicit memory management.

11

1.5 Contributions

For the present thesis we claim the following contributions. Building on the
thread-modular analysis from [2]|, we are the first to integrate the novel notion
of strong pointer races from [19] into such an analysis. This allows to exploit the
novel ownership-respecting semantics from [19] and conduct a thread-modular
analysis that scales for explicitly managed memory. A formal description of
our verification procedure for checking linearisability of concurrent stacks and
queues can be found in Chapter [

Our second contribution is an evaluation of the above analysis. Therefore,
we implemented a prototype and ran several experiments on well-known non-
blocking data structures. Our findings substantiate the usefulness of the tech-
niques proposed in [19]. For our novel analysis, we report a speed-up of up
to two orders of magnitude compared to traditional analyses relying on the
full memory managed semantics. Still, due to the theory provided by [19], our
analysis is sound and the results carry over to the memory managed semantics.

Lastly, we provide free access to our prototype implementatiorﬂ

1.6 Outlook

The remainder of this thesis is structured as follows. Chapter [2| presents the
building blocks of a thread-modular analysis following the overall structure
of |2]. This analysis needs several techniques to overcome the challenges of prov-
ing linearisability in the presence of explicit memory management. Therefore,
Wolper’s data independence argument and observer automata are presented in
order to specify unbounded data structures. Afterwards, the analytical aspect
of the verification procedure is tackled with the thread-modular framework and
shape analysis.

Chapter [3] then combines all those techniques into a verification procedure that
allows to establish correctness of concurrent data structures. This chapter is de-
voted to formally describe a thread-modular analysis integrating the techniques
from Chapter

Chapter [] discusses a semantic optimisation that is based on the novel no-
tion of (strong) pointer races from [19]. Therefore, pointer races are formally
introduced. Afterwards, the procedure from Chapter [3|is adapted exploiting
the advantages of restricting the verification efforts to strong pointer race free
programs.

Building upon the formalism form Chapters [3] and [4] Chapter [§] evaluates the
novel analysis. First, a prototype implementation is discussed. Then, several
case studies are conducted that show the usefulness of strong pointer race free-
dom for thread-modular reasoning. We report that the analysis from Chapter
provides a speed-up of up to two orders of magnitude compared to the tradi-

2The source code is available under: https://github.com/Wolff09/TMRexp.

12

https://github.com/Wolff09/TMRexp

tional thread-modular analysis for explicit memory management from Chap-
ter Moreover, it is shown that the restriction to strong pointer race free
programs is reasonable and allows to handle performance-critical code.

Lastly, Chapter [f] presents possible directions of future work and concludes the
thesis.

13

14

Chapter 2

Thread-Modular Verification

In the following chapter we introduce the building blocks of an analysis checking
for linearisability of concurrent heap-manipulating data structures. Such an
analysis has to address multiple challenges. Firstly, we have to handle a shared
heap. This introduces two dimensions of infinity as the heap is unbounded on
the one hand, and may store data with an unbounded domain on the other
hand. Secondly, another dimension of infinity is added as we allow an arbitrary
number of concurrently executing threads. Lastly, as we intend to verify data
structures, the specification has to handle unboundedness, too.

We follow the overall approach of [2]. That is, we tackle the above challenges
as follows. In order to handle potentially unbounded data types we employ the
data independence argument from Wolper [34]. In combination with observer
automata, this allows us to check linearisability of unbounded data structures.
To cope with an arbitrary number of threads we employ the thread-modular
framework. Furthermore, we integrate a shape analysis to handle the unbounded
heap.

2.1 Data Independence

A main challenge when specifying data structures is the fact that data values
can occur arbitrarily often. A stack implementation, for example, has to allow
for inserting a specific value multiple times. Clearly, we will pop some value
from a stack exactly as often as we pushed it. Hence, the specification needs to
count the number of occurrences per data value. Counting, however, introduces
infinitely many states to the specification making the verification impossible.

Towards a finite state specification, we need to eliminate the counting argu-
ment. In order to do so, we restrict our analysis to executions where every data
value is input at most once. Thus, we only need to count to one. Still, our
analysis remains sound. This is a consequence from Wolper’s data independence
argument [34] which we develop in the following.

Intuitively, a data independent data structure does not react on the input data.
That is, the control flow of the data structure is not based on comparing data
values. Obviously, this is true for stacks and queues. Formally, we argue about
traces of linearisation events.

Definition 3 (Data Independence) A set X of traces of linearisation events
is data independent (2] if for all T € ¥ and for all f : D +— D there is some
7' € X with f(7') =7 and every data value in 7' occurs at most once as input.

With this definition, we say that a data structure implementation is data inde-
pendent if the set of its traces is data independent. In general, however, proving

15

data independence of a program is undecidable |34]. Yet, we can establish data
independence for a program: it is sufficient to ensure that data values are neither
manipulated nor appear in conditions [23]. Hence, we can rely on a syntactic
analysis in case of a typed programming language. Moreover, we immediately
find that the data structures of our interest are data independent as our re-
stricted programming language ensures the above conditions. With these basic
definitions we can now prove the following theorem [2].

Theorem 1 Let E,E’ be two data independent sets of traces. Then, ¥ C b
iff ¥ C Y where ¥ C Y and X' C X/ contain only those traces from ¥ and X'/,
respectively, where every data value is input at most once.

Proof If ¥ C X' holds, then also ¥ C 3 by definition of ¥ and 3. For the
reverse direction consider some T € 3. Then, by data independence of X, there
is some 7' € ¥ and some f : D — D with f(r") = 7. Since $ C 3, we have
7' € 3. By data independence of X' this gives T = f(7') € ¥'. Hence ¥ C ¥,
O

Our goal is to use the above theorem to restrict our verification procedure to
program executions where every data value is inserted at most once. Hence, we
need to come up with a data independent specification. The following section
introduces a class of finite automata, so-called observers, for this task.

2.2 Observer Automata

In order to prove correctness of a given data structure, we need to specify its
intended behaviour. Recall from the introduction that we establish correctness
in terms of linearisability. That is, we judge over a programs correctness by in-
specting the traces of linearisation events emitted by the instrumented program.
For the specification itself, we employ observer automata introduced by [2]. In-
tuitively, such automata observe a trace of linearisation events and reach an
accepting state if a specification violation is detected. Formally, an observer au-
tomaton is a tuple A = (L, i, F,V,T) where L is a finite set of observer locations,
i1 € L is the initial location, F' C L is a set of final locations, V = {z1,...,2,} is
a finite set of observer variables, and T is a finite set of transitions. A transition

is of the form
! g,evt(p) !

where ¢ is a guard and evt(p) is a linearisation event with parameters p. Those
parameters contain all actual parameters passed to evt and the value to be
returned. For our language p consists of a single value: either the actual pa-
rameter or the return value. The guard is a conjunction of (possibly negated)
equalities among observer variables from V' and parameters from p. We may
abuse notation and write

I evt(d) I I p=d,evt(p) I

instead of

if clear from the context.

16

An observer state is a pair ([,) where [is an observer location and ¢ : V — D
is a valuation to the observer variables. An observer step is of the form

1,0) 5Dy oy where 1 2@,
is an enabled transition, i.e. g[p — d, z1 — ©(21),..., 2, — ©(2,)] evaluates to

true. A state is initial if its location is initial and similarly final if its location
is final. Note here that the valuation to the observer variables is not altered by
an observer step.

In the following we want to develop observers to specify stacks and queues. In
order to do so, we need to specify the intended behaviour of those data struc-
tures. Since their behaviour is commonly known we simply recall it briefly.
There are three general rules that apply to both the stack and the queue speci-
fication. Additionally, we need one rule to specify the order in which elements
are retrieved. In the following we use in and out to uniformly refer to the input
and output functions, respectively. For a stack we have in = push, out = pop
and for a queue we have in = eng, out = deq. The specification rules are as
follows |10].

(air) The data structure must not contain values out of thin air. That is,
if out yields d # @, then there must have been a call to in(d).

(loss) The data structure must not lose content. That is, if in(d) has been
issued, then subsequent calls to out must not yield @ until d has been
retrieved.

(dupl) The data structure must not duplicate content. That is, function out
must not return d, d # &, more often then in(d) has been issued.

(fifo) A queue must stick to the first-in-first-out policy.
(lifo) A stack must stick to the last-in-first-out policy.

One can now easily turn the above informal description into observer automata.
For every rule from above we create one observer. Hence, we come up with
Agirs Alosss Adupt; Afifo and Ayg,. Consider Figure for a definition of those
automata. In order to construct observer automata Az, and Aqueue specifying
stacks and queues, respectively, one can combine the corresponding automata
from above by computing the usual cross-product for automata.

It is important to note that observer automata like the above can only observe
a certain number of different data values. Namely those which coincide with
the valuation of the observer variables. That is, given an observer A with
variables V = {z,...,2,} and a valuation ¢ : V — D, all values in the set
Dy = {d|Vi. ¢(2;) # d} trigger identical observer steps. This property is
desired since we need to cope with a potentially infinite data domain.

However, we need to specify stacks and queues for all possible data values and
not only for a fixed subset. To do so, we non-deterministically choose the
valuation to the observer variables before observing a trace. Hence, we say that
a trace 7 violates the specification if there is some valuation ¢ : V — D such that
the corresponding observer automata A € {Asiack, Aqueue } reaches a final state.

17

(a) Observer enforcing rule |(air)) Observer enforcing rule |(

Adupl:

g in(z1) ‘/51\ out(z1) ‘/32\ out(z1) N
@ o/ N @

(c¢) Observer enforcing rule [(dupl)

out(z1)

. in(z1) /8'1\ in(z2) . out(z2) .
Q A AN . O

(d) Observer enforcing rule |(fifo)

Afifo:

Alifo: /jij’t
_)@ in(z) ’@ U out(z1) ’@

(e) Observer enforcing rule (hfo

v

Figure 2.1: Observer automata implementing the specification rules for stacks
and queues, adapted from [2].

18

Formally, we define a violation by
violation o(7) :== Jp : ¥V — D 3f € final(A). (init(A),) =" {f,)

where init(A) is the dedicated initial state and final(A) is the set of final states
of A. The specification induced by observer A is then the set of violation-free
traces X 4 := {7 | —wiolation 4(7) }. The following theorem now states that it is
sufficient to rely on observer automata for the verification of data independent
programs.

Theorem 2 For the verification of stack and queue implementations it is suf-
ficient to

1. rely on observer automata for the specification, and

2. restrict the analysed program executions to those where every data value
18 input at most once.

Proof (Sketch) Let Xp be the set of all traces of linearisation events for a
stack or queue implementation P. Furthermore, let g be a set of traces con-
taining all those that coincide with correct executions of P w.r.t. the specifi-
cation. Both those sets Xp and Yg are data independent. The former one is
due to the definition of our programming language. The latter one is up to
the specification rules of stacks and queues from above [2]. Hence, by invoking
Theorem [1, we can check whether or not P is correct, i.e ¥p C Xg holds, by
checking whether or not i)p - f]s holds. Moreover, we have f]g = X4 with
A € {Asiacks Aquene } depending on P. O

With the above theorem and the elegant specification by observers we can con-
tinue with the analytical part of the verification procedure. That is, for a given
program we need to produce the set of all necessary traces of linearisation events.
As a first step towards this goal, the following section discusses thread-modular
reasoning in order to explore all possible program executions.

2.3 Thread-Modular Reasoning

In the following we address the challenge of verifying programs with an arbi-
trary number of concurrently operating threads. The problem here is that the
unboundedness of threads results in an infinite state space. To cope with this
challenge, we have to move to a finite, abstract domain. Hence, we employ an
abstraction technique called thread-modular reasoning |7,16,22}26]. The core
idea is to verify single threads of a program. A program state is therefore ab-
stracted into a set of views. For every thread we create a view which captures
the part of the program state relevant for the corresponding thread. That is,
a view contains information about those parts of the heap which are reachable
through the global and thread-local variables. It does not hold any information
about thread identities and which views can occur together.

The thread-modular approach explores the abstract state space as follows [22].
It extends the set of thread views by sequential and interference steps until
saturated. Intuitively, a sequential step modifies the view by an action of the

19

corresponding thread as if the program was single threaded. Interference steps
account for the possible interleavings of threads. Therefore, the view of a victim
thread is updated by an action from another interfering thread. This update is
computed by creating a two-thread view for both victim and interferer, execut-
ing a sequential step for the interferer, and then projecting away the interfering
thread. Two views may only be combined if they coincide on the shared heap.
Formally, thread-modular reasoning solves the following fixed point equation

Xit1=X; U U post(v) U U interference(v, w)
veX; v,weEX;

where post and interference create new views from the existing ones by se-
quential and interference steps, respectively. We skip a formal definition of
those functions here as they depend on the actual techniques integrated into the
thread-modular framework. For one possible instantiation we refer to Chapter [3]
below.

In the following, we want to stress a severe drawback of the thread-modular
framework [191/30]. Due to the abstraction into views, the approach suffers from
imprecision. For a sound analysis the interference steps have to account for all
possible relations among the local heap parts of victim an interferer. This easily
yields false positives deeming the verification of reasonable programs impossible.
To establish correctness for Treiber’s stack, for example, we need to correlate the
local heaps properly. To see this, consider two threads ¢, ¢ which are performing
a push. Assume that both threads already allocated a new node and are about
to direct the nodes next field to the top of stack, i.e. the next command to be
exectued is node.next =ToS. We hereafter write node; and nodey to refer to the
nodes of ¢t and #/, respectively. Now, an interference step has to account for the
possibility that node; and nodey coincide. Hence, t is influenced by the actions
of t'. More precisely, if ¢’ conducts the push, node; becomes the new top of
stack. But this also means that node; now coincides with the top of stack. So
the interference just produced a view for ¢t where the top of stack points to the
newly allocated node;. In subsequent sequential steps, t sets node;.next to the
top of stack. In fact, this redirects the top of stack to itself. Clearly, this is a
false positive and does not occur in Treiber’s stack [27].

To make thread-modular reasoning practical one has to prevent false positives
like the above. For the garbage collected semantics, an elegant approach is to
extend views with ownership information [17,31]. This information is then used
to prevent erroneous relations among local parts of the heap. More precisely, if
a thread owns some part of the heap, then no other thread can access it. Hence,
in the above example, the interference step would not correlate node; and nodey
to coincide, effectively preventing the false positive.

For explicit memory management, however, ownership information cannot be
used. Since the allocation and deallocation guarantees are not as strong as
for garbage collection, one can experience dangling pointers to newly allocated
memory. Hence, there is no exclusive access for the allocating thread and thread-
modular reasoning has to consider the above false positive. In order to overcome
this problem, works like [2,/30] fight false positives by increasing the number of
threads kept in a view to two. This gives the required precision but severely lim-
its scalability of the approach due to a quadratic blow-up of the state space [19].

20

With the thread-modular framework set up, we have effective means for analysing
concurrent programs. In order to instantiate this framework, we need a tech-
nique for capturing the dynamic heap. The following section introduces shape
analysis for this task.

2.4 Shape Analysis

With the thread-modular framework set up, we now need practical means to
track the evolution of the heap. There are two challenges here. On the one
hand, the heap contains data values with a potentially infinite domain. On the
other hand, the heap is unbounded in its size. Hence, we have to fight two
dimensions of infinity when it comes to handling a heap.

Picking up on data independence, we rigorously tackle the challenge of data
values. We simply do not track data |2|. Instead, we track single cells which
contain certain, fixed data values. For this set we choose the observed data
values. Hence, the set of cells to track is finite since the set of observer variables
is finite and every data value occurs at most once. Altogether, it is sufficient to
track the structure — the shape — of the heap.

In order to capture the structure of the heap, we employ shape analysis |29].
We follow the novel representation from [2] abstracting the heap from cells
to reachability information among pointers. That is, we track the number of
steps that are needed for two pointers to reach each other following their next
fields. To overcome the unboundedness of the heap, we abstract from precise
reachability information. Therefore, we use four classes of reachability: zero
step, one step and multiple step reachability, as well as unreachable. Formally,
we use the relations R := {=, >, --», <+, «--, I} to relate two pointers z and y
as follows [2]:

x = y: both pointers are identical, i.e. they refer to the very same memory
cell,

x — y: x can reach y by following its next field, i.e. z.next =y,

x --+y: x can reach y by following two or more next fields, i.e. z.next — y
or x.next --» vy,

x < y: symmetric of —, i.e. y — x,
x «-- y: symmetric of --», i.e. y --» z,
x > y: neither of the previous, i.e. x cannot reach y and vice versa.

Lastly, we do only track a finite set of pointers T to overcome the unboundedness
of the heap. The exact contents of this set is up to the actual incarnation of the
method, like the one in Chapter 3] The relations among the pointers of T are
tracked by a shape matriz.

21

ToS top mnode =zero

ToS: top:
ToS = — [y =
CIo—GElo—GEs
top | = — |
node:
node DN = = X
(7] &)
zZero = — > =
(a) A heap setup stemming from a run (b) The corresponding shape representa-
of Treiber’ stack. tion.

Figure 2.2: A concrete heap and its shape representation.

Definition 4 (Shape Matrix) A shape matriz M w.r.t. T is a n X n matric
with n = |T|. The rows and columns are labelled with the elements of T. We
write M[x,y] to refer to the cell in the row labelled by x € T and the column
labelled by y € T. To allow for an efficient analysis, each cell contains a subset
of relations from R. This set is interpreted as a disjunction, i.e.

Mlz,y) =X CR — \/ x ~y.
~EXCR

Moreover, a shape matriz is symmetric. That is M|y, x| contains the symmetric
relations from M|z, y].

An example is in order. Therefore consider Figure 2.2} On the left of the figure
a heap is depicted which stems from a run of Treiber’s stack. The topmost
element, pointed to by ToS, contains value 0. The second topmost element con-
tains 8. Additionally, a thread is executing push and holds an outdated pointer
top to the cell containing 8. The thread is pushing value 77 which is contained
in the cell pointed to by node. On the right hand side the corresponding shape
is given for T := {ToS, top,node, zero}. We use zero to showcase how to track
certain data values. Clearly, the shape does not contain any data value. But
still, by the presense of zero, we can infer that the topmost value is 0. We can
do so since we know ToS = zero from the shape and use zero to always coincide
with the cell containing 0 (by data independence there is only one such cell).
Hence, when conducting a pop we know that 0 is poped. For any subsequent
pop we would not have any data binding associated with ToS. Thus, we say that
the returned value is T which is an arbitrary member of the undistinguishable
data values D+;.

With shape analysis as the last building block, we are now ready to instantiate
and integrate the techniques discussed so far into a verification procedure capa-
ble of automatically proving linearisability of concurrent data structures. The
following chapter presents a formal description.

22

Chapter 3

Instantiating a Thread-Modular
Analysis

The following chapter is dedicated to a formal description of a thread-modular
analysis checking for linearisability of concurrent stacks and queues. We build
upon the techniques and frameworks discusses in Chapter

In order to track the evolution of the dynamic heap we instantiate a shape
analysis with the set of tracked pointers

T, :=VU Global U{p; | p € Local N 1<i<n}U{NULL}

where V is the set of observer variables of the given specification and NULL
represents a null pointer |2].

Our verification procedure follows the overall structure of thread-modular rea-
soning. Therefore, we define an n-thread view to be a tuple of the form

view = (Pc, os, own, ages, shape, freed, in, out)
with
e control locations pc := pcy, ..., pc, for threads 1,...,n,
e an observer state os,

e disjoint sets of pointers own := ownq, ..., own, for threads 1,...,n con-
taining pointers from T,, to addresses owned by the corresponding thread,

e a formula ages which is a conjunction of expressions of the from = ~ y
relating the version counters of pointers x,y € T,, with ~e€{<,=,>},

e a shape matrix for the tracked pointers T,,,
e aset freed C |J,cp {2, z.next} tracking freed addresses,

e data values in := iny,...,n, containting the actual parameter (if any)
to the function currently executed by threads 1,...,n, and

e data values out := outy,..., out, containing the return value for non-void
functions exectued by threads 1,...,n.

Elements form the set freed are interpreted as follows. With z € freed we denote
that the cell pointed to by x has been freed. With z.next € freed we denote
that following the next field of may eventually yield a freed cell. We capture
pointers in this set since the shape analysis abstracts from cells of the heap to
pointers. Moreover, we abstract from precise reachability information along the
lines of shape analysis.

As discussed before, n = 1 is sufficient for analysing programs under garbage
collection and n = 2 is required for explicitly managed memory.

23

Formally, we saturate the set of all views and solve the following fixed point
equation

X1 =X, ® U post(v) U U interference(v, w)
vEX; v, wEX;

where post and interference compute a sequential and an interference step, re-
spectively, and @ merges two sets of configurations. The initial set X contains
a single view which stems from executing the initialisation function of the pro-
gram.

In the following, we formally define the merge operator & and the functions post
and interference from the above fixed point equation.

3.1 Merging Views

Previous works like [7] have show that enumerating all views is hardly possi-
ble, even when exploiting the data independence argument and shape analysis.
Therefore, we rely on the idea of merging views which was introduced in [2].
Although this decreases the overall precision of the analysis, the observation is
that it is still amenable to verifying lock-free stacks and queues. Moreover, |2]
reports that this reduces the memory footprint of the analysis such that prov-
ing more complex algorithms like Micheal&Scott’s lock free queue becomes first
possible.

For the above reasons, our analysis integrates the merging of views, too. We did
already give the fixed point equation above using the operator & to denote the
merging of two sets of views. Intuitively, we merge two views if they coincide
except for the shape and the ownership information. The merged view then
contains a merged shape where each cell is simply a disjunction of the corre-
sponding cells of the original shapes and an intersection of owned addresses.
Formally, for two views v and w, with

v =(pe, 0s, own”, ages, shape”, freed, in, out) and
w =(pe, os, own", ages, shape®, freed, in, out),
we define the merge v w as
v@w := {(pe, os, oun” & own", ages, shape” & shape", freed, in, out) }
where the merge shape” & shape™ of two shapes |2] is defined by
(shape®” @& shape™)[x,y] := shape’[z,y] U shape® [z, y]

for all z,y € T, and the merged ownership information own® @ own® is defined
by

owny @ own;’ = own; N own}’
for all 1 < ¢ < n. For the remaining cases where v and w differ in some of their
elements besides the shape and the ownership information we apply no merging

and thus have v @ w := {v, w}. The above operator extends naturally to sets of
views and we hereafter use it in both infix and prefix notation.

24

In order to be able to compute post, one eventually needs to split shapes, i.e.
undo the merging. Naturally, this needs to account for all possible splits. To
prevent the generation of unnecessary false positives we prune from the set of
all possible shapes those that are inconsistent. So given a consistency predicate
cons we define the split of a shape shp as follows

split(shp) := {s | cons(s) AVaVy. s[z,y] C shp[z,y] Als[z,y]| =1}

where | - | is the usual set cardinality. For a more efficient analysis, we also
introduce two partial splits which do not split every cell in the shape but only
a single row or a single cell. Formally, the partial splits for a shape shp are
defined by

split(shp, x) == { s | cons(s) AVy. s[z,y] C shp[z,y] Al|s[z,y]| =1
AVNY. x # 2z — slz,y] C shp(z,x] }
split(shp, x,y) = { s | cons(s) A s[x,y] C shplx,y] A |s[z,y]| =1
AVVy. x # 2 — slz,y] C shplz,x] }
where the former split is restricted to the row labelled by = and the latter splits
only the cell relating x and y. Note here that we cannot enforce equality among

the shape cells that are not splitted since we might need to prune some relations
in order to establish the overall consistency of the shape.

Lastly, we need to define the cons predicate. Intuitively, it should deem those
shapes inconsistent which cannot occur. For example, if we have a shape shp
with

shplz,y] = {—,--+} and shp[z,z] = {—,--+},

then we have to consider the splitted shape shp’ with
shp'[z,y] = {—} and shp'lx,2] = {—}.

In case y and z do not coincide, for example by {=} Nshply, z] = &, we have
created an inconsistent shape. It is inconsistent as x has two distinct, direct
successors. Clearly, this is not possible in our setup where pointers have a single
next selector only. Formally, we define the consistency for a shape shp by
cons(shp) :=Vx,y,z ¥V ~, € shp|x, 2]
3 Nm,ye shp[sc,y] 3 Ny,ze Shp[ya Z]
cons(~a,z, ~ay, ~y,z)

where cons(-,-,-) decides about the consistency of a triple of relations among
the corresponding pointers. For all consistent combinations consider Table [3.1}

With the possibility of merging and splitting shapes, we are now ready for the
discussion of sequential steps in the following section.

3.2 Sequential Steps

Given a view v, a sequential step generates new views capturing the impact of
a thread from v executing its next command. In the following we develop the

25

~r,z ~xy ~y,z T,z
= = = >
— — = —, «-—, X
-—> -—> -—> i, ¢-—,
- < < > < >
- - - >
> > > =, >, ==, 4, ¢, X
= — = <
— = — “«--
-—3 i e—- -—3 -
= <
. —-——> < =,
- -—> «-- =, ==,
> =, ==, > >
= -—> = =
— =, —=2 — €=
., -—> N S N S R . -—> -3, -
< -=2 < H, -,
- -—3 - N e N e R NN
> =, -, > >

Table 3.1: List of all consistent triples of relations.

function post which creates such new views. Since a view can contain multiple
threads, we write post; to denote a sequential step for thread i. The overall

sequential step post is then defined in terms of post;, i.e.

post(v) = U post;(v)

1<i<n

where v is an n-thread view. In order to define post; we do a case distinction on
the next command pc; of thread i. For the sake of a lightweight presentation,

we say that a result view v’ € post,(v) is given by

— - 12) — — .
v/ = (pc’, os', own’, ages’, shape’, freed', in', out) with

—/ /
PC = PCy, «vvy PCiy -+, PCyy
—_— /
oOWN' = OWNy, ..., OWNy, ..., OWNy,
— . . .
M =N, ..., My, ..., Ny
R ,
out = outy, ..., outy, ..., outy

and hereafter define pc;, own’, ages’, shape’, freed’, in} and out, depending on
the corresponding command pc,;. Moreover, we may abuse notation and simply
write x instead of x; € T, for local pointers = of thread 7 in order to uniformly
handle global and thread-i local variables. The definitions that follow are based

on the concepts from [2].

Pointer Assignments Recall that there are three types of pointer assign-
ments, namely (a) x = y, (b) x = y.next, and (c) x.next = y,

26

For type @ of assignments we compute the sequential step by copying the
information about y into z, effectively making them equal. Formally, this is
done as follows.

shape’ [z, y] := shape' [z, z] := {=}
shape'[x,t] := shapely, t] forall t € T, \ {z,y}
shape'[t1,ts] := shapelty, to] for all ¢;,t, € Ty, \ {z}
ages' == ages Nx =y
freed' := (freed \ {z,x.next})
U {x} if y € freed
U {z.next} if y.next € freed
in, :=1n;
out’, := out;

Additionally, we add all those relations to ages’ which follow from transitivity.
We do so since otherwise changing a relation involving y later on could implicitly
change the relations for x. For the ownership information, however, we have
to be more careful since writing an address to a global pointer publishes that
address. We account for potential ownership loss as follows

own; := own; U {z} if y € own; A x € Local
own’, := own; \ {z} if y & own; Az € Local
own), := own; \ ({z} U ptrto(y)) if x € Global

where ptrto(y) yields all those pointers that reference the same cell as y, i.e.
ptrto(y) := {t | {=} N shape[t,y] # @ }. Lastly, we need to update the program
counter and set pc; to the next command in order.

For type of assignments we need to identify a proper next field of y. A
shape, however, might contain multiple choices due to merged views. Hence, we
have to cover all possible choices for x that are consistent. To that end, we set

shape’ := @ ({ shp | cons(shp) A shply,z] = {—~} A
Yu,v € T, \ {x}. shplu,v] C shape[u,v] }).
In addition, we have to account for the case that the cell pointed to by y.next

has been freed. To do so we defensively assume that all cells reachable from y
have been freed when y.next € freed holds. That is, we set

freed' := freed \ {x,x.next} if y.next &€ freed and

freed' := freed U {x, z.next} otherwise.

The remaining parts of the resulting view are analogous to @

The last kind of assignments, type is a bit more involved. In order to
establish y as new successor of x we need to remove the current successors of
x first. Therefore, we split the shape such that we have precise information
about the current successors of x. Then, we can easily remove them. Note that
removing the successors of means that we have to remove all the reachability

27

information relying on them. That is, the predecessors of x cannot reach the
removed successors any longer. Formally, we conduct this removal as follows:

shape’ := ©({ shp | cons(shp) AVt € T, \ {x}. shp[z,t] N {~>, -3} =T A
s € split(shape,) Vu,v € T, \ {z}. shpu,v] C su,v]})

Then, we can easily connect = and y by setting shape’[z,y] := {—} and adding
all relations to shape’ which follow from transitivity. For the set of freed pointers
we have to account for the fact that x may be able to reach a freed cell if y
has seen a free or can reach some freed cell. Formally, we capture this with the
update

freed' :=freed U {x.next} if {y,y.next} N freed # @ and
freed' :=freed \ {x.next} otherwise.

The remaining updates are again analogous to @

Data Assignments Recall that our restricted programming language only
allows to write data values that are passed to functions or to read data values
in order to return them. We have the two data assignments (a) x.data = _in_
and (b) _out_ = x.data.

For the former assignment, type @, we need to connect the input data value
with pointer . Since the shape analysis does not capture the data stored in
the heap, we need other means to track it. Therefore, recall that observers can
only distinguish finitely many data value classes, namely one class per observer
variable and one for the remaining values. In order to track those values that can
be observed, we link the pointer x with those observer variables the valuation
of which coincides with the input data value. To do so, we simply reuse the
sequential step for pointer assignments and execute z = x for all z € V with
©(z) = in;. If the input data value is not observed by any observer variable, we
do nothing instead.

We account for the above policy when retrieving data values from pointers,
i.e. when executing assignments of type @, as follows. Either there is a data
binding, i.e. there is an equality among some observer variable and the pointer
variable x, or there is none. In the former case, we can get the data value for x
from the valuation of the observer variable. In the latter case, we recognize that
the data stems from the set of unobserved values. Formally, we set out, = ¢(z)
if there is some z € V with {=} C shape[z, z]. If the shape allows for multiple
distinct data bindings, then we have to create a result view for every such
binding. If no data binding is present, then we set out, = T. Besides updating
the program counter for the corresponding thread, nothing remains to do.

Age Assignments The age assignment x.age = y.age was already discussed
above as part of x = y. We simply set ages’ = ages Az = y and add all those
relations that follow from transitivity.

In addition to the above assignment, we also support x.age++ and x.next.age++.
Since both updates are very similar, we discuss only the former statement.

28

Intuitively, to account for such an assignment, we need to update some relations
in ages that contain z, namely those where we have x = z or z < z for some
z € Ty,. In the former case, we can simply replace x = z with = > z. For the
latter case, we have to account for the possibilities z < z and x = z. The former
case, ¢ < z can definitely occur. The latter case, however, might be inconsistent
with the remaining formula. To see this, consider z < 2z A z <y A y < z where
increasing x by one cannot lead to = 2. In order to choose a consistent one,
we can simply pick 2,,;, such that

T < Zmin and VY. <y — (Y = Zmin V Zmin < Y)

holds. Now, there are two resulting views for the sequential step of this assign-
ment. For the first view we replace every x = z with « > 2z and leave all other
relations untouched. For the second resulting view we additionally replace x < z
with = = z for all z that have the same age as z,,;y,, i.e. ages — z = zpyin holds.
Lastly, we extend ages’ with all those relations that follow form transitivity in
both resulting views.

Conditionals For a conditional one has to decide with which branch to con-
tinue. Hereafter, we use pcy,.,, and pegy,. to refer to the program counters that
model the branches of the conditional when its condition evaluates to true and
false, respectively. There are two kinds of comparisons for conditions, namely
(a) age comparisons x.age == y.age and (b) pointer comparisons x == y. For
the former one we check whether the formula ages implies the equality in ques-
tion. That is, we set pc; := pc,,.,,. if ages — x = y holds and pc} := pcyyqe
otherwise.

For pointer comparisons, type @, we consider the shape, i.e. we can check
whether or not {=} C shape[z,y]. However, we have to account for merged
shapes. That is, the shape could reflect two heap setups where x == y holds in
one but not in the other. Hence, we have to split the shape and evaluate the
condition using precise reachability information. Formally, we define the two
sets of shapes shps and shpsg,se by

true
$hps e = { shp | shp € split(shape, z,y) A shp[z,y] = {=}} and
ShpS fa1se = { shp | shp € split(shape, x,y) A shp[z,y] # {=}}.

For every non-empty of the above sets S € {shps .., shpsfalse} we generate a
new view with shape’ := @(S) as the result of the sequential step. Besides up-
dating the program counter to the corresponding pcy,,. and pcsy,. for shps,,.,.
and shpsg,s., respectively, no further actions are required.

Free The behaviour of a free(x) depends on the memory semantics that is
used for the analysis. For garbage collection, a free does not have an effect.
The cell pointed to by x will be automatically garbage collected when there are
no more pointers to it and thus the shape is not influenced and a reallocation
of that cell cannot yield dangling pointers. Hence, we only need to update the
program counter.

For the memory managed semantics a free marks a cell available for reallocation
but does not alter its contents. Since our representation of the heap abstracts

29

from cells, we have to acknowledge the free for every pointer pointing to a freed
cell. That is, we have to (a) mark all pointers equivalent to z as freed and
(b) inform all those pointers that can reach x that they can now reach a freed
cell. Again, due to merged shapes, we have to split the shape first. To avoid
an unnecessary large number of result views, we merge those splitted shapes
that correspond to the same reallocation scenario. Hence, we come up with the
following set

shps = U @ ({ s] s € split(shape,x) N
Jrd € VyeTp\{z}.y € frd < slr,yl = {=}})

which contains a merged shape for every possible combination of pointer equal-
ities among the freed cells involving x. As a result of the sequential step we
generate a view for every shape s € shps with shape’ := s and

Jreed' := freed U {y | sla,y] = {=} } U {y.neat | sla,y] N {2} # @}.
accounts for@ accounts for@

Lastly, note that we do not need to update ownership information for the mem-
ory managed semantics since it lacks this concept.

Malloc An allocation request x = malloc() gives a portion of dynamically
allocated memory. For garbage collection, this portion is always fresh. Hence,
no pointer can reach the newly allocated memory. We account for this by setting
shape'[z,x] := {=} and shape’[r,t] := {>x} for all t € T,, \ {} and by removing
x from the freed pointers, i.e. freed' := freed \ {z}. Additionally, ownership is
claimed over the newly allocated memory and thus we set own := own; U {z}.

For an allocation request under explicit memory management, the above sce-
nario applies, too. However, we do not update the ownership information since
the semantics lacks this notion. Moreover, we have to account for reallocation.
Again we suffer from the fact that we track pointers and not cells. Hence, we
have to split up the shape in order to precisely identify all pointers that are
pointing to the same cell and are reallocated for z. Similar to free, we define
the set shps to contain a merged shape for every possible reallocation scenario
as follows

shps := U ® ({ s | s € split(shape,x) A
JrdCfreed Vy e T, Nfreed. y € frd < s[z,y] = {=}})

where the last condition ensures that not only a subset but all dangling pointers
to the newly allocated cell are reallocated. In addition to the view representing
the allocation of a fresh cell, we add a resulting view for every shape s € shps
with

shape’ :==s and freed' := freed \ {y | s[z,y] = {=}}.

Regarding the definition of freed’ note that a reallocation does not initialise the
reallocated cells. Hence, following the next field of the new cell may yield a
freed cell as before.

30

Linearisation Points Since our programming language does not feature an
explicit construct for linearisation points, we assume that certain statements
are annotated, e.g. by comments, to emit linearisation events. Whenever such
a statement is handled, the resulting views of the sequential step are modified.
This modification updates the observer state according to the emitted linearisa-
tion event in a straight forward way. If the observer reaches a final state, then
the method aborts and reports the bug.

Returning from Functions According to our language specification, there
are no explicit return statements. Instead, we implicitly return the value written
to _out_ when reaching the end of a non-void function. The return value is
stored in out; by construction. Moreover, when returning from a function, all
local variables x € Local leave scope. We account for this as follows. Firstly,
we set shape’[x,t] := {1} for all t € T, \ {z}. Secondly, we obtain ages’ by
removing from ages every conjunct containing x. Thirdly, we remove x from
own; and both z,z.next from freed. Lastly, we set the program counter to
a dedicated value indicating that there are no further commands, i.e. we set
pe; == L.

Calls For function calls we assume the most general client of the program.
Hence, whenever a thread finishes the execution of a function, we have to ac-
count for all possible subsequent function calls. By construction, we recognise
termination of a function if we have pc; = L. We then create a range of result
views — one per thread and actual argument. That is, for every function f that
takes an argument we come up with a result view where we call f(val) for all
possible values val. By data independence and the use of observers it is suffi-
cient to consider val € {d |d = p(z) Az € V }U{T}. For functions that do not
take parameters we have a single view. Each of the above views simply sets pc
to the first statement of the called functions. Additionally, we have to set in/,
to the corresponding value val for functions taking arguments.

Break A break statement unconditionally redirects the control flow to the
next statement after the innermost loop. Hence, we only need to update the
program counter and keep the remaining parts of the view.

Compare-And-Swap As discussed in Chapter[l] one can interpret a Compare-
And-Swap statement as syntactic sugar. We already introduced all necessary
concepts to handle such a command. Hence, we skip a formal definition and
continue with the interference steps in the next section.

3.3 Interference Steps

An interference step for view v w.r.t. another view w computes how an action
from a thread of w affects the threads of v. This step is called interference
since the thread from w is considered to be not part of v. Intuitively, this

31

accounts for the scenario where the thread from v are interrupted by a thread
from w. In order to capture the impact of those interferences on v we proceed
as follows. We extend v with a thread from w, execute a sequential step for the
new thread, and finally project away that thread. This gives an n-thread view
again. Formally, we define an interference step by

interference(v,w) := project o post, , o extend(v,w) if match(v,w)

interference(v,w) := @ otherwise

where match guards the interference step to be only executed if w can actually
interfere v, extend augments v with a thread from w, and project removes the
newly added thread form all views produced by the sequential step.

In the following, we formally define the predicate match as well as the functions
ertend and project from above.

Check for Interference In order to avoid unnecessary false positives to be
generated during interference steps, we guard the interference with the match
predicate. For two views v and w, match(v,w) evaluates to true only if w can
interfere v. Intuitively, a thread from w can interfere v if the global states in v
and w coincide. Hence, we check whether or not the interfering thread can exist
in v. If so, we compute an interference step. Formally, for two n-thread views
v, w with

— R -V —v
v = (pc’, 0s”, own’, ages’, shape’, freed’,in , out) and

w

— N -— W —Fw
w = (pe¥, 0s™, own", ages"™, shape"™, freed™,in ", out "),

we define the match predicate by

match(v,w) == pci =pcf AN pep_ 1 =pew_ | A

08’ = 08" A

>

ages”|r, , < ages”|r, ,
freed” |, _, = freed”|r, _,

match(shape” , shape™) A

>

iny =inl A A dng_; =1ing_; A
out] = outy A---A out,_; = outy_; A
in, =1in;, —in, € T A

out! = outy — out, ¢ {T,L}

where .|y, _, is an restriction to T,_; C T,. More precisely, for u € {v,w},
ages™|r, _, is generated from ages™ by removing all conjuncts that contain an
expression from T, \ T,,_; and freed“|r, _, is generated from freed" by removing
all z,z.next with x € T, \ T,,—_1. Regarding the last two lines of the above
definition, note that if the data handled by the nth thread coincides in both v
and w then it is the very same thread by data independence and we prevent the

32

interference. For two shapes we define

match(shape®, shape™) := I shp, s,s'. cons(shp) A
s € split(shape®) A s’ € split(shape™) A
Vo eT, 1 Vy€eV. shplx,y] C sz, y] Us'[z,9]
Va,y € Tp_1\V. shplz,y] C s[z,y] N s'[z,y]

in order to check whether or not both shapes represent a common heap structure.
The last line of the above definition allows the two shapes to differ for the local
variables of the nth thread. Moreover, the last line but one accounts for the
fact that we cannot require the intersection of the shape cells relating observer
variables to be non-empty. This is because those entries capture which pointers
contain observed data values. Since they have to reflect the data of thread-local
variables, too, we have to consider them to be part of the local state. For an
example, consider Treiber’s stack. Assume that some thread wants to push a
data value observed by the observer variable z € V. Moreover, assume that this
thread already allocated new memory and directed the next field of the local
node pointer to the global top of stack Tos. This is reflected by node = z > ToS
in the shape. Now, we have to consider the interference with another thread that
has not seen this data value before. The shape of the latter thread, however,
contains only z <1 ToS. Hence, the intersection of the corresponding shape cells
is empty. This scenario shows that we indeed require to exclude the observed
values from the above condition.

It is worth noting that we always extend v with the nth thread of w. This is
sufficient since the overall fixed point explores all permutations of w. Hence, we
account for all possible interfering threads. Lastly, note that this is the reason
why we enforce the two configurations to coincide on the threads up to thread
n—1.

Extension For the interference step of two n-thread views v and w we need
to extend v with an interfering thread from w. Along the definition of match
we choose the nth thread from w as the interferer. For two such matching views
v and w with

— N -V —v
v = (pc’, os, oun’, ages’, shape’, freed”,in , out) and

w = (¥, os, own”, ages®, shape™, freed”, ", out"),
we define the extended (n + 1)-thread view as follows:

extend (v, w) := (pc’, pec,,, 0s,
extend (own®, own®),
extend(ages®, ages™),
extend (shape", shape"),
extend(freed”, freed"),

-v . —v
in, in® out, out").

For the extension of the age relations and the set of freed pointers, we can easily
copy the relevant information from w to v. However, we additionally need to

33

rename the pointers of thread n from w. They still belong to the same thread,
but this thread is now the (n 4 1)st thread of v. Hence we come up with

extend(ages®, ages®™) := ages” A rename(ages") and
extend(freed”, freed") := freed” U rename(freed"™)

where rename replaces x,, with xz,,,1 for every € Local. Extending ownership
information requires to account for merged ownership information in v and w.
That is, even if both views would capture the very same state of some thread, the
ownership information might differ. Hence, we proceed similar to the merging
of views and define

v wy . v w v w
extend(own®, own") := owny Nowny’, ..., own, _; Nown, _,,

own?

v, rename(own.y)

where we merge the ownership information of the first n — 1 threads and copy
the information from the nth thread of v and w. For the extended shape we have
to be more careful. The problem here is due to thread-modularity: the views do
not contain any information about the relations between the local variables of
the nth thread from v and the nth thread from w. Hence, we have to consider
all possible relations and prune those that are inconsistent. Formally, we define
the extended shape w.r.t. T, +1 by

extend(shape®, shape™) := @ ({ shp | cons(shp) A
Va,y € Tp \ V. shplz,y| C shape”[z,y] A
Ve e T, \V Yy € V. shp[z,y] C shape”[z,y] U shape” [z, y] A
Vo € Tp_1Vy € Ty, \ Tro1. shplz, rename(y)] C shape™[z,y] A
Vz,y € Ty, \ Tp—1. shp[rename(z), rename(y)] C shape™[z,y] A
Va,y € Tp \ Trn_1. shp[z, rename(y)] C R })

where we have to apply a renaming for the same reasons as before.

In the following, we elaborate on the above definition. Condition (C2)) ensures
that the shape from v is extended. Note, however, that we cannot replace the
subset relation in this condition with an equality since some relations might be
pruned by condition . Condition is similar to the previous one, but uses
a union of both shapes. This accounts for the fact that the observer variables
possibly capture thread-local information as discussed before. Next, condition
states that the relations involving the local pointers of the interfering
thread can be copied from the shape of w. We can do so since v and w coincide
for threads 1 to n — 1. Condition simply ensures that relations among the
local variables of the interferer are preserved. Lastly, condition allows all
possible relations among pointers local to thread n and the interfering thread
n+ 1. In combination with condition those relations are pruned such that
the overall shape is consistent.

Regarding condition (C6)), recall from Section [2.3] that we may want to restrict
the relations based on ownership information in order to restore precision of an
analysis for garbage collection with single-thread views. For a restriction we can
safely remove those relations that would harm ownership. That is, if thread n

34

from v owns the cell pointed to by some pointer x, then no pointer from the
interfering thread can reach this cell, i.e. there is no local pointer y from the
interferer with y = x Vy — x Vy --» . Similarly, the reverse holds for cells
owned by the interferer.

Projection For an extended (n+ 1)-thread view v the projection has to undo
the extension discussed above. That is, we have to remove the interfering thread
from v. We do so by simply removing all information about the interferer, i.e.
the (n + 1)st thread. Formally, we define the projection of v with

v = (PE, pc, 41, 05, OWM, OWNy 41, ages, shape, freed, in, in, 41, out, oul, 1)
to an n-thread view by
project(v) = (pe, os, own, ages|t, , shape|r, , freed|r, , in, out)

with the restriction operator as defined above. This definition extends naturally
to sets of views as required for our definition of the interference function.

3.4 Summary

In this chapter we have show how integrate the various techniques discussed in
Chapter [2] into an analysis checking for linearisability. As discussed before, this
verification approach suffers from imprecision for explicit memory management.
One possible solution is to increase the number of threads kept in a view. Since
this severely limits scalability, we opt for a more elaborate solution to this prob-
lem. Towards this, the following chapter discusses the novel notion of strong
pointer races [19]. Based on this we are ultimately able to exploit ownership
information for explicit memory management. Although this ownership is not
as strong as the ownership guarantees under garbage collection, it is amenable
to thread-modular reasoning with one thread per view. We will see that this ap-
proach scales well and outperforms the traditional analysis for explicit memory
management by up to two orders of magnitude.

35

36

Chapter 4

Improving Thread-Modular
Verification

This chapter is dedicated to improving the thread-modular analysis from above
for explicit memory management. We already discussed that the method suffers
from imprecision as the memory managed semantics lacks the concept of own-
ership. Hence, one has to increase the number of threads kept in a view [2//30].
This gives precision but severely limits scalability.

In the following we want to discuss the notion of pointer races introduced in |19].
The core idea is to put ownership back into the memory managed semantics
for pointer race free programs, i.e. for programs that avoid accessing freed
memory. Although this ownership differs from the ownership guarantees given
by garbage collection, it is amenable to thread-modular reasoning. With the new
ownership concept we can adapt the thread-modular verification procedure from
the previous chapter to use one-thread views for explicit memory management.

In the following we give an introduction to pointer races first. Then, we discuss
how to integrate this notion into the verification procedure from Chapter
Lastly, exploiting ownership allows us to improve the interference by pruning
certain steps.

4.1 Pointer Races

In order to develop the notion of pointer races introduced in [19|, consider
a motivating example first. Therefore, recall Treiber’s stack from Chapter
We already discussed that this program suffers from the ABA problem under
explicit memory management but not under gargabe collection. The observation
form [19] is the following. The difference between those two memory semantics
becomes apparent only if there are certain kinds of racy accesses: so-called
pointer races. Intuitively, a pointer race is an access to a freed cell through a
dangling pointer.

Formally, we define pointer races as an access to pointers that are not valid.
This requires a notion of validity of pointers. Intuitively, a pointer is valid if it
points to an address that is allocated. Additionally, we forbid valid pointers to
point to allocated addresses by accident. That is, in order to be valid a pointer
must have learned the address from the last allocation. Hence, dangling pointers
are excluded. Formally, validity is defined as follows.

37

Definition 5 (Valid Pointer Expressions) The valid pointer expressions in
a computation T are inductively defined by 1. := TU {a.next | a € Adr} and

valid (. x—yy = valid; U {x} if y€walid,
valid - (. x—yy = valid; \ {z} if y¢valid,
valid, (. x next—y) = valid; U {h,(x).next} if y€walid,

valid, (. x next—y) = valid; \ {h-(x).next} if ygvalid,

valid; (. x—y next) = valid; U {x} if yewalid,; A h.(y).next € valid

valid; (. y—y next) 1= valid, \ {x} if y&wvalid; V hy(y).next € valid.;
valid (. tree(x)) := valid, \ ptreq(x)

valid (. ma110c(x)) = valid. U {z}

valid r. gct 1= valid, otherwise

with the set ptreq(x) containing those pointer expressions that are affected by
the free, i.e. ptreq(z) :={y | h-(y) = h-(x) } U{h (x).next}.

For convenience, we also define the symmetric set invalid, containing all those
pointer expressions that are invalid in 7, i.e. e € invalid, iff e & valid.,.

With the above definition, pointers remain valid only during the lifetime of a
memory cell. That is, an allocation validates the receiving pointer but not the
dangling pointers that may see the reallocation. A free then renders all pointers
invalid that reference the freed cell. This ensures that dangling pointers are
always invalid. With the set of invalid pointers at hand we can now formally
define pointer races.

Definition 6 (Pointer Race) A computation T.act is called pointer race if
x € invalid,; and the command of act contains one of the following: (a) x.data,
(b) x.next, (c¢) free(x), or (d) a comparison involving x. We also say that act
raises a pointer race. Moreover, a set of computations is pointer race free if it
does not contain a pointer race.

The above definition basically ensures that a pointer race free program neither
accesses nor compares pointers to cells that have been freed. Based on this,
[19] studies the difference between the garbage collected and memory managed
semantics. The main finding here is that the two semantics differ only in the
presence of pointer racesE

Theorem 3 If a program is free from pointer races under the garbage collected
semantics, then the memory managed semantics and the garbage collected se-
mantics coincide modulo reallocation of memory cells [19]. That is, for every
computation in the memory managed semantics there is a heap-equivalent one
in the garbage collectied semantics. However, for the sake of simplicity, we skip
the formal details regarding the equivalence.

1Hereafter, we present the overall results in form of theorems. Formal proofs can be found
in the full version of [19]. We skip them here as they are not part of our contribution and
would unnecessarily complicate this introduction to pointer races.

38

The above theorem reveals to be a very powerful tool for common programming
tasks. Since the absence of pointer races is usually a desired property, one can
follow a novel verification policy [19]: first, check a given program for pointer
races under garbage collection. If there are such races tell the programmer about
those potential bugs. Otherwise, verify the program under garbage collection.
The results of the verification then carry over to the memory managed semantics.
Altogether, this makes reasoning under the more complicated memory managed
semantics superfluous for common programming tasks.

Unfortunately, we cannot apply the above theorem and the associated verifica-
tion strategy for our purpose. The reason is that performance-critical applica-
tions intentionally make use of racy accesses — those programs are not pointer
race free. For an example consider Treiber’s stack. Among others, there is a
pointer race in the pop function. When a thread executes top = ToS it creates a
local copy of the global pointer referencing the topmost stack element. In a sub-
sequent command, the thread executes node = top.next — and raises a pointer
race. The problem here is that an interfering thread could have executed a
pop in between resulting in top pointing to a freed cell. Hence, top is poten-
tially invalid and accessing its next field raises a pointer race according to the
definition.

In order to cope with such programs, [19] proposes the more relaxed notion of
strong pointer races. The core idea is to tolerate dereferences and comparisons of
invalid pointers. The underlying observation is that performance-critical data
structures tend to read from invalid pointers. To shield themselves against
data corruption, such accesses are followed by an integrity check. If this check
fails then the value of the racy access is not used. That is, if the content of
a variable stems from a racy access, then the variable is effectively dead. In
Treiber’s stack, this is done by the Compare-And-Swap operation following the
command node = top.next from above. If top reveals to be outdated, i.e. freed
in between, the value of node is not used. Also note that the integrity check is
a comparison involving the potentially invalid pointer top. Hence, we have to
allow both accessing and comparing invalid pointers.

Formally, the notion of strong pointer races employs a the set of strongly invalid
expressions. This set captures all those expressions that result from accessing
invalid expressions. In the above example, node becomes strongly invalid when
top is invalid.

Definition 7 (Strongly Invalid Pointer Expressions) The strongly invalid
expressions in a computation T are inductively defined by 7. := @ and

sinvalid (. x—y) = sinvalid,; U {x} if y € sinvalid .,
sinvalid; (. x next—y) ‘= sinvalid,; U {x.next} if y € sinvalid .,
sinvalid; (. y—y next) := sinvalid, U {x} if y € invalid,
sinvalid. (., out —x.data) := stnvalid, U{_out_} if x € inwvalid.;
sinvalid; qer = sinvalid, \ valid. otherwise

Note here that we may also deem data expressions strongly invalid if the value
stems from accessing an invalid pointer. By the language definition, however,
the only data expression that may ever be rendered strongly invalid is the special

39

variable _out_ used to store the return value. It is also worth noting that the
above definition relies on the assumption that memory once allocated remains
accessible, i.e. it is not reclaimed by the underlying operating system (cf. Sec-
tion . Hence, we do not need to fear dereferences of dangling pointers to
result in segmentation faults. The core idea of the strongly invalid pointers is to
capture those expressions a well-behaved computation should not rely on. The
following definition of strong pointer races makes this notion precise.

Definition 8 (Strong Pointer Race) A computation T.act is a strong pointer
race if the command of act corresponds to one of the following:

(a) x.next=y, x.data=_in_ or free(x) with x € invalid.,
(b) a comparison involving x with x € sinvalid,, or
(c) a statement containing x.next or x.data with x € sinvalid.

Similarly to reqular pointer races, we say that act raises a strong pointer race
and that a set of computations is strong pointer race free if it does not contain
a strong pointer race.

The definition of strong pointer races is, as one might expect, no drop-in replace-
ment for regular pointer races in Theorem [3] In order to provide an analogue of
this theorem, [19] defines a new memory semantics. This new semantics is based
on the observation that strong pointer race free computations respect owner-
ship. The ownership, however, does not grant the same exclusivity as ownership
under garbage collection. A thread might, by accident, access memory owned
by another thread through a dangling pointer. However, if they respect own-
ership they do not influence the owner of the memory. Phrased differently:
programs that respect ownership are invariant to the fact whether memory cells
are reallocated or fresh.

Definition 9 (Owned Addresses) The set of addresses owned by a thread t
in a computation T is inductively defined by own.(t) := & and

OWN7 (4 x=ma110c()) (t) = own,(t) U {a} if © € Local and malloc gives a
OWN 1 (¢ tree(x)) (t) = ownT(t) \ {a,} if x € valid,
OWN 1 (4 x=y) (1) := own,(t) \ {ay} if ©€ Global A\ y € valid,

OWN 7 (¢ x—y.next) (1) = 0wnr (t) \ {ay.neet } if ©€ Global Ay, a,.next € valid,

OWN 7 (¢ x—y.next) () = 0wnr () \ {ay.neet } if ay & own,(t) Ay, ay.next € valid,

OWN 1 (1 x—ynext) (1) := ownr(t) \ {@y.next } if ay & own(t) Ay, ay.next € valid,
OWN 7 (¢ assert x—y) () := own (t) \ {az,ay} if v € invalid, V y € invalid,
OWN1 (4 assert x£y) (t) i= ownT(t) \{ag,ay} if x € invalid, Vy € invalid,

OWN 7 aet (t) 1= own,(t) otherwise

with az = h:(z), ay := hr(Y), Gy neat = hr(y.next) and t' # t.

Since the new memory semantics will be based on ownership and is of major in-
terest for the verification procedure, let us elaborate a bit on the above definition
in order to develop a deep understanding of ownership. Naturally, ownership is
granted to freshly allocated memory and removed upon freeing it. There are,

40

however, more subtle cases in which ownership is removed. The first cases of
losing ownership in the above definition are due to publishing. Intuitively, if a
thread writes the address of an owned cell into a public pointer, then the cell is
no longer owned as this corresponds to granting other threads access. In case
an owned cell is published via a next field of a non-owned pointer, ownership
is not removed immediately. Instead, ownership is lost when some other thread
(t' in the above definition) accesses that next ﬁelcﬂ

Additionally, note that those cases are guarded such that ownership is only
lost when the cell was published via a valid pointer. This guard prevents los-
ing ownership by accident. Moreover, it is reasonable since passing an invalid
pointer renders the receiving pointer invalid, too. Hence, no other thread can
dereference and thus depend on this pointer without raising a strong pointer
race.

Lastly, we also remove ownership of a cell when comparing its address with the
address of an invalid pointer. The reason lies in the fact that such comparisons
can break our desired invariant: a thread might find out that a certain cell was
reallocated and rely on this finding in its subsequent execution.

With the above notion of ownership we can now formally define the novel
ownership-respecting memory semantics introduced by [19).

Definition 10 (Ownership-Respecting Memory Semantics) A computa-
tion T.act is an ownership violation if the command of act is (a) x.next=y,
(b) x.data=_in_, or (c) free(x), where h.(x) € owned,(t') and (t = t' or
x € Global).

The ownership-respecting memory semantics is the set of all those computations
from the memory managed semantics that are no ownership violations.

The above definition suffers from a drawback for thread-modular reasoning. As
discussed in Chapter [l we need ownership information to make the method
precise enough to be practical. Recall that the described procedure did not
track ownership information precisely but under-approximated the set of ac-
tually owned addresses per thread. In order to conduct a sound analysis for
the new ownership-respecting semantics we additionally need to track an over-
approximation of owned cells to identify all possible ownership violations. This
increases the overhead of the new memory semantics compared to garbage col-
lection. Luckily, [19] establishes the fact that ownership violations are always
strong pointer races. Indeed, if a thread modifies an owned cell of another
thread a strong pointer race is raised. This is the case since the modification
raising an ownership violation is conducted via an invalid pointer. To see this,
assume that the pointer was valid. Then the thread learned the address from
the owning thread. Hence, the owner published the address and lost ownership
— a contradiction to the fact that an ownership violation occurred. Using this
fact it is sufficient to ensure strong pointer race freedom as this eliminates own-
ership violations as well. The following theorem now combines this argument
with the analogue of Theorem [3] [19].

2The reason for this quite unnatural definition regarding next fields lies in the technical
details of the proofs from [19].

41

Theorem 4 If a program is strong pointer race free, then the memory managed
semantics and the ownership-respecting semantics coincide. Moreover, whether
or not a program is strong pointer race free can be checked under the ownership-
respecting semantics.

The above theorem allows, similarly to the one before, to abandon explicit mem-
ory management for verification. Therefore, one checks under the ownership-
respecting semantics whether or not a given program is strong pointer race free.
If so, an actual analysis can be conducted under the easier semantics. Otherwise,
the programmer is informed about the potential bug.

In the following we adapt the thread modular-analysis from Chapter [3] to the
ownership-respecting semantics.

4.2 Adapting the Verification Procedure

In the following we present an adopted version of the verification procedure from
Chapter [3] to perform an analysis for the new ownership-respecting semantics.
Additionally, we integrate a check for strong pointer race freedom. Rather than
executing two phases, we interleave a strong pointer race check with the actual
analysis. It is worth noting that the following section is a main contribution of
the present thesis.

The verification procedure needs to be adapted to cope with the following needs:
(a) tracking valid and strongly invalid pointers, (b) adapting the merge opera-
tor, (c) adapting the sequential step to propagate invalid and strongly invalid
pointers properly, (d) adapting the sequential step to handle the new ownership
model properly, (e) detect strong pointer races, and (f) adapt the interference
with respect to ownership, invalid and strongly invalid pointers.

The first and most basic modification necessary is due to the need to track
the invalid and strongly invalid pointer expressions. For the invalid pointer
expressions we augment n-thread views with a set inv C T,, x R. An entry
(x,~) € inv is interpreted as follows: (z,=) means z is invalid, (z,+—) encodes
the fact that the next field of z is invalid, and (z,--+) is used when following a
chain of next fields starting at x might eventually yield an invalid pointer. For
the strongly invalid pointer expressions we proceed similarly. We extend the
views with a set sin C T,, X R the elements of which are interpreted analogously
to elements from inv.

In the following, we discuss the remaining adaptions. We proceed in the same
order as in the previous chapter.

4.2.1 Merging Views

Since we extended views by the sets inv and sin, we have to account for this in
the merge operator & from Section To that end, we say that two views v

42

and w can be merged only if they coincide on both inv and sin. Formally, for
v =(Pc, os, own", ages, shape® , freed, in, out, inv, sin) and
w =(Pc, os, own", ages, shape | freed, in, out, inv, sin)
we have
v @ w :=(Pc, os, own’ H own", ages, shape’ ® shape, freed, in, out, inv, sin)

where the merge of ownership information and shapes remains as before. There
are no further adaptions needed for the merge operator.

4.2.2 Sequential Steps

As before we describe the working principles of the function post; applied to
some n-thread view v. Therefore, we do a case distinction on the statement
executed next by the ith thread. Like in Chapter [3] we assume that v and a
resulting view v € post;(v) are of the following form:

v = (pc, os, own, ages, shape, freed, in, out, inv, sin) and

— /) — — . . .
v' = (pc’, os', own’, ages’, shape', freed’, in', out , inv’, sin") with

—/ !/
pc =pcCqyy ..., PCijy ..., PCy
/ /
own = owny, ..., owWN;, ..., OWNp
-—/ . . .
M =M1, ooy My, ooy My

— ,
out = outy, ..., outy, ..., outy,

For brevity, we only remark on those parts of the sequential step that need to
be adapted. In particular, we may only describe how to update the newly added
components inv and sin. For the ownership information we proceed as in the
case of garbage collection if not stated otherwise.

Pointer Assignments For pointer assignments we have to properly track
the sets inv and sin. In addition, we have to account for the new notion of
ownership according to Definition [0] Moreover, we need to check for strong
pointer races.

For an assignment of the form x = y, we proceed as follows. We copy the
information about y over to z, i.e. we set

inv' == inv U{(z,~) | (y,~) € inv} and
sin U{(z,~) | (y,~) € sin}.

sin’
Updating the ownership information is similar to the procedure as before. We
only need to account for the fact that ownership is only lost if the address

was published via a valid pointer. Hence, we have to add the side condition
(y,=) & inv and come up with the following

own), := own; U {z} if y € own; Az € Local
own), := own; \ {z} it y & own; Ax € Local
own); := own; \ ({x} U ptrto(y)) if x € Global A (y,=) & inv

43

where ptrto(y) yields the pointers equivalent y. Lastly, note that this statement
does not raise a strong pointer race.

For assignments x.next = y we proceed similarly to the above. The first step,
however, is to check for strong pointer races. The statement is racy if we have
(xz,—) € (invUsin). If a strong pointer race is detected we abort the procedure
and report the bug to the programmer. Otherwise we continue analogously to
the previous pointer assignment.

The remaining type of pointer assignments, x = y.next, is in order. Again,
we check for strong pointer races first. The assignment is deemed racy and
the method aborts if (y,—) € sin. Otherwise, we update the set inv and the
ownership information as above. The update of sin, however, needs a bit more
care since x might become strongly invalid depending on the validity of y. Hence,
we set

sin' := (sin \ { (x,~) |[~e R}) U{(z,~) | (y,~) € (inv U sin) }.

Data Assignments Consider the data assignment _out_ = x.data. A strong
pointer race is raised if (z,=) € sin holds. For the updates, we only need to
revisit the case when _out_ becomes strongly invalid. By definition, this occurs if
x is invalid. In order to track the invalidity of the return value we set out] := L.
The sets inv and sin as well the ownership information remain unchanged.

For a data assignment of the form x.data = _in_ we only need to add a strong
pointer race check. This is done by checking whether or not (x,=) € (invU sin)
holds.

Conditionals Conditionals containing a comparison of the form x == y need
only little changes. First, we add a strong pointer race check. In order to
continue with the analysis we have to ensure that neither x nor y is strongly
invalid, i.e. (x,=) & sin A (y,=) & sin holds. It only remains to update
ownership information. We have to account for the case that ownership is lost
by comparing a pointer to an owned address with an invalid pointer. That is,
if x € own; A (y,=) € inv holds we have to remove the address pointed to by x
from the set of owned addresses. Hence, we need to remove all pointers that are
equivalent to x from own;. We already gave a description on how to do this for
pointer assignments above. The symmetric case where ownership of y is lost is
analogous.

Lastly, it is worth noting that age comparisons are not restricted in the ownership-
respecting semantics. That is, they do not raise strong pointer races. This fact

is crucial since non-blocking data structures prevent data corruption by compar-

ing age fields of potentially invalid pointers. If those fields would be considered

strongly invalid like their data field counterparts, then we would suffer from

strong pointer races in performance-critical applications. Hence, the relaxed

handling of age field comparisons in the ownership-respecting semantics is a

desired property.

44

Free For a free(x) we have to invalidate all pointers that are pointing to the
freed cell. But first we ensure that no strong pointer race is raised. Hence, we
abort if (z,=) € inv. In order to prevent false positives and make the approach
practical we have to restrict the above abort to those cases where x has an
established data binding, i.e. its data value is observed. We do so since in-
terference steps potentially establish equality among pointers erroneously. For
observed data values we can prevent those scenarios using the data indepen-
dence argument (cf. definition of the match predicate from Section . For
unobserved values, however, we cannot and thus a cell might erroneously be
freed multiple times. Since this only occurs for unobserved data values we relax
the strong pointer race check in this case. This does not harm soundness since
the observed data values are implicitly universally quantified.

For the updates we extend the corresponding sequential step from the memory
managed analysis. Recall from Chapter [3]that this step results in set V' of views
representing the various reallocation scenarios. For every result view v’ € V we
update the set inv by adding all those pointers that are affected by the free.
Therefore, we set

inv’ :=inv U { (z,~) | z € (freed" \ freed) N T, A ~€ {=,—~}}

where freed' \ freed exactly captures those pointers that are affected. Addi-
tionally, ownership of the freed cell is lost. To account for this we have to set
own’; := own; \ (freed’ \ freed). Note that the freed cell cannot be owned by an-
other thread since this would have raised a strong pointer race: by construction
x can only point to a cell owned by another thread if it is invalid. Lastly, note
that the set sin is not affected by the free.

Malloc For the allocation of dynamic memory we proceed as for the memory
managed semantics before. In addition, we have to track ownership information
as well as invalid and strongly invalid pointers. To that end, we extend every
resulting view v’ € post,(v) from the sequential step for the memory managed
semantics. Since the allocation x=malloc() renders the receiving pointer valid,
we have to remove it from both the set of invalid and the set of strongly invalid
pointers. Hence, we set inv’ := inv \ {(z,=)} and sin’ := sin \ {(z,=)}. Note
that an allocation validates neither dangling pointers nor the next field of x.
Lastly, a thread owns those addresses that it allocates using local variables. To
account for this we set own} := own U {x} if x € Local and own := own; \ {z}
otherwise.

Returning from Functions When returning from functions we have to ex-
tend the clean up step from before. We additionally need to remove the local
variables from the sets inv and sin. To do so we set

inv' :=inv \ L and sin’ = sin \ L
where L := { (z,~) | © € Local A ~ € R} is the set of tuples from T,, x R which

contain a pointer variable that goes out of scope. For the ownership information
there is nothing to adapt as it is already handled properly in Section [3.2

45

4.2.3 Interference Steps

For the interference step of the adapted verification procedure we defined the
functions matchwn, ertend,,, and project to replace match, extend and
project from Section [3.3] respectively.

own

Check for Interference During the interference we have to account for the
sets inv and sin that have been added to views. For the check whether a view
v can be interfered by another view w we have to extend the procedure from
Section For two views v, w with

v = (pc’, os¥, own’, ages®, shape® , freed”,in", out’, inv", sin®) and

w = (pe”, 0s™, own", ages", shape® , freed™ ., ", out”, inv®, sin®™)

we define match gy, by

match oy (v, w) == match(0,W) A inv®|r, , = mv”|r,

- v W
A sin®|r,_, = sin”|r, _,
where we reuse the definition of match from before and write 0, w for
~ — - -— UV —
0 = (pc’, 0s”, own’, ages’, shape®, freed’,in , out) and

A g— —_— -— W —Fw
w = (pe”, 0s™, own", ages™, shape", freed™ ,in ", out ").

Extension Extending a view with an interfering thread is similar to the pro-
cedure from before. For two matching views v and w with

— R -V —v . .
v = (pc’, os, own’, ages”, shape®, freed” in , out ,inv", sin”) and
— R -— W —w . .
w = (pe?, os, own", ages®, shape", freed" in ", out , inv", sin™),
we define the extended (n + 1)-thread view as follows:

extend pum (v, w) := (P, pc,,, 08,
extend (own®, own"),
extend(ages®, ages®),
extend (shape®, shape™),
extend (freed", freed"),

v . — U
m, ", out , out®”

(
(

3
extend (inv?, inv")

extend(sin”, sin®))

where this definition differs from the one from Section [3.3] only in the last two
lines. The extension of inv and sin is conducted analogously to the extension
of freed. Hence, we come up with

extend (inv?, inv") := inv"” U rename(inv®) and

extend(sin”, sin®) := sin® U rename(sin™)

46

where we again rename the thread-local pointers of the interfering thread.

In addition to the above extension, we have to carefully revisit the shape exten-
sion since the relations among local variables are restricted by the introduced
ownership. Intuitively, when a thread owns the cell pointed to by its local
pointer variable xz, then any other pointer y not local to that thread is either
pointing to another cell or (strongly) invalid. Formally, we define the shape
extension by

Q

extend(shape®, shape™) := @ ({ shp | cons(shp) A (C1)
Va,y € Ty \ V. shp[z,y] C shape”[z,y] A (C2)

Ve € T, \V Yy € V. shp[z,y] C shape”[z,y] U shape® [z, y] A (C3)

Vo € Tp—1Vy € Ty, \ Tp—1. shp] (C4)
Va,y € Ty \ Tr—1. shp[rename(x), rename(y)] C shape”[z,y] A (C5)

Ve,y € Ty \ Tp_1. shp[z, rename(y)] C R(x,y) }) (C6n)

x, rename(y)] C shape® [z, y] A

where we only modified the last line compared to the definition from Section[3.3]
Instead of allowing all possible relations, we restrict the choice in (C6nl) accord-
ing to the above intuition. Hence, we define R(x,y) C R to be the largest set
satisfying
{(=} CR(z,y) = (y,=)€ (" Usin®)
{+1} CR(z,y) = (y,—) € (inv" Usin®)
[} CR@y) = () € (i® Usin®)

if x € own; and the analogue conditions

{=} CR(z,y) = (z,=) € (inv" Usin")
{—~} CR(x,y) (x,—) € (inv" U sin")
{--} S R(z,9) (z,--+) € (inv" U sin®)

if y € owny holds.

=
=

Projection The projection from before is extended to additionally remove
those entries from inv and sin that belong to the interfering thread. Formally,
we define the projection of a (n + 1)-thread view v with

v = (PC, Py 41, 08, OWN, 0OWNy 41, GgES, shape, freed,

in, iNp1, out, outyt1, inv, sin)

to an n-thread view by

project ... (v) = (D¢, os, own, ages|r, , shape

T,)-

T, , freed|t

n?

in, out, invlr, , sin
Based on the above interference for the ownership-respecting semantics, the fol-
lowing section introduces an optimisation that prunes certain steps. We already
exploited the ownership information for relating local variables but observe in
the following that we can even omit certain interferences using this information.

47

4.3 Improving Interference

In the following we develop an optimisation for the interference steps for the
ownership-respecting semantics from above. We first provide an observation
regarding interference steps and ownership for the garbage collected semantics.
Afterwards, we lift the observation to the new semantics.

The underlying observation of our optimisation is the fact that certain interfer-
ence steps can be skipped for the garbage collected semantics. This is due to
ownership. If a thread owns a certain part of the heap, then it is guaranteed
that no other thread has access to that part. That is, the owned memory is
somewhat isolated from the remaining heap. Hence, reading from or writing
to the owned parts cannot affect other threads. This clearly holds due to the
strong memory guarantees established by garbage collection. As a result, we
may skip interference steps where the interferer would only manipulate owned
memory.

For the ownership-respecting semantics, however, the above observation cannot
be established that easily. The memory guarantees given here are not as strong:
owned cells can still be accesses via dangling pointers. In order to prove an
analogue to the interference skipping rule from above we have to establish the
fact that other threads are not influenced by the manipulation of owned ad-
dresses although they might be able to observe them through dangling pointers.
Intuitively, we argue that no thread can react to changes made to owned ad-
dresses of other threads without raising a strong pointer race. Since our entire
analysis is tailored around strong pointer race freedom this is no limitation to
our procedure. The following theorem makes the argument precise [19].

Theorem 5 During the analysis of a strong pointer race free program an in-
terference step for a victim thread t,, and an interfering thread t; can be omitted
if t; manipulates only those parts of the heap it owns.

Proof (Sketch) Consider the two threads t,,t; and the set owned(t;) of owned
addresses of t;. We first establish the fact that any pointer to an address from
owned(t;) held by t, is invalid. Upon this, we can argue that influencing t,
would raise a strong pointer race.

Consider some pointer x local to t,. Furthermore, assume that x references
some address a € owned(t;). Then, x is invalid. Towards a contradiction
assume x was valid. By a € owned(t;) and the definition of ownership we know
that t; allocated a and that a has not been freed since this very allocation made
by t;. Moreover, by the definition of validity, t,, has learned about a from some
communication via valid, global pointers. Hence, a has been published — this
contradicts the premise a € owned(t;).

Relying on the above fact we can now argue that t, is not influenced by t;
manipulating owned addresses. To see this, note that an influence can only occur
if t, dereferences some invalid pointer x like the above. This, however, renders
the receiving variable strongly invalid. As a consequence of strong pointer race
freedom, t,, cannot access or compare such strongly invalid variables. Hence, the
variable is effectively dead and no influence occurs. (Il

48

y
victim: X.next = y; (a|.) (b|03—>(c|03—>

interferer: y = y.next;
X
(a) Executed statements. (b) Initial heap layout.
y y
I~ (2] (e[
X X
(c¢) Resulting heap without interference. (d) Resulting heap with interference.

Figure 4.1: Counter example to pruning an interference step.

Regarding the above theorem note that the symmetric does not hold: if a victim
modifies some owned address, then the interference step cannot be omitted in
general. To see this consider the example from Figure The upper part
of this figure describes the initial heap layout prior to the interference step in
question. Assume that y is a global pointer and that z is a local pointer of a
victim thread t,. Moreover, assume that the address pointed to by x is owned
by t,. The next command that ¢, wants to execute is x.next =y. Another thread
t;, however, tries to execute y=y.next. If we allow t; to interfere ¢, we explore
a view with the heap layout depicted in Figure This view stems from
first moving y to the next node and then connecting = to that node, i.e. it
arises by executing an interference step followed by a sequential step. Skipping
interference in such a scenario does not explore this view but yields the heap
from Figure Hence, the analysis pruning those interference steps would
not be sound.

Nevertheless, the above theorem provides a lightweight and yet powerful opti-
misation. In the following chapter we evaluate the overall impact of moving
from the memory management semantics to the ownership-respecting seman-
tics for thread-modular verification. We also provide detailed statistics about
the impact of the above optimisation: we will see that about two thirds of the
interference steps can be pruned for the ownership-respecting semantics.

49

50

Chapter 5

Evaluation

This chapter is dedicated to a practical evaluation of the presented methodolo-
gies from the previous chapters. Therefore, we first discuss our prototype imple-
mentation of the thread-modular analysis from above. This prototype supports
analysing programs under garbage collection and explicit memory management.
Moreover, it is the first model checker to integrate an analysis for the ownership-
respecting semantics. After an introduction to our tool we do case studies on
various concurrent data structures. Our experiments substantiate the useful-
ness of the ownership-respecting semantics: we show that this new semantics
provides a speed-up of up to two orders of magnitude compared to an analysis
relying on the full memory managed semantics. Still, correctness results of the
analysis carry over to explicit memory management.

5.1 Prototype Implementation

In the following we discuss our C++ prototyp{I of the thread-modular analysis
from above. We first give an introduction to its architecture. Afterwards, we
discuss some notable differences compared to the formalism from Chapters

and [4]

5.1.1 Architecture

The architecture of our model checker consists of two layers: a data layer and
an algorithmics layer. The data layer is depicted in Figure It is responsible
for providing the necessary data structures needed throughout a run of our tool.
A description of the various classes is in order.

Cfg This class implements the thread-modular views described in Chapter
It allows to keep information about up to three threads.

Encoding This class is a collection of views. It is used to capture all those views
that are explored by sequential and interference steps during the fixed
point iteration. Adding new views to an encoding automatically merges
them into the existing views as discussed in Section [3.1] The internal
storage of this class is tailored towards interference steps. Therefore, it
contains a set of buckets. Each bucket contains views that can potentially
interfere with each other. Views of different buckets, however, cannot.
This reduces the search space during interference steps.

Observer Class implementing the observer automata from Section [2.2

IThe source code is freely available at: https://github.com/Wolff09/TMRexp

o1

https://github.com/Wolff09/TMRexp

Shape ! Observer

Encoding T
1
AgeMatrix *

1 * 4
Ownership
— Cfg O—L
MultiState

Stronglyinvalid ! T

[1 1 [1 |1

MultiPc MultiOracle MultilnOut SeenOV
\V4 Tz
MultiStore OValue
1.3

Program Ko— Function <— Statement

Figure 5.1: Prototype data layer.

State This class is used to refer to states of an observer automaton. This allows
for an efficient handling of observer steps.

MultiState This class implements the automaton cross product. It holds mul-
tiple observer states at the same time and computes an on-the-fly cross
product. More precisely, it acts as Agiger and Agyeye by holding refer-
ences to observer states from the automata Agir, Ajoss, Adupt, Afifo and
Ajifo which were introduced in Section @

Shape A straight forward implementation of the shape matrix from Section [2.4]
The underlying data structure used is a vector of vectors (std::vector).
Although the shape is symmetric it does store all entries. This is needed as
shape cells are read so frequently that computing the symmetric relations
on demand would decrease performance.

AgeMatrix This class realises the ages formula contained in views from Chap-
ter However, it does not store those relations as a logic formula but
uses a matrix representation.

MultiStore An abstract container class for storing multiple values of the same
type. This class is used for the sake of uniformly handling certain infor-
mation that needs to be stored for each thread.

MultiPc Container class based on the above MultiStore for program counters.
The per-thread program counters are realised as pointers to the corre-
sponding program statements.

52

MultiOracle This class provides an oracle value for each thread. Those ora-
cles are required to properly implement conditional linearisation points of
certain algorithms, like Michael&Scott’s lock-free queue [33].

MultiInOut Implements the in; and out; fields for threads 1 < i < 3 as dis-
cussed in Chapter We use only one field for both in; and out; as we
have either a return value or a formal parameter due to our programming
language definition.

OValue Class capturing data values. Incarnations of this class represent either
an observed data value, an undistinguished data value T (c.f. Section[2.4)),
or one of the special data values @, L.

Seen0V Class used to indicate which observable data values have already been
used as input in a certain view. This allows to restrict the explored ex-
ecutions of a program to those where every data value is input at most
once, as discussed in Sections and

StronglyInvalid This class provides information about those tracked pointers
that are deemed strongly invalid.

Ownership This class stores ownership information. Following the description
given in Chapter [3] ownership information is stored for pointers, not ad-
dresses. This class provides efficient means for relating pointers with the
owning threads. Moreover, this class automatically handles publishing of
pointers by writing their address to global pointer variables.

Program Top-level node of an abstract syntax tree representing the program to
check.

Function Class representing functions from the program to check. This class
is part of the abstract syntax tree and contains a list of Statements.

Statement Abstract base class of the syntax tree nodes that represents program
statements. Every statement described in Section [I.3] is modelled by a
subclass of this class. Since this part is not the focus of the present thesis
and follows the usual compiler construction techniques, we skip the details
about the numerous subclasses here.

In contrast to the above data layer, the algorithmics layer is a loosely coupled
set of namespace functions and comes basically without any class deﬁnitionsﬂ
In the following we describe the top-level functions.

fixed_point Given a program, an observer automaton and a memory seman-
tics, this function computes the fixed point from Chapter It collects
all views in an Encoding by applying sequential and interference steps ex-
haustively. If a bug is found, i.e. if an observer reaches a final state or a
strong pointer race is detected, the function terminates abruptly with an
exception.

post Given a view and a thread identifier, this function computes a sequential

2More precisely: there are class definition which belong to the algorithmics layer. However,
they are only used to pass around values more elegantly and are thus omitted hereafter.

53

step for the corresponding thread. There are several overloads of this
function which are specialised towards handling a specific statement. That
is, this function follows the case distinction done in Sections [3.2] and

mk_all_interference This function computes all possible interference steps
for a given Encoding. That is, it enumerates all pairs of views and conducts
the procedure from Section [3:3] It order to make the enumeration more
efficient this function relies on the bucket store of the Encoding: two views
are considered for interference only if they stem from the same bucket.

The actual implementation of the algorithmics layer contains more functions
than those mentioned above. The remaining functions are, however, implemen-
tation specific and not part of the interfaceﬂ Hence, we do not further elaborate
on those functions for the architectural overview given here.

5.1.2 Implementation Details

In the following we want to stress that our tool is a prototype. It underwent
major changes during the development. Some are related to the method itself.
That is, we needed some initial experiments to see how the tool behaves regard-
ing the precision of the shape analysis. This led to an iterative process which
steadily refined the formalisation from Chapter Moreover, the first version
of the tool helped to find bugs in the theory of strong pointer races from [19].
Hence, we were required to adapt to the changes made by [19], too. Altogether,
this process resulted in certain design decision which might seem unreasonable
by now but are hardly to cure in the current stage of development.

The most severe impact of the above is the fact that our tool can handle only
a subset of the strongly invalid pointer expressions. The tool is not able to
capture information about the next fields of pointers being strongly invalid.
Still we conduct a sound analysis. We do so by preventing that next fields
of pointers become strongly invalid in the first place. Hence, our tool has to
deem certain programs incorrect by the sheer fact that some next fields become
strongly invalid. Interestingly, this shortcoming did not limit the applicability
of our tool to the concurrent data structures we wanted to analyse.

Secondly, there are two versions of the tool that differ in the way age fields are
handled. One version tracks only the relation among the age fields of pointers.
The second version additionally considers the age of next fields of pointers.
Currently, there is no automatic detection unit which switches to the one or the
other version on demand. That is, one has to select the proper version of the
tool when ages of next fields are needed for the analysis.

Thirdly, we want to note that we consider the formal description of the analysis
given in Chapters [3] and [f] as the specification of our implementation. For the
actual implementation we had to move from the set theoretic presentation to a
more algorithmic approach in order to implement it in a procedural language
like C+-. Since those changes are very technical and the source code is freely
available we do not elaborate on this fact.

3More precisely: the remaining functions are not defined in the C++ header files but in
the corresponding implementation units.

54

Lastly, we want to provide some code metrics. Our prototype consists of about
5300 developer lines of code across 22 header files and 24 implementation units.
It features 52 classes 33 of which are responsible for the abstract syntax tree.
The algorithmics layer described above consists of a total of 94 functions. Addi-
tionally, there are 35 helper functions for generating syntax trees easily. Those
functions are required since there is no parser front end.

5.2 Case Studies

The following case studies evaluate our model checker using numerous concur-
rent data structures. We start with simple single lock implementations that
function as a sanity check for our implementation. Afterwards, we focus on
the well know lock-free stack and queue implementations from Treiber [12] and
from Michael and Scott [27], respectively. Lastly, we stress test our tool with
erroneous programs in order to give evidence for a sound analysisﬁ

5.2.1 Single Lock Stack

In the following we apply our tool to a concurrent stack implementation that uses
a single lock to establish mutual exclusion among the critical sections of the push
and pop functions. Algorithm[d]gives the implementation of this algorithm. Note
here, that we simulate the lock with an atomic block since our programming
language does not support locks.

The linearisation points for this algorithm are easy to identify. The first one,
marked with @1, is in the critical section of the push function. It unconditionally
emits the linearisation event push(d) where d is the value of the actual parameter
in. For pop, there are two linearisation points @2 and @3 depending on whether
or not the stack is empty. In case of an empty stack pop(@) is emitted for
the statement labelled with @2. Naturally, this linearisation point has the side
condition node == NULL. In the case where the stack is not empty, the conditional
inside the critical section is entered and pop(d) is emitted for the statement
marked with @3, where d is the value from node.data. This linearisation point
has no side condition as it is guarded by the conditional.

The experimental results for the above algorithm are listed in Table The
experiments were conducted on an Intel Xeon E5-2650 v3 running at 2.3 GHz.
The table includes the following readings:

1. runtime taken to establish correctness,
. number of explored views (i.e. size of the search space),
. number of buckets in the Encoding,

2

3

4. number of sequential steps,

5. number of interference steps, and
6

. number of interference steps pruned by the ownership-based optimization.

4 Our experimental results substantiating the usefulness of (strong) pointer race freedom
appear in [19].

%)

Algorithm 4 Coarse stack.

global Ptr ToS; /* top of stack */
local Ptr node;

void init () {

ToS = NULL;
}
void push(data_type _in_) {
node = malloc();
node .data = in;
atomic {
node .next = ToS;
ToS = node; // @1
}
}
data_type pop() {
atomic {
node = ToS; // @2
if (node != NULL)
ToS = node.next; // @3
}
if (node == NULL) {
out = J;
} else {
out = node.data;
free(node) ;
}
}
GC OWN GC~ OWN~ MM
time in seconds 0.053 0.21 0.18 0.49 5.04
explored views 328 703 507 950 16117
bucket count 20 42 20 42 62
sequential steps 941 1914 1243 2477 25462
interferences steps 3624 7650 19321 33693 183388
pruned interferences 9332 20446 - - -

Table 5.1: Experimental results for coarse stack.

56

The above metrics were collected for all available memory semantics, i.e. for
garbage collection (GC), the ownership-respecting semantics (OWN) and ex-
plicit memory management (MM). Additionally, we included results where we
turned off the ownership-based optimisation from Section [I.3] which prunes cer-
tain interference steps (suffixed with —). A discussion of our experiments is in
order.

The most notable finding here is the performance of the analysis for the novel
ownership-respecting semantics. On the one hand, it outperforms the analysis
for explicitly managed memory. We experience a speed-up of over two orders of
magnitude. On the other hand, there is only little difference between the analy-
sis for the ownership-respecting semantics and the garbage collected semantics.
This fact is rather surprising since the former analysis establishes correctness
for the full memory managed semantics whereas the latter one does not.

Analysing the numbers closer gives rise to another interesting observation. The
number of interference steps performed for explicit memory management is ex-
actly those two orders of magnitude larger than the corresponding number of
steps for the ownership-respecting semantics. The number of sequential steps,
however, grows only by one order of magnitude. Additionally, we see that the
explored state space grows by one order of magnitude, too. Altogether, those
numbers show the impact of keeping more threads in a view: a quadratic blow-
up as described in Section [2.3

Lastly, note that the experimental results for the memory managed semantics
are an under-approximation of the actual values. In order to establish correct-
ness, we had to provide some hints to our tool. In this case, we wrapped the
allocation and the data assignment (first two lines of the push function in Algo-
rithm into an atomic block to prevent the generation of false positives during
interference steps. Since we did not provide hints for the remaining semantics,
the significance of our experiments is not diminished.

We now turn to the next case study which addresses a concurrent queue imple-
mentation which follows the same principles as the above stack.

5.2.2 Single Lock Queue

Algorithm [5] presents a queue implementation that follows the same principle as
the stack implementation from above. We use a single lock to enforce mutual
exclusion of the functions enq and degq.

The linearisation points are similar to those from above. The first one, marked
with @1, is in the enq function and is emitted unconditionally. For deq we have
two linearisation points @2 and @3. The former accounts for the fact that the
queue is empty and the latter handles the case where the value next.data is
dequeued. Both those events are emitted without any side conditions.

Experiments are conducted in the same environment as before and the same
numbers are collected. The results can be found in Table 5.2} The similarity
of this algorithm compared to the above stack implementation is reflected in
the experimental results. The observations from above carry over. Moreover,

o7

Algorithm 5 Coarse queue.

global Ptr Head, Tail;
local Ptr node, next;

void init () {
Head = malloc();
Tail = Head;

}

void enq(data_type _in_) {
node = malloc();
node .data = _in_;
node.next NULL;
atomic {
Tail .next = node;
Tail = node; // @1

}

data_type deq() {
atomic {
node = Head;
next = Head.next;
if (next == NULL) {
out = J;

// @2
} else {
/* read data inside the atomic block to ensure
¥ that no other thread frees "mexzt"” in between

*/
out = next.data; // @3
Head = next;
}
}
if (next != NULL)
free (node) ;
}
GC OWN GC~ OWN~ MM
time in seconds 0.043 0.57 0.19 2.29 31.18
explored views 199 520 331 790 27499
bucket count 15 30 15 30 93
sequential steps 589 1335 779 1966 60271
interferences steps 1008 8545 9530 65025 442306
pruned interferences 4986 27224 — — —

Table 5.2: Experimental results for coarse queue.

58

our tool needs the same hints in order to establish correctness for the memory
managed semantics. Hence, instead of elaborating on the experiments for this
algorithm we now turn towards non-blocking data structures.

5.2.3 Treiber’s Lock-Free Stack

In the following we present experimental results of running our model checker
on Treiber’s lock-free stack [12]. The implementation of this algorithm was
already given in Chapter However, to apply our model checker we have to
revisit this implementation and translate it into our restricted programming
language. Algorithm [f] gives an updated version of the implementation. For a
description of the linearisation points, refer to Section [I.2.:3] The experiments
where conducted as above and the overall results can be found in Table 53l A
discussion of the findings is in order.

Algorithm 6 Treiber’s stack translated into our programming language.

global VPtr ToS; // top of stack
local VPtr top, node;

void init () {
ToS = NULL;
}

void push(data_type _in_) {

node = malloc();

node.data = _in_;

while (true) {
top = ToS;
node.next = top;
if (dCAS(ToS, top, node)) // @1

break;

}

data_type pop() {
while (true) A{

top = ToS; // @2
if (top == NULL) {
out = J;
break;
} else {
node = top.next;
if (dCAS(ToS, top, node)) { // @3
out = top.data;
free(top);
break;
}
¥

99

GC OWN GC~ OWN~— MM

time in seconds 0.059 2.37 0.146 3.89 612
explored views 269 744 269 746 116776
bucket count 10 17 10 17 26
sequential steps 779 2656 837 2174 322328
interferences steps 4159 45815 11530 73470 7913705

pruned interferences 14196 88897 - - -

Table 5.3: Experimental results for Treiber’s lock-free stack.

First, we compare the results for the analysis using garbage collection with
the one using the ownership-respecting semantics. Here we see that the gab
between those two analyses is bigger than for the single lock implementations
from above. We experience a slow-down of two orders of magnitude when mov-
ing from garbage collection to the ownership-respecting semantics.

Another interesting observation can be made when comparing the two runs
of the ownership-respecting semantics. We find that the optimisation prunes
certain steps such that the unoptimised version executes twice as many inter-
ference steps. Interestingly, we also find that the optimised version executes
more sequential steps. Although this looks like a bug, it is not. This artefact
stems from the order in which sequential steps and interference steps are exe-
cuted. The unoptimised version simply generates certain views earlier than the
optimised version. That is, there are some views that are merged and then a
sequential step is conducted. The optimised version, however, may execute the
sequential step first and later merge the view with another one. Hence, a second
sequential step is required in order to capture the impact of the merge.

Lastly, we want to stress the most notable finding from our experiments. The
comparison of the ownership-respecting and the memory managed semantics
substantiates the usefulness of the new memory semantics introduced by [19]: a
speed-up of over two orders of magnitude. Not only the runtime improvements
are outstanding. We also experience a search space that is smaller by two orders
of magnitude. In addition, the number of sequential and interference steps saved
lies in the same order. This further emphasises the usefulness of the ownership-
respecting semantics as it improves the scalability of every analysis relying on
the thread-modular framework.

Having Treiber’s stack verified successfully lets us turn towards more complex
algorithms. In the following section we focus on the well-known lock-free queue
implementation from Michael and Scott.

5.2.4 Michael&Scott’s Lock-Free Queue

As the next case study we want to discuss Michael&Scott’s lock-free queue [27].
An example implementation is given in Algorithm[7] The linearisation points @1
and @3 follow the same principles as those from Treiber’s stack. Linearisation
point @2, however, is a bit more involved. We may only emit a linearisation

60

event here if the following execution detects that the queue is empty. It is not
sufficient to guard this event with the conditions of the following conditionals.
This is the case since thread-local pointers are compared to global pointers.
Hence, the outcome of the conditionals depends on interfering threads. That is,
the condition of the linearisation point must consider possible interferences. To
overcome this problem, we employ an oracle variable [33| that tells us whether
or not those comparisons of local and global pointers succeed. As a consequence,
we have to ensure that the comparisons adhere to the prophecy of the oracle. As
discussed briefly in Section[5.1.1} our tool is able to handle those oracle variables.
However, we skip an elaboration of the technical details as the implementation
is straight forward.

The complexity of Michael&Scott’s queue is not only reflected in the above lin-
earisation point. Comparing the algorithm with Treiber’s stack, one finds that it
features more sophisticated means of detecting whether a thread was influenced
by an interferer. While in Treiber’s stack this is done via the version counter of
the global top of stack pointer, this queue implementation relies on the version
counters of next fields from multiple entries. Hence, we expect the analysis of
our tool to be much more expensive. Unfortunately, we are not able to establish
correctness for this algorithm at all. The reason for the failure is imprecision.
The shape analysis in combination with merging views ultimately yields false
positives that cannot be avoided in our implementation. Since |2| was able to
establish correctness with a similar technique, we conclude that the overall ap-
proach is very sensitive to subtle changes. A in-depth analysis of the precise
reasons for the imprecision are, however, hardly possible. Collecting debug data
for this algorithm easily yields gigabytes of data that one can impossibly inspect
by hand. We would need to automatically generate traces from the debug data
that show the underlying problem and its development. Unfortunately, such a
study is out of scope for the present thesis.

However, we want to stress that we cannot provide experimental results here
due to imprecision in our instantiation of the thread-modular framework with
shape analysis. The fact that both, the ownership-respecting and the memory
managed semantics, suffer from the same problem suggests that this is no short-
coming of the overall approach of relying on the ownership-respecting semantics.
That is, the inability of our tool establishing correctness for Michael&Scott’s
queue does not diminish the findings of our previous experiments.

As this case study explored the limitations of our prototype implementation it
remains to stress test our tool in the following section.

5.2.5 Detecting Defects

As a last case study we want to provide experimental evidence for the soundness
of our analysis. Therefore, we stress test our tool with programs where we
purposely inserted bugs. A description of the tested programs is in order.

ABA-Stack This program coincides with Treiber’s stack but omits the version
counters. Hence, it suffers from the ABA problem and we expect our tool
to find a specification violation. Intuitively, we expect that the stack losses
some values, i.e. Aj,ss reaches a final state. However, there is another

61

Algorithm 7 Michael&Scott’s lock-free queue, adapted from [27].

global VPtr Head, Tail;
local VPtr node, head, tail, next;

void init() {
Head = malloc();
Head .next = NULL;
Tail = Head;

}

void enq(data_type _in_) {
node = malloc();
node.data = _in_;

node .next = NULL;
while (true) {
tail = Tail;

next = tail.next;
if (tail == Tail)
if (tail.age == Tail.age)
if (next == NULL) {
if (dCAS(tail.next, next)) // @1
break;

} else dCAS(Tail, tail, next);
}
dCAS(Tail, tail, node);

data_type deq() {
while (true) {
head = Head;

tail = Tail;

next = head.next; // @2
if (head == Head)
if (head.age == Head.age)
if (head == tail) {
if (next == NULL) {
out = J;
break
}
dCAS(Tail, tail, next);
} else {
out_ = next.data;

if (dCAS(Head, head, next)) { // @3
free (head) ;
break;

62

Time in

Test Result
seconds
ABA-Stack 0.072 Agupi reaches final state
Fifo-Stack coal.rse 0.001 Agyo reaches final state
Treiber’s 0.002 Ago reaches final state
Lifo-Queue coarse 0.002 Ayifo reaches final state
@1, early 0.09 Aioss reaches final state
@1, late 0.11 A reaches final state
Bad-LinP @2, early 0.12 error: mul.tlple linearisation
events emitted
@2, late 0.92 A,ss Teaches final state
@3, early 0.02 Agupi reaches final state
@3, late 0.03 Air reaches final state

Table 5.4: Experimental results for erroneous programs.

possibility where some data values are duplicated. This scenario occurs
for the same reasons as the classical ABA problem but leads to the A g,y
observer reaching a final state.

Fifo-Stack A sanity check for the specification: we check whether a stack
implements the first-in-first-out principle known from queues. Hence we
run the coarse stack and Treiber’s stack with the observer Agyeue. We
expect to reach the final state of Agy,.

Lifo-Queue As above, we check whether a queue adheres to the last-in-first-out
principle. The expected behaviour is that Ay, reaches its final state.

Bad-LinP We move the linearisation point in Treiber’s stack. Any subtle
change should result in a specification violation. For every linearisation
point we conduct two tests where we fire it earlier and later than the
correct one. We expect that every erroneous linearisation point results in
a specification violation. The actual accepting observer depends on the
test case.

We conduct the experiments in the same environment as above. However, we
only stress test the ownership-respecting semantics as the analysis for the other
semantics is not part of our contribution. The results can be found in Table
We see that in all cases our tool is able to find the intentionally added bugs in
short time. As discussed before, our tool does not provide a back trace of the
found bugs. That is, the user is only prompted with the fact that a certain error
occurred or a certain observer reached its final state.

This last set of test cases concludes the case studies on the performance of our
novel thread-modular analysis relying on the ownership-respecting semantics.
Altogether, we provided substantial evidence for the usefulness of the ownership-
respecting semantics and the accompanied notion of strong pointer races: a
speed-up of up to two orders of magnitude. Moreover, we provided experiments
supporting the soundness of our analysis.

63

64

Chapter 6

Future Work and Conclusion

In the following we provide a discussion on possible directions of future work
and then conclude this thesis.

6.1 Future Work

Our developed understanding and experience with thread-modular verification
for explicit memory management and the drawbacks of our prototype imple-
mentation yield several areas of potential improvement and thus possible future
work. First, we suggest to investigate the impact of a preciser analysis. Since
our tool suffers from imprecision for algorithms like Michael&Scott’s lock-free
queue, it would be interesting to see how our analysis performs when we aban-
don the concept of merging (c.f. Section [3.I). Although works like [2] have
shown that this results in out-of-memory problems for the full memory man-
aged semantics, we believe that relying on the ownership-respecting semantics
could work well. The much smaller search space of the latter semantics might
compensate the increased memory requirements. Moreover, this would make
the expensive shape splitting superfluous.

Addressing the same direction as above, one could replace the shape analysis
with another heap abstraction technique. Here, a promising approach are the
symbolic memory graphs (SMGs) introduced by |13|. They represent the heap
as a graph where objects and values correspond to nodes and their relations,
e.g. a certain object contains certain values, are modelled with edges. Using this
technique could additionally allow to lift the thread-modular approach to sup-
port an industry-grade programming language like C. This could be done since
SMGs are byte-precise and thus able to handle arrays and low-level memory
operations like pointer arithmetic.

Another area of future work is an improved implementation of our thread-
modular analysis. Currently, we explicitly store the building blocks of views.
One could think about symbolically representing an entire view as a single for-
mula. Then, sequential and interference steps could be lifted from the set theo-
retic representation to a logic level. This could allow for the use of SAT solvers
to compute the actual post operator or even the entire sequential and inter-
ference steps. Since those solvers have seen severe improvements over the last
decade, this could lead to a dramatical speed-up of the analysis. As an alter-
native to SAT solvers, one could investigate the possibilities of re-building our
analysis on top of the TVLA framework [24].

Picking up on the described shortcomings of our prototype regarding the case
study on Michael&Scott’s lock-free queue, one could improve the user experience
of our tool. Therefore, it would be interesting to compute traces that precisely

65

show why certain bugs in a program occur. This would make our tool useful for
fault-localisation during developer tests. Moreover, this could help programmers
understand the fine-grained effects of non-blocking implementations.

Lastly, one can think about a parallel implementation of our prototype. The
fixed point iteration of the thread-modular framework is inherently parallel. It
generates new views from the existing ones. Hence, multiple worker threads
could concurrently generate those new views. The main challenge is to properly
synchronise the worker threads such that no corrupt views are read. The prob-
lem here is that views can be merged, i.e. they might be updated after they
were added to the Encoding. Hence, a thread has to ensure that a read view is
consistent in the sense that it has not been update during the read.

With the above directions of future work it remains to conclude this thesis.

6.2 Conclusion

In Chapter [2] we have discussed how to automatically prove linearisability of
concurrent stacks and queues for garbage collection and explicit memory man-
agement. We presented several techniques to overcome the numerous obstacles
of this task. First, we introduced the data independence argument from Wolper.
It allowed us to restrict our verification efforts to a subset of all possible pro-
gram executions, namely those where data values are considered to occur no
more than once. This led to very elegant specifications based on observer au-
tomata.

With this powerful specification technique at hand, we could turn towards the
analytical part of the program analysis. Therefore, we used the thread-modular
framework to handle an unbounded number of concurrently working threads.
This framework suggests to abstract the state space to views representing sin-
gle threads. This representation of the state space, however, lacks information
about possible interleavings of those threads. Hence, a pure thread-modular
analysis has to account for all possible interferences — even those that cannot
occur. We discussed that this gives rise to false positives and makes proving
reasonable programs impossible as one needs to relate the local states of threads
properly. For garbage collection, one can address this shortcoming by exploit-
ing ownership information. For explicit memory management, however, this
approach is not feasible. Hence, one has to increases the number of threads
kept in a view which leads to a quadratic blow-up of the state space.

Chapter [3] instantiated a thread-modular analysis building upon the techniques
from Chapter 2] We provided a formal description covering all parts of the
analysis. Altogether, this chapter was then used as a basis for the later adaption
and implementation of the prototype.

In Chapter [f] we discussed how to cure the poor scalability of the thread-modular
analysis from Chapters [2] and [3] for explicit memory management. Therefore,
we introduced the notion of strong pointer races from [19]. By restricting the
verification efforts to strong pointer race free programs, it was possible to put
ownership back into the thread-modular approach. We then adapted the thread-

66

modular analysis from Chapter [3] Here we used a similar approach as for
garbage collection. We instantiated the thread-modular framework with views
keeping information about one thread only. To overcome the problems described
before, we exploited the ownership model from the ownership-respecting seman-
tics.

In Chapter [5] we then showed that the new analysis for strong pointer race free
programs is amenable to thread-modular reasoning. That is, we were able to
establish correctness for data structures like Treiber’s lock-free stack. Moreover,
we showed that the analysis provides a speed-up of two orders of magnitude
compared to the analysis for explicit memory management from Chapter [3]

Lastly, in order to conduct a sound analysis, we also integrated a check for
strong pointer races. We showed how to interleave this check with the actual
analysis in Chapter [} Due to this check we were able to show that common
lock-free data structures like Treiber’s stack are free from strong pointer races.
Hence, we provided experimental evidence for the usefulness of relying on strong
pointer race freedom for the task of verifying performance-critical code.

67

68

Bibliography

[1]

2]

131

[4]

[5]

[6]

7]

18]

19]

(10]

[11]

Programming languages — C. ISO/IEC Standard 9899:2011, page 348,
International Organization for Standardization, Geneva, Switzerland, 2011.

P. A. Abdulla, F. Haziza, L. Holik, B. Jonsson, and A. Rezine. An inte-
grated specification and verification technique for highly concurrent data
structures. In N. Piterman and S. A. Smolka, editors, Tools and Algorithms
for the Construction and Analysis of Systems - 19th International Confer-
ence, TACAS 2013, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-
24, 2013. Proceedings, volume 7795 of Lecture Notes in Computer Science,
pages 324-338. Springer, 2013.

D. Amit, N. Rinetzky, T. W. Reps, M. Sagiv, and E. Yahav. Comparison
under abstraction for verifying linearizability. In W. Damm and H. Her-
manns, editors, Computer Aided Verification, 19th International Confer-
ence, CAV 2007, Berlin, Germany, July 3-7, 2007, Proceedings, volume
4590 of Lecture Notes in Computer Science, pages 477-490. Springer, 2007.

M. Barr. An update on toyota and unintended acceleration.
http://embeddedgurus. com/barr-code/2013/10/an-update-on-
toyota-and-unintended-acceleration/, October 2013. Accessed: 16.
October 2015.

M. Barr. Killer apps: Embedded software’s greatest hit jobs. http://wuw.
barrgroup.com/files/killer_apps_barr_keynote_eelive_2014.pdf,
April 2014. Accessed: 16. October 2015.

P. Barry and P. Crowley. Modern Embedded Computing: Designing Con-
nected, Pervasive, Media-rich Systems. Morgan Kaufmann, 2012.

J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv.
Thread quantification for concurrent shape analysis. In A. Gupta and
S. Malik, editors, Computer Aided Verification, 20th International Confer-
ence, CAV 2008, Princeton, NJ, USA, July 7-14, 2008, Proceedings, vol-
ume 5123 of Lecture Notes in Computer Science, pages 399-413. Springer,
2008.

CBS News. Toyota "unintended acceleration" has killed 89.
http://www.cbsnews.com/nevws/toyota-unintended-acceleration-
has-killed-89/, May 2010. Accessed: 16. October 2015.

E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In D. Kozen, editor, Logics
of Programs, Workshop, Yorktown Heights, New York, May 1981, volume
131 of Lecture Notes in Computer Science, pages 52-71. Springer, 1981.

T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction To Algo-
rithms. MIT Press, 2001.

I. Corporation. Intel® 64 and IA-32 Architectures Software Developer’s
Manual, volume 2 (2A, 2B&2C): Instruction Set Reference, A-Z. June
2015.

69

http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/
http://embeddedgurus.com/barr-code/2013/10/an-update-on-toyota-and-unintended-acceleration/
http://www.barrgroup.com/files/killer_apps_barr_keynote_eelive_2014.pdf
http://www.barrgroup.com/files/killer_apps_barr_keynote_eelive_2014.pdf
http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/
http://www.cbsnews.com/news/toyota-unintended-acceleration-has-killed-89/

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

I. B. M. C. R. Division and R. Treiber. Systems Programming: Coping
with Parallelism. Research Report RJ. International Business Machines
Incorporated, Thomas J. Watson Research Center, 1986.

K. Dudka, P. Peringer, and T. Vojnar. Byte-precise verification of low-level
list manipulation. In F. Logozzo and M. Fahndrich, editors, Static Analysis
- 20th International Symposium, SAS 2013, Seattle, WA, USA, June 20-
22, 2013. Proceedings, volume 7935 of Lecture Notes in Computer Science,
pages 215-237. Springer, 2013.

M. Dunn. Toyota’s killer firmware: Bad design and its conse-
quences. http://www.edn.com/design/automotive/4423428/Toyota-s-
killer-firmware--Bad-design-and-its-consequences, October 2013.

Accessed: 16. October 2015.

European Space Agency. Ariane 501 Inquiry Board report. http:
//esamultimedia.esa.int/docs/esa-x-1819eng.pdf, July 1996. Ac-
cessed: 16. October 2015.

C. Flanagan and S. Qadeer. Thread-modular model checking. In T. Ball
and S. K. Rajamani, editors, Model Checking Software, 10th International
SPIN Workshop. Portland, OR, USA, May 9-10, 2003, Proceedings, volume
2648 of Lecture Notes in Computer Science, pages 213-224. Springer, 2003.

A. Gotsman, J. Berdine, B. Cook, and M. Sagiv. Thread-modular shape
analysis. In J. Ferrante and K. S. McKinley, editors, Proceedings of the
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages 266—
277. ACM, 2007.

A. Gotsman, N. Rinetzky, and H. Yang. Verifying concurrent memory
reclamation algorithms with grace. In M. Felleisen and P. Gardner, edi-
tors, Programming Languages and Systems - 22nd European Symposium on
Programming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-
24, 2013. Proceedings, volume 7792 of Lecture Notes in Computer Science,
pages 249-269. Springer, 2013.

F. Haziza, L. Holik, R. Meyer, and S. Wolff. Pointer race freedom. 2015.
Accepted for VMCAI 2016.

M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

M. Herlihy and J. M. Wing. Axioms for concurrent objects. In Confer-
ence Record of the Fourteenth Annual ACM Symposium on Principles of
Programming Languages, Munich, Germany, January 21-23, 1987, pages
13-26. ACM Press, 1987.

C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596-619, 1983.

R. Lazic and D. Nowak. A unifying approach to data-independence. In
C. Palamidessi, editor, CONCUR 2000 - Concurrency Theory, 11th In-

70

http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://www.edn.com/design/automotive/4423428/Toyota-s-killer-firmware--Bad-design-and-its-consequences
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf

24]

[25]

[26]

27]

(28]

29]

(30]

31]

32]

[33]

ternational Conference, University Park, PA, USA, August 22-25, 2000,
Proceedings, volume 1877 of Lecture Notes in Computer Science, pages
581-595. Springer, 2000.

T. Lev-Ami and S. Sagiv. TVLA: A system for implementing static anal-
yses. In J. Palsberg, editor, Static Analysis, 7th International Symposium,
SAS 2000, Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceed-
ings, volume 1824 of Lecture Notes in Computer Science, pages 280-301.
Springer, 2000.

Y. Liu, W. Chen, Y. A. Liu, and J. Sun. Model checking linearizability via
refinement. Technical Report MSR-TR-2009-29, March 2009.

A. Malkis, A. Podelski, and A. Rybalchenko. Thread-modular verification
is cartesian abstract interpretation. In K. Barkaoui, A. Cavalcanti, and
A. Cerone, editors, Theoretical Aspects of Computing - ICTAC 2006, Third
International Colloquium, Tunis, Tunisia, November 20-24, 2006, Proceed-
ings, volume 4281 of Lecture Notes in Computer Science, pages 183-197.
Springer, 2006.

M. M. Michael and M. L. Scott. Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared memory multiprocessors. J. Par-
allel Distrib. Comput., 51(1):1-26, May 1998.

F. L. Morris and C. B. Jones. An early program proof by alan turing. IEEE
Ann. Hist. Comput., 6(2):139-143, Apr. 1984.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in
languages with destructive updating. ACM Trans. Program. Lang. Syst.,
20(1):1-50, Jan. 1998.

M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. Ab-
stract transformers for thread correlation analysis. In Z. Hu, editor, Pro-
gramming Languages and Systems, Tth Asian Symposium, APLAS 2009,
Seoul, Korea, December 14-16, 2009. Proceedings, volume 5904 of Lecture
Notes in Computer Science, pages 30—46. Springer, 2009.

V. Vafeiadis. Modular fine-grained concurrency verification. Technical Re-
port UCAM-CL-TR-726, University of Cambridge, Computer Laboratory,
July 2008.

V. Vafeiadis. Shape-value abstraction for verifying linearizability. In N. D.
Jones and M. Miiller-Olm, editors, Verification, Model Checking, and Ab-
stract Interpretation, 10th International Conference, VMCAI 2009, Savan-
nah, GA, USA, January 18-20, 2009. Proceedings, volume 5403 of Lecture
Notes in Computer Science, pages 335—348. Springer, 2009.

V. Vafeiadis. Automatically proving linearizability. In T. Touili, B. Cook,
and P. Jackson, editors, Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, vol-
ume 6174 of Lecture Notes in Computer Science, pages 450-464. Springer,
2010.

71

[34] P. Wolper. Expressing interesting properties of programs in propositional
temporal logic. In Conference Record of the Thirteenth Annual ACM Sym-
posium. on Principles of Programming Languages, St. Petersburg Beach,
Florida, USA, January 1986, pages 184-193. ACM Press, 1986.

72

Eidesstattliche Erklarung

Ich erklédre hiermit an Eides statt, dass ich die vorliegende Arbeit selbststindig
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel verwen-
det habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Ver-
sionen in die Bibliothek der Informatik aufgenommen und damit verdffentlicht
wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible
to the public by having them added to the library of the Computer Science
Department.

Kaiserslautern,

Date Signature

	Introduction
	Motivation
	Foundations
	Memory Management
	Non-Blocking Data Structures
	Linearisability
	The ABA Problem

	Programs
	Related Work
	Contributions
	Outlook

	Thread-Modular Verification
	Data Independence
	Observer Automata
	Thread-Modular Reasoning
	Shape Analysis

	Instantiating a Thread-Modular Analysis
	Merging Views
	Sequential Steps
	Interference Steps
	Summary

	Improving Thread-Modular Verification
	Pointer Races
	Adapting the Verification Procedure
	Merging Views
	Sequential Steps
	Interference Steps

	Improving Interference

	Evaluation
	Prototype Implementation
	Architecture
	Implementation Details

	Case Studies
	Single Lock Stack
	Single Lock Queue
	Treiber's Lock-Free Stack
	Michael&Scott's Lock-Free Queue
	Detecting Defects

	Future Work and Conclusion
	Future Work
	Conclusion

