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Abstract Verification has to reason about the actual semantics of a program. The
actual semantics not only depends on the source code but also on the environment: the
target machine, the runtime system, and in the case of libraries the number of clients.
So verification has to consider weak memory models, manual memory management,
and arbitrarily many clients. Interestingly, most programs are insensitive to the
environment. Programs are often well-behaved in that they appear to be executed
under sequentially-consistent memory, garbage collection, and with few clients —
although they are not. There is a correspondence between the actual semantics and
an idealized much simpler variant. This suggests to carry out the verification in two
steps. Check that the program is well-behaved. If so, perform the verification on the
idealized semantics. Otherwise, report that the code is sensitive to the environment.

Arnd is one of the few researchers who is able to switch with ease between
the practice of writing code and the theory of defining programming interfaces.
Discussions with him had substantial influence on the above verification approach,
which we started to develop in Kaiserslautern, two offices next to his. In this paper,
we give a unified presentation of our findings.
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1 Introduction

Writing code is difficult. The programmer has to reason about the actual semantics
of a program. The actual semantics not only depends on the code but is influenced to
a great extent by the program’s environment: the underlying hardware, the runtime
system, and the clients. This influence results in a complexity that virtually no
programmer can fully understand. For example, to speed-up execution, modern
processors employ weak memory models, like total store ordering (TSO). Under
TSO, every processor is equipped with a store buffer. Memory writes are put into
that buffer and eventually written to memory in batches. A processor can read from
its own buffer but cannot see the other buffers. Hence, each processor may observe
a different memory valuation. For another example, to avoid the runtime penalty
of garbage collection (GC) many programming languages require memory to be
managed manually (MM). Programmers have to explicitly reclaim memory that is
no longer used to prevent the system from running out of available memory. As
a consequence, programs can behave unexpectedly due to unknowingly accessing
reallocated memory or crash due to accessing memory no longer available. Weak
memory models and manual memory management thus introduce intricate program
behaviors that lead to subtle bugs which are typically hard to debug.

The intricacy of such weak semantics makes reasoning about programs difficult.
To still argue about correctness, programmers consider, sometimes unknowingly so, a
stronger semantics. They assume sequential consistency (SC) and garbage collection.
That is, they assume memory operations to be atomic and ignore bugs due to flawed
memory management.

This approach to program development is widely spread and successful. Most
industrial programs lack formal correctness proofs. Instead, programmers reason
informally about the strong semantics and use tests to support their reasoning. This
leads to the following conjecture: reasoning about the strong semantics is sufficient.
Phrased differently, correctness of a program under the simpler strong semantics
entails correctness of the program under the actual weak semantics.

Obviously, our conjecture cannot be true in general. There are programs where
the difference between weak and strong semantics becomes evident [9, 28], where
TSO reorderings result in behavior not present under SC and where GC prevents
reallocations harmful under MM. Surprisingly, this seems to be the case exclusively
for performance-critical applications where experienced programmers are proficient
in the weak semantics and deliberately exploit system-specific characteristics. For
the majority of programs, however, the conjecture does hold. This claim is supported
by the so-called DRF theorem [3]. It states that TSO and SC coincide, i.e., admit the
exact same behaviors, provided the program is data race free (DRF). Similarly, there
is a PRF theorem [19] stating that MM and GC coincide provided the program is
free from pointer races — roughly speaking, if no dangling pointers are used.

Interestingly, the applicability of both the DRF and the PRF theorems can be
checked in the strong semantics. This is crucial since reasoning about the weak
semantics — whether it is about correctness or about race freedom — is infeasible.
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This allows programmers to solely reason in the strong semantics and be sure that
their reasoning carries over to the actual semantics.

Our verification approach can be formulated as automating the programmer’s
manual reasoning. In the strong semantics, we check (i) properties like DRF and PRF
and (ii) correctness. If any of the checks fails, verification fails. That is, we consider
programs that do not adhere to rules like DRF buggy. Note that automation allows
us to consider properties more complex than DRF and PRF that would be hard to
establish manually. This makes the approach applicable to more programs. We have
successfully instantiated the approach for weak memory, concurrent data structures,
and heap-manipulating programs.

For weak memory, the goal is to show that TSO does not admit more behaviors
than SC. In literature, this is also known as robustness [8] or stability [4]. The
main insight required for the result observes that non-robustness becomes evident
in computations of a particular form [7, 8]: if a program is not robust, then there
is a TSO computation which is infeasible under SC where only one thread delays
stores. That the computation is infeasible under SC can be detected by searching for
a happens-before path from the last load of the delaying thread to the first delayed
store. Finding such a path can then be done under SC. The reason for this is that
the store buffer of the delaying thread is used in a restricted way during the time
frame that needs to be analysed. Hence, the store buffer can be elided altogether. To
that end, the original program is instrumented: instead of putting a write to the store
buffer and flushing it to memory later, we modify the thread such that it performs the
write to another memory location and immediately flushes it. This memory location
is fresh in that no other thread reads it. Then, the delaying thread performs reads
from the elided location to mimic reads from its own store buffer. Other threads are
not affected by the elision. They would not observe the delayed write in the original
program and also do not observe the write in the instrumented program as they do not
load the elided location. Since this instrumentation does not affect the happens-before
relation involving actions of the non-delaying threads, the instrumented program
contains the happens-before path in question if and only if the original program does.
Altogether, this means that robustness can be checked under SC.

The above instrumentation allows to check robustness of programs. So for robust
programs, correctness can be checked under the simpler SC semantics. For non-
robust programs, however, verification remains impossible; correctness results of SC
do not carry over to TSO and an analysis of full TSO is intractable. To overcome
this limitation, one can iteratively enrich the SC computations with TSO relaxations
(delayed stores) via an instrumentation [5]. To that end, one uses the robustness
decision procedure from above. If it terminates with a negative answer, one extracts
a TSO computation that is infeasible under SC. As described above, at the heart of
such a computation is a delayed store that introduces a happens-before cycle. Then,
one instruments the program to explicitly buffer that store in a local register and
flush it to memory later. This introduces TSO behavior of the original program into
the SC behaviors of the instrumented version. Repeating this procedure yields a
semi-decision procedure. If the instrumented program is eventually found robust, it
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can be used to check correctness because its SC behaviors coincide with the TSO
behaviors of the original program. However, it is not guaranteed that there is a finite
set of instrumentations that lead to a positive robustness result.

For heap manipulating programs, we showed the PRF theorem mentioned above
[19]. Intuitively, the theorem states that if no dangling pointers are used, then a
program cannot detect whether or not memory is reclaimed and reused. The reason
for this is the following. In order to detect whether a memory cell has been reclaimed
and reused, a program needs to acquire a pointer to that memory cell, wait for it to
be reclaimed, and then observe that it is in use again. After the reclamation, however,
any pointer to that memory becomes dangling. Those pointers remain dangling when
the referenced memory is reused. We consider any subsequent usage of a dangling
pointer as a bug. We call those bugs pointer races. They are indeed races because
the access is not synchronized with the preceding deletion — the program uses a
pointer after it’s referenced memory was deleted and is thus prone to crash due to a
segmentation fault or a bus error because the memory might as well be returned to the
underlying operating system instead of being reused. However, if pointers are never
dereferenced and used in conditionals after they become dangling, then a program
cannot find out whether another pointer holds the same value. In particular, it cannot
decide whether the result of an allocation is already referenced by a dangling pointer.
Hence, it cannot know whether an allocation reuses reclaimed or fresh memory. As a
consequence, the behavior is the same if memory is reused or not at all. That is, the
program behaves identical under both GC and MM.

Another result for concurrent heap manipulating programs studies the interaction
of threads communicating via a shared memory [22]. In particular in fault-tolerant
implementations, like lock-free programs, threads typically do not rely on other
threads having finished their work. This means that if a thread starts to alter a shared
structure but does not finish its update due to an interruption or a failure, then any
thread can take back the shared structure to a consistent state (wrt. to a sequential
execution). Put differently, after every atomic update every thread can continue
and finish its operation even though the update left some shared structure in an
inconsistent state. Using standard data flow analyses one can collect a set of atomic
updates that are likely to over-approximate the updates of the original program.
We call a sequential program which repeatedly executes those updates a summary.
Such a summary is then a candidate program for over-approximating the behavior
of the original program on the shared heap. Hence, if correctness can be judged
solely by the contents of the heap, then the sequential summary can be used for
checking correctness of the concurrent program under scrutiny. For this approach to
be sound, the summary must cover all possible updates of the original program. We
showed that this can be done by considering the parallel composition of the summary
and a single thread of the program: if the summary can mimic every shared heap
update of the retained thread in this two-threaded program, then the summary indeed
over-approximates the shared heap updates of the original program.

The results presented above simplify the analysis. Instead of performing an
expensive analysis, one proves that a simpler analysis implies the desired results. In
the automated program verification literature, a standard framework for this kind of
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results is abstract interpretation [11]. Abstract interpretation is a powerful tool for
reasoning about a weak semantics using a strong semantics. The correspondence
of the semantics is then guaranteed by the underlying theory. More specifically, to
use abstract interpretation one has to show — in a manual proof — that the strong
semantics is a safe approximation of the weak semantics. That is, one has to show
that every behavior of the weak semantics is mimicked by a behavior of the strong
semantics. Note that this property is shown independently of the program under
scrutiny. On the one hand, this allows the framework to be applicable to any program
once shown that the strong semantics is a safe approximation. On the other hand,
however, it may not leverage properties that hold only for a fragment of programs. In
particular, abstract interpretation cannot reason about properties like the soundness
check for summaries because it is a property of the entire state space rather than a
(safety) property of an individual computation. The reason for this is that abstract
interpretation shows the reduction statically; it holds for any program. We, however,
suggest to add a dynamic check at verification time which ensures that the simpler
analysis indeed provides a correct result. That is, we sacrifice universal applicability
to provide more efficient analyses for a fragment of programs.

Our experience shows that relying on dynamic checks to judge whether a simpler
analysis is correct makes verification much more efficient than classical approaches,
like abstract interpretation. Moreover, we found that the concept is very flexible;
even performance critical code can be handled with the concepts discussed above.

The rest of the paper is structured as follows. Section 2 introduces a general
framework for reasoning about programs using strong semantics. This framework is
then instantiated in Sections 3 to 5 for TSO programs, shared memory programs, and
pointer programs, respectively. Section 6 concludes the paper.

2 From Weak Semantics to Strong Semantics

In this paper we consider the task of verification. More specifically, we consider the
problem of checking a safety property safe for a set of computations W . Intuitively,
W contains all computations of a given program where a computation is a sequence
of executed actions. Formally, we refrain from making this set any more precise; we
will appropriately instantiate it as needed. The safety property is given as a predicate
safe over computations. That is, the task is to check whether safe(τ) holds for every
computation τ ∈W , denoted by safe(W ) for brevity.

It is well known that the above verification task is undecidable for most interesting
programs. To fight this theoretical limitation, abstractions and approximations are
applied. A standard approach for program abstraction is abstract interpretation
[11, 12]. The goal of abstract interpretation is to execute a given program in an
abstract semantics. Roughly, this means that rather than using actual (concrete)
values the program uses abstract values. An abstract value represents a set of concrete
ones, potentially infinitely many. To guarantee soundness of such an approach,
abstract interpretation requires the abstract semantics to be a safe approximation of
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the concrete semantics. Intuitively, this means that every action a program can take in
a concrete execution can be mimicked in the corresponding abstract run. That is, one
has to show for all possible programs that abstract computations over-approximate
the reachable control states of concrete computations.

Abstract interpretation has proven to be a powerful tool for verification. However,
the state space W might be too large to enumerate despite aggressive finite abstrac-
tions. In particular, weak memory and concurrent shared memory programs suffer
from a severe state space explosion. Our goal is to provide reductions that allow veri-
fication for cases where abstract interpretation alone cannot. To that end, we suggest
to identify a simpler semantics to conduct the verification in. That is, we suggest to
consider a smaller/simpler state space S the successful verification of which implies
the desired property of W . Intuitively, we want to identify S ⊂W such that S can
be verified efficiently with existing abstract interpretation techniques. Technically,
we do not require S ⊂W . In fact, we do allow S to stem from another program
than the one under scrutiny. In any case, the analysis of S may skip computations
of W . Hence, one has to show that the verification result of S carries over to W
indeed. In the spirit of abstract interpretation, we perform an over-approximation: we
require that a successful verification of S implies correctness of W . More formally,
we require that safe(S ) implies safe(W ). The reverse needs not hold.

Fig. 1 A borderline computa-
tion, like v, is a computation
that may leave S . More
specifically, v can perform
actions under W that are not
discovered by (not included
in) S . This jeopardizes sound
verification. To detect such
situations, we use a predicate
ρ over S . This predicate is
evaluated at analysis-time, e.g.,
after S has been enumerated.

W

S

¬ρρ

v

However, the above reduction idea is flawed. The problem is that we require
safe(S ) =⇒ safe(W ). In a manual proof for a specific program one can reason
about the W -computations that are skipped by S . For automated techniques, how-
ever, the above implication needs to be established for every program. To simplify
this task, we weaken the requirement. We allow a reduction to supply a predicate ρ

which judges whether or not an analysis of the simpler S is sound. For example, ρ

could check for data races to judge whether or not the DRF theorem applies.
Intuitively, in terms of abstract interpretation, ρ characterizes those computations

for which the abstract semantics is a safe approximation of the concrete semantics.
That is, in computations for which ρ evaluates to true any action performed in W can
be mimicked in S . Consider Figure 1 for an illustration. Consequently, an analysis
has to additionally check whether or not ρ(S ) holds. If it does hold, then the analysis
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is guaranteed to be sound. Otherwise, there are borderline computations (cf. v in
Figure 1) that can perform actions under W not captured by S . Since ρ is checked
dynamically, the result may differ from program to program. Those programs for
which ρ cannot be established we deem buggy and verification fails.

Technically, we require ρ(S )∧ safe(S ) =⇒ safe(W ) to hold. As we will
see in more detail later, this has two advantages. On the one hand, this weakened
property can be established for arbitrary programs. It is thus amenable for automated
techniques as it need not be re-proven for every program of interest. On the other
hand, the soundness check ρ(S ) can be done by the actual analysis. Typically, it can
be implemented efficiently, taking insignificant time compared to the actual analysis
of S . Lastly, note that we do not pose any restriction on ρ . In particular, we allow ρ

to be any predicate over sets of computations rather than just a predicate over single
computations. This renders ρ strictly more powerful than a safety property.

The following summarizes how we reduce the verification of W to S .

Reduction I
Given: A set of computations W and predicate safe.
Task: Find a set of computations S and a predicate ρ over S such that:

ρ(S ) ∧ safe(S ) =⇒ safe(W ) . (R)

With such a reduction at hand, we suggest the following approach: (i) enumer-
ate S , (ii) check safe(S ), and (iii) check ρ(S ). Verification fails if one of the
checks fails. Otherwise it succeeds because (R) guarantees that safe(W ) holds.

The main goal in establishing a reduction is to prove property (R) once S and
ρ are chosen. The following is a promising proof strategy for this task. Introduce a
relation ≈⊆W ×S among computations. Intuitively, τ ≈ σ states that σ mimics
in S the behavior of τ in W . So if τ is a safety violation, then also σ is a safety
violation. Now, if there is such a σ for every τ , denoted W ≺S , then S covers all
behaviors of W . That is, if there is a safety violation τ ∈W , then there must be a
safety violation σ ∈S . Hence, it is sufficient to verify S .

Altogether, we suggest to refine the reduction approach from above as follows.

Reduction II
Given: A set of computations W and predicate safe.
Task: Find S , ≺, and ρ such that:

ρ(S ) =⇒ W ≺S (R1)
and ¬safe(W ) ∧ W ≺S =⇒ ¬safe(S ) . (R2)
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As noted before, an analysis may find that the provided reduction does not allow
to soundly verify a program. In the case of TSO programs, for instance, the analysis
may explore the SC executions and find a data race. Following the approach so
far, the analysis must deem the program incorrect even if no proper correctness
violation was found. This makes verification imprecise. To fight the false-positives
of such an analysis, one can dynamically weaken S to include computations that
make the soundness check fail. To that end, we adapt the verification procedure
suggested above. If the check ρ(S ) fails, then we extract a witness computation.
Such a computation is a borderline event, as depicted in Figure 2. The computation
is borderline because it allows behavior under W which S does not allow. Put
differently, the borderline computation can leave S and thus harms soundness.
Instead of deeming the program incorrect, we can extend S to include the missing
behavior. The adding process can be guided by ρ: ρ detects a borderline action that
can be done under W but not under S . Then, we add this missing behavior to S
and repeat the analysis. In the next iteration, either the analysis can be shown sound
or ρ reveals another missing behavior. Repeating the above approach thus yields a
semi-decision procedure. If a bug is found or the analysis becomes sound eventually,
then the procedure stops with a definite result. However, the above process may loop
indefinitely because there is no guarantee that there are only finitely many behaviors
missing in S in general.

Fig. 2 One-step extension
S2 of S1. The extension
S2 includes the borderline
events of S1. The borderline
events are given by ρ1, like v.
The extended S2 has another
borderline event according
to ρ2.

W

S1

S2

¬ρ1

¬ρ2

v

In the remainder of the paper, we discuss several instantiations of the above
framework to ease reasoning about weak memory models, concurrent shared memory
programs, and concurrent pointer programs.

3 From Total Store Ordering to Sequential Consistency

A natural memory model is sequential consistency (SC) [25]. Under SC, all operations
appear instantaneous and atomic. That is, the effect of an operation is immediately
visible to all threads. This simplicity makes it easy to reason, both manually and
automatically, about SC executions. For performance reasons, however, SC is not
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implemented in today’s processors. Instead, weak memory models are used which
may reorder or buffer operations. A widespread weak memory model is total store
ordering (TSO) [34], which is used on x86 machines, for example. TSO relaxes the
atomicity of SC for memory writes. Instead of writing directly to memory, store
operations are placed in a per-thread FIFO store buffer. Eventually, the store buffer
is flushed and the memory is updated. Only after the buffer has been flushed, other
threads see the memory update that may have happened much earlier. However,
for the thread executing the store, the processor establishes the illusion that it was
already performed — technically, this early read lets threads read from their own
store buffer. Altogether, this causes every thread to have its own local perception
of the shared memory. For a program to synchronize the individual perceptions of
threads, TSO provides fence instructions which force flushing the store buffer to
memory. It is then the programmer’s (or compiler’s) task to introduce fences such
that the program does not read stale values and behaves correctly. This task can be
cumbersome and requires an understanding of how the underlying weak memory
affects a programs behavior. To address this obstacle, we discuss two reductions that
allow for reasoning about TSO under SC. The first reduction comes in the form of a
programming guideline and is amenable for manual reasoning. The second reduction
is built for automated reasoning and focuses on more complex programs that cannot
be handled with the first reduction. Before we go into the details of those reductions,
we give a characterization of SC and distinguish it from TSO.

Characterization. In the literature, the most common approach to reason about
weak memory models is to consider the trace [35] of a computation, rather than the
sequence of executed instructions. The trace of a computation is a graph. Its nodes
correspond to the executed operations. The arcs represent the happens-before (hb)
relation. Intuitively, (o1,o2) ∈ hb means that o2 relies on the result of o1. Technically,
hb is a union of four different relations: program order (po), store order (st), source
relation (src), and conflict relation (cf ). The program order implements the per-thread
sequence of executed operations. The store order is a per-address serialization of all
store operations. A store is in source relation to a load if the load reads the value
written by the store. The conflict relation, intuitively, relates loads to stores if the
value read was over-written by the store. With this, SC traces are guaranteed to be
acyclic due to the operations being instantaneous and atomic.

Lemma 1 ([35]). A trace is acyclic iff it is induced by an SC computation.

On the other hand, TSO computations can produce cycles due to store buffering.
More precisely, a thread can load a value that was already over-written by a store of
another thread. Loading the over-written value is indeed possible under TSO because
the store may have been buffered and only flushed after the load is performed — a
scenario not possible under SC. For an example, consider Figure 3.

DRF Theorem. To tackle the complexity of TSO computations, one can rely on
the well-known DRF theorem [3]. It states that every TSO trace is acyclic provided
the program is data race free (DRF) under SC. A data race occurs if there are two
unsynchronized accesses to the same memory location at least one of which is a
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Fig. 3 A program and a
possible TSO trace. The load
of t1 and the store of t2 are in
conflict relation because the
load is executed after the store
is put into the store buffer
but before it was flushed.
Hence, the load reads a stale
value—the program is not
properly synchronized. The
behavior here is not present
under SC because the store
would immediately be visible
and thus read by the other
thread.

t1 : st(x,1)

t1 : ld(y,0)

t2 : st(y,1)

t2 : st(x,0)

init : st(y,0)

init : st(x,0) po:
cf :
src:

init:
st(x, 0)
st(y, 0)

thread1:
st(x, 1)
ld(y)

thread2:
st(y, 1)
ld(x)

store. Intuitively, they are unsynchronized if at one point the program could execute
either of the operations. Formally, one introduces a synchronizes with (sw) relation
to explicate the behavior of synchronization primitives, such as fences. (We omit a
more formal discussion of sw for brevity.) Then, two actions are unsynchronized if
they are not related by (po∪ sw)+. The key insight here is that conflict arcs stem
from data races; indeed, the program is free to choose whether to execute the load or
to flush the store involved in a conflict. So if a program is DRF, then it contains no
conflict arcs. One can easily see that the absence of such arcs makes hb acyclic.

Theorem 1 ([3]). Data race freedom implies that the SC and TSO traces coincide.

With this theorem, we can come up with a reduction following the format from
Section 2. For W and S we choose the sets of traces induced by TSO and SC,
respectively. Then, we instantiate the predicate ρ such that it checks for data races.
And we use equality as a relation among computations. Then, property (R2) follows
immediately assuming there is a dedicated unsafe control location. For (R1) we have
to show that data race freedom of a program can be judged by its SC traces. To see
this, consider a shortest TSO computation τ which raises a data race. By minimality,
there is exactly one conflict arc. This arc relates some load and store instruction.
Again by minimality, the store is the po latest operation of the executing thread
(because actions of the same thread are never in conflict). Hence, we can remove that
store and get a DRF trace. Then, there must be an SC computation σ with the same
trace. Moreover, the store can be executed after σ because trace equality implies that
all threads are in the same control state. This establishes the same conflict arc in the
resulting trace as in the trace for τ . Altogether, this means that scanning SC for data
races suffices to show a program DRF.

Theorem 2. A program is data race free under SC iff it is so under TSO.

This justifies our choice of ρ and proves our reduction sound. That is, one can rely
on the simpler SC semantics to check for data races and to perform an actual analysis.
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Robustness against TSO. The above development works well for general purpose
programs because they tend to be data race free. However, there are many areas where
data races cannot be avoided, for example, in concurrency libraries and performance-
critical code [13,20,26,31]. Despite the data races, we observe that there are programs
that do not show non-SC behavior. This is the case because DRF does not characterize
SC — it is strictly stronger. To see this, consider Figure 3: if we remove one of the
conflict arcs there we retain a data race but get an acyclic and thus SC trace. So
we seek a method for precisely identifying under SC if a program is robust, i.e.,
allows only SC behavior even if executed under TSO. We do this in two steps. First,
we establish a characterization of robustness. Then, we show how to employ this
characterization for an SC-based robustness check.

Fig. 4 A TSO attack [7].
Instructions isuA, ldA, and stA
are executed by the attacker.
The pair (isuA,stA) makes
visible when the delayed
store is executed and flushed,
respectively.

isuA ldA stA
τ1 τ2 τ3 τ4

flush

For a characterization of robustness we show that if a program is not robust,
then it allows for an attack [6, 7]. An attack is a computation of a particular form
that exhibits TSO behavior, as shown in Figure 4. The rational behind attacks is
the following. If a program has non-SC behavior, then it must be due to a delayed
store, stA. Moreover, the delayed store must be on a happens-before cycle due to
Lemma 1. Now, assume for a moment that there is only one delayed store. Then, this
delay must overtake a load of the same thread, ldA, for otherwise the store would be
flushed immediately. Similarly, ldA must be on the happens-before cycle since the
store could be flushed immediately otherwise. This means that the happens-before
cycle is of the form ldA→+

hb stA→+
po ldA. (For Figure 4 note that isuA represents the

store being buffered and stA the store being flushed; hence, sta is indeed po-earlier
than ldA although the figure suggests otherwise; in the trace isuA and stA appear as
one node.)

This cycle, however, is based on the assumption that there is only one delayed
store. Our reasoning remains valid if only one thread delays stores. Intuitively, stA is
the first delayed store on the happens-before cycle. Any prior store can be flushed
immediately because it is in the SC prefix of the computation. Any later delayed
store cannot participate in the ldA→+

hb stA part of the happens-before cycle because
the FIFO property of the TSO store buffer guarantees that it is flushed only after
stA is. Interestingly, one can show the needed property, namely, if a program is not
robust then there is a non-SC computation where only one thread delays stores [8].
Due to its technical nature, we refrain from elaborating on this result and refer the
reader to [6, 8] instead. Altogether, this means that if a program is not robust, there
is an attack. Due to the happens-before cycle in an attack, the revers holds too. The
following theorem summarizes the characterization result.

Theorem 3 ([7]). A program is robust iff there is no attack.
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Towards a practical reduction, it remains to check for attacks under SC. This
requires to find a delayed store and a subsequent load that are on a happens-before
cycle. Such a cycle cannot be observed under SC as postulated by Lemma 1. However,
an attack makes only limited use of the store buffer: only a single thread, the attacker,
delays stores. To mimic such delays under SC we make the store buffer of the attacker
explicit [6, 7]. To that end, we instrument the program under scrutiny. To delay a
store to address a of the attacker, we replace it with a store to an auxiliary address
a′ which is not used by any other thread. The attacker can read the value early as it
knows of address a′. All other threads continue to read the stale value at address a.
We do not need to handle flushes, because the instrumentation can stop execution if
the happens-before cycle is closed. To do that, we instrument all other threads, the
helpers. Technically, we force the computation to produce a happens-before cycle.
That is, with respect to Figure 4, we require every action in τ3 to participate in the
cycle and prevent any other instruction from being executed. More precisely, we
require each action act of a helper to satisfy ldA→+

hb act. If a helper thread already
contributed an action, then any subsequent action continues the happens-before path
using program order. Whether an action has already been contributed can be kept
in the control state of helpers threads. Otherwise, act cannot continue the happens-
before path from ldA using program order. Let a denote the address which is accessed
by act. If a has been loaded on the happens-before path, then act has to be a store
to a because only the conflict relation allows it to continue the hb path. Otherwise,
if a has seen a store, then any access allows to continue the hb path through act:
using the store relation in case of a store, and the source relation in case of a load.
The access information can be kept in a per-address auxiliary address. Altogether, a
helper thread closes the happens-before cycle if it accesses the address targeted by
stA. In such a case the program jumps to a dedicated goal state. So if an instrumented
program reaches this goal state, then the program is guaranteed to contain a hb cycle
and thus to be not robust. Otherwise, the program is robust and shows the exact same
behavior as the original program under TSO.

Theorem 4 ([7]). A program is not robust iff its instrumentation reaches the goal state.

The above development allows us to formulate the approach as a reduction. The
set W contains the TSO traces of the program under scrutiny. For S we choose the
set of SC traces that stem from an instrumented version of the program. The predicate
ρ simply checks if the goal state was reached. And we use equality as relation among
traces. Then, both (R1) and (R2) follow from the above theorems.

Supporting Non-Robust Programs. The above method handles all robust pro-
grams and allows their verification to rely on the simpler SC semantics. Programs
that are not robust, however, do not profit from that development. That is, the above
method does not guarantee soundness for non-robust programs. Unfortunately, TSO
resists efficient automated reasoning [23,30]. To overcome this problem, we can patch
non-SC behavior into the SC semantics using the approach described in Section 2
paired with the above insights [5]. So consider a program that is not robust. The above
instrumentation makes visible the delayed store which allows for a happens-before
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cycle and thus non-SC behavior. More precisely, non-robustness yields as witness
an attack like the one from Figure 4 — a borderline computation in the wording of
Section 2. From such an attack, we can extract the attackers sequence of actions
performed while stA was in the store buffer. That is, we can extract which store is
delayed and when it is flushed. Then, we instrument the program to make the delay
explicit. To that end, upon arriving at the to-be-delayed store, the thread makes a
non-deterministic choice. Either it continues it’s original computation, or it executes
the instrumentation. The instrumentation writes the store into an auxiliary register
instead of writing it to memory. Then the actions from the extracted sequence follow.
However, they are adapted such that early reads of the buffered value are read from
the auxiliary register. After the sequence is executed, the write is flushed to memory,
i.e., copied from the auxiliary register to the original target address. Then, the thread
jumps back into its original program. Technically, the instrumentation has to handle
further stores that are delayed during the extracted sequence. They are handled in
the same way as described above. Note that since the extracted sequence is finite,
the instrumentation requires only finitely many auxiliary registers. Altogether, this
allows to patch finite sequences of delayed stores into SC. The stores we choose here
stem from attacks making the program non-robust. Hence, the instrumented program
is guaranteed to contain more behaviors than the original one.

Repeating the above patching allows to continuously enrich the SC behavior with
TSO behavior. This yields a semi-decider for safety. If there is a safety violation
under TSO, then this behavior is eventually added to the instrumentation and thus
explored under SC. Otherwise, it may not terminate at all; there may be infinitely
many non-SC behaviors that are iteratively added. So the algorithm will not converge
to an instrumentation that is robust.

4 From Many Threads to Few

For concurrent programs, informal reasoning and testing techniques can only explore
a fraction of all possible program behaviors and are likely to miss delicate corner cases
[10]. The reason for this are the many thread interleavings and the severe state space
explosion of concurrent programs. This problem becomes worse when considering
lock-free code. There, correctness arguments require rigorous formal proofs due to
the subtle thread interactions. Providing a manual proof is a cumbersome task and
requires a deep understanding of the program to be verified [14, 15, 16, 24, 32, 33, 37].
Hence, we strive for automation. For practicality, we need techniques that can handle
parametrized programs. That is, we need techniques that can establish correctness
of a given lock-free program for any number of threads. Our goal is to develop a
reduction from parametrized programs to programs with few threads. We focus here
on lock-free programs. It is an inherent characteristic of lock-freedom that allows
for the desired reduction. Towards the result, we discuss the working principles of
lock-free programs first.
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Lock-Freedom. Lock-freedom is a progress property of programs [20]. It guar-
antees that a thread can make progress even if arbitrary other threads stall or fail.
To see how this influences the way in which programs are written, consider as an
example a program which maintains a shared structure, like a stack or a list, that is
used for inter-thread communication. A logical update of the structure, like adding or
removing elements, may (and in most cases does) require multiple physical updates,
i.e., multiple memory writes [14, 17, 20, 27, 28, 29, 38]. The naive solution would use
a critical section to guard the sequence of memory updates from interference of other
threads. Lock-free programs, however, do not allow the usage of locks. Now assume
a thread wants to perform a sequence of updates but fails half-way through, that is,
performs only some of its updates. With respect to lock-based programming, this
means that the thread executed only a part of its critical section. This typically leaves
the shared structure in an inconsistent state wrt. the invariants of the lock-based
implementation. Now, to achieve lock-freedom, other threads must still be able to
progress. That is, they have to anticipate the incomplete sequence of updates and
either roll back or finish that sequence. In the literature, this is commonly referred to
as helping [20]. And indeed, this is what other threads do. They first make sure that
the structure is in a consistent state, helping another thread updating the structure if
necessary, before they continue with their own operation. For an example, consider
a lock-free singly-linked queue which maintains a shared pointer to the last list
segment. Appending a new segment requires to link the new segment and to update
the shared pointer. This requires two subsequent updates. Hence, a thread may find
that the shared pointer does not point to the last element. If so, it will first move it to
the last segment before it continues to, e.g., add another element to the end of the list.

Summaries. It is this helping that we exploit for the desired reduction. It is typically
implemented in such a way that a thread, by inspecting a shared structure, can find
out whether or not the structure is in a consistent state and what actions are required
to make it consistent if it is not. That is, inconsistencies and the required fixes can be
deduced from the shared structure itself — a thread does not need knowledge about
other threads nor of the history of the structure. Hence, we say that the process of
helping is stateless [21,22]. Consequently, those updates can be collectively executed
by a single thread which we call summary. So assume for a moment we had such a
summary thread. Then, that summary could produce any shared heap the original
program can produce. Hence, if correctness can be judged by the contents of the
shared heap (which is a reasonable assumption1 in practice), then it suffices to analyse
this single thread. In the following, we discuss how to generate a candidate summary
and check whether it is a proper summary [21, 22].

A candidate summary can be generated by inspecting the program under scrutiny.
As mentioned before, lock-free programs update shared structures on a memory-word
level. In practice, the prevalent pattern to update the content of a single memory
location is the following [14, 17, 20, 27, 28, 29, 38]: (i) read the memory contents of
the location to be updated, (ii) compute a new value for the location (based on the

1 For linearizability proofs, for example, one encodes the sequence of linearization points in the
shared heap [1] and checks whether a non-linearizable sequence can be produced by the program.
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previously read value), and (iii) atomically write the new value to memory if the
valuation has not changed (typically implemented using Compare-And-Swap) or retry
otherwise. Instances of this update mechanism can be found by a syntactic analysis
of the program under consideration. The summary is then simply an indefinite loop
every iteration of which non-deterministically choses and atomically executes one of
those update instances. It is worth stressing that the resulting program is sequential.
Moreover, executing the instances of the above pattern atomically allows to apply
standard compiler optimizations resulting in a summary that is much shorter and
more easily understandable than the original program. While understandability of
the summary is not important for an automated technique, reducing its code size can
be beneficial. To sum up, we create a candidate summary by syntactically identifying
shared updates in the original program assuming atomicity.

Summaries in Verification. An instantiation of the framework from Section 2
exploiting summaries is in order. To that end, let P = ∏

k
i=1 Ti be the original program,

a parallel composition of k identical threads Ti, and let Q be a candidate summary.
Then, S is the set of all computations of P. For S we choose the set of computations
of the program T1 ‖ Q, a parallel composition of a single thread T1 from P and the
single thread Q. Predicate ρ checks whether Q is a proper summary of P. We discuss
how to do this later. As a relation among computations we choose an equivalence
relation ≈ such that τ and σ are related if they coincide on the shared structures and
the thread-local state of T1. Property (R2) follows immediately provided safety can
be concluded from the state of the shared structures as assumed initially. For (R1),
we proceed as follows. Given a computation τ ∈W , we replace all actions of threads
T2, . . . ,Tk that update a shared structure by actions of Q that have the same effect
and simply remove all other actions of threads T2, . . . ,Tk. The replacement is feasible
since Q is a proper summary due to the premise of (R1). The removal is feasible
because actions that do not change the shared structures cannot influence other
threads by assumption. Altogether, this process yields a computation σ ∈S with
τ ≈ σ , as required for (R1). The intuition behind this construction is the following:
thread T1 can be influenced by other threads only through updates of the shared
structures; however, it cannot detect which entity performs the updates of those
structures. Hence, T1 cannot detect whether it runs in parallel with T2, . . . ,Tk or just
with Q; it’s behavior is the same. To conclude the reduction, it remains to discuss ρ .

Checking Summary Candidates. As shown by our experiments, the procedure for
generating candidate summaries works well for common lock-free implementations
from the literature [21, 22]. Nevertheless, the process may give a candidate summary
which is missing updates of the original program. This can be the case, for instance,
if the read value is changed back and forth such that the final check of the pattern
erroneously concludes that the structure was not changed, known as the ABA problem
in the literature [28]. Hence, we require a method for checking whether a candidate
summary is indeed a proper summary. In the remainder of this section we present
such a check and embed it into the framework from Section 2. For simplicity, we
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assume that the only way threads can influence each other are updates of shared
structures.2

We now turn towards checking whether or not the candidate summary Q is a
proper summary, as required to be done by ρ . So let Q be a candidate summary that
misses some required update of the program under scrutiny. That is, there is a shortest
computation τ = act1. . . . .actn.actn+1 from W such that action actn+1 performs an
update of a shared structure that Q cannot perform. Let us denote the state of the
shared structures after τi = act1. . . . .acti by si. That is, no sequence of Q-actions can
transform sn into sn+1. Wlog. the last action actn+1 is performed by thread T1.3 Since
τ is the shortest such computation, Q can mimic all updates in the prefix τn. So we
can perform for τn the same construction we used to establish (R1) above. That is,
we construct a computation σ ∈S with τn ≈ σ . Since actn+1 is performed by T1,
we get τ ≈ σ .actn+1 ∈S . This means, every missing update, like the one from sn
into sn+1, can be found in S . So, ρ can simply collect all updates from S and check
whether Q can perform them too.

Missing Updates. Altogether, it suffices to analyse the two-threaded program T1 ‖Q
instead of the much more complicated P. This allows us to use existing techniques
for programs with a fixed number of threads. Moreover, note that Q has a particular
form which may allow for further optimizations.

Although our experiments showed that the summaries generated by the above
approach work well in practice [22], they may miss updates. A missing update is a
transformation of the shared heap. Instead of aborting the analysis in such a case,
one can collect those updates in a set Up. Then, one repeats the analysis. This time,
however, the updates from Up are applied in addition to the summary. Applying an
update s ; s′ from Up to a computation means to replace the shared heap s with s′.
This procedure is repeated until saturation of Up. This yields a semi-decider because
it is not guaranteed that there are finitely many missing updates. Nevertheless, this
approach has been shown effective and efficient in [36].

5 From Manual Memory Management to Garbage Collection

A major obstacle in reasoning about programs relying on manual memory manage-
ment is the fact that memory is explicitly deleted and can be reused immediately
after the deletion. This allows for pointers to become dangling after the memory they
reference is deleted. After a subsequent reuse of the deleted memory, the dangling
pointer can still be used to modify the memory contents without the reusing thread
knowing. As shown in the literature DBLP:conf/podc/MichaelS96 [28, 29], this
can lead to corruption of program invariants and thus to undesired behavior. Under

2 Technically, one separates the memory into a shared and a per-thread owned part and checks
whether threads comply to this separation, that is, ensure that threads never read/write from/to the
parts owned by other threads. The actual separation is a parameter to our result and can thus be
instantiated as needed [22].
3 This can be achieved by a simple renaming of threads.
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garbage collection, this problem does not arise. Any reference would prevent the
memory from being reused. Put differently, an allocation guarantees exclusive access
under GC but does not do so under MM. This makes it significantly harder to reason
about MM than about GC [1,2,19,39]. To tackle the problem, we establish a practical
reduction from MM to GC [18, 19]. Let W and S be the sets of computations of a
program under MM and GC, respectively.

General Purpose Programs. The main idea of the result is to allow dangling
pointers but prevent them from begin used. Later, we generalize this result to allow
for certain accesses of dangling pointers. Towards the result, we need to characterize
what it means for a pointer to be dangling. Technically, it is easier to define when a
pointer is not dangling. We call such non-dangling pointers valid pointers. Initially,
no pointer is valid. A pointer becomes valid, if it is the target of an allocation or if
it is assigned from a valid pointer. A valid pointer becomes invalid if its referenced
memory location is deleted or if it is assigned from an invalid pointer. Basically,
this means that allocations make pointers valid, deletions make pointers invalid (or
dangling), and all other operations simply spread (in)validity. We stress that an
allocation makes valid the receiving pointer only; every other invalid pointer remains
invalid even if its referenced address is reallocated. With this definition, using an
invalid pointer is said to yield a pointer race.

Definition 1 ([19]). A computation τ.act raises a pointer race if action act (i) deref-
erences, (ii) compares, or (iii) deletes an invalid pointer.

Now, we observe that pointer race free (PRF) programs are invariant to memory
reuse. That is, a PRF program cannot detect whether the result of an allocation is
fresh, i.e., has never been allocated before, or if it was already in use and has been
deleted. To see this, assume a program seeks to draw such a conclusion. To do so, it
requires a pointer p to address a before a is deleted and a pointer q to a that wlog.
receives the address from an allocation. To tell whether or not the allocation for
q reused the deleted a the program has to compare the addresses held by p and
q. However, the deletion of a rendered p invalid. And it remains invalid through
the reallocation involving q. So the comparison of p and q raises a pointer race.
Altogether, this means that pointer race free programs indeed cannot distinguish
fresh and reused memory. Our goal is to instantiate the framework from Section 2
to reduce MM to GC for pointer race free programs. We use for ρ a predicate that
decides whether or not a given computation is pointer race free. We showed that
such a check is effective and can be implemented efficiently with low overhead to an
actual analysis [19]. Also note that this reduction allows to use existing tools which
rely on exclusivity of allocated memory as discussed above.

Towards a reduction result we need to find an appropriate relation among com-
putations as suggested by (R1). A non-trivial relation is required because in general
GC yields a proper subset of MM computations. In the above example, MM allows
to reallocate a for q. Under GC this is not possible. Instead, an allocation would give
a fresh address b. In order to find an appropriate relation, recall that invalid pointers
cannot be used. Hence, their valuation does not matter. It suffices to relate the valid
pointers. Those pointers coincide with respect to an isomorphism which states how
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memory reuse is elided (mapped) to fresh memory. So we introduce an equivalence
relation ≈ such that two computations are related if they end up in the same program
counter and in the same valid heap up to an isomorphism. For this relation, one can
show the desired first part, (R1), of the reduction.

Theorem 5 ([19]). If the program under scrutiny is pointer race free then W ≈S .

To establish this result, one proceeds by induction over the structure of computations
and constructs a new computation with an appropriate isomorphism to elide reallo-
cations. For the technical details of that construction we refer the reader to [18, 19].
With this main result, the second part, (R2), of the reduction follows easily. If there
is an unsafe computation in W , then W ≈S yields a related computation from S .
By the definition of ≈ both computations end up in the same program counter. Wlog.
this implies that also S is unsafe.

Performance-Critical Programs. Unfortunately, the restriction to pointer race free
programs is too strong to handle performance-critical code. Lock-free programs, for
instance, typically perform memory reads optimistically to avoid synchronization
overhead on the read side. Such optimistic accesses patterns, however, use dangling
pointers and thus suffer from pointer races. To prevent harmful accesses that can lead
to system crashes or integrity corruption, those patterns include checks to guarantee
that if a dangling pointer was used it was used in a safe way. These checks necessarily
need to compare dangling pointers. Therefore, we adapt the notion of pointer races
from above to tolerate such optimistic access patterns. To that end, we mark the result
of memory reads which dereference an invalid pointer as strongly invalid and require
those strongly invalid values never to be used. The development then follows the one
from ordinary pointer races.

Definition 2 ([19]). A computation τ.act raises a strong pointer race (SPR) if action
act (i) deletes, or (ii) writes to memory dereferencing an invalid pointer, or if act
(iii) contains a strongly invalid value otherwise.

The relaxation to strong pointer races does not allow for a reduction of MM to
GC. The reason is, as seen before, that eliding reuse does not allow to maintain
equivalence among invalid pointers. Hence, assertions involving invalid pointers
(which raise no SPR) may not have the same outcome in an MM-computation from W
and the corresponding GC-computation from S which elides reuses. Nevertheless,
the relaxation to strong pointer races eases verification efforts. We found that SPR
freedom provides an allocating thread with exclusivity [19]. This exclusivity is a write
exclusivity rather than a read/write exclusivity as in GC. Exploiting this observation
improves the efficiency of existing techniques [19].

In the future we want to establish a reduction for programs using optimistic access
patterns. A promising approach is a mixed semantics where only a few memory
locations can be reused like in MM and the remaining ones cannot like in GC. To
guarantee soundness then, one has to show that the aforementioned comparisons
involving invalid pointers can be mimicked in the mixed semantics. We believe that
this boils down to showing that the program under scrutiny does not suffer from the
ABA problem. This can be decided in the simpler mixed semantics.
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6 Conclusion

We presented various approaches for reasoning about correctness wrt. to a compli-
cated weak semantics by solely relying on a simpler strong semantics. The approaches
exploit properties satisfied by most but not all programs. In other word, they facil-
itate that programs for a certain (application) domain typically adhere to the same
principles or programming patterns. Consequently, not all programs can be handled
because the usage of the pattern is not enforced, for example, by the programming
language. Experiments show two interesting things. First, most programs of interest
can be handled despite relying on domain specific assumptions. Second, exploiting
those assumptions allows for much more efficient analyses. The stronger semantics
can be verified much easier and a soundness check for the reduction can be performed
without much overhead too. Altogether, this line of research highly suggests to give
up completeness and focus on specific program domains in order to make verification
possible where it is highly needed but not yet successful.
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