
Effect Summaries for Thread-Modular Analysis ?

Sound Analysis despite an Unsound Heuristic

Lukáš Holík1, Roland Meyer2,??, Tomáš Vojnar1, and Sebastian Wolff 2,3

1 FIT BUT, IT4Innovations Centre of Excellence
2 TU Braunschweig
3 Fraunhofer ITWM

Abstract We propose a novel guess-and-check principle to increase the efficiency
of thread-modular verification of lock-free data structures. We build on a heuristic
that guesses candidates for stateless effect summaries of programs by searching the
code for instances of a copy-and-check programming idiom common in lock-free
data structures. These candidate summaries are used to compute the interference
among threads in linear time. Since a candidate summary need not be a sound
effect summary, we show how to fully automatically check whether the precision
of candidate summaries is sufficient. We can thus perform sound verification
despite relying on an unsound heuristic. We have implemented our approach and
found it up to two orders of magnitude faster than existing ones.

1 Introduction

Verification of concurrent, lock-free data structures has recently received considerable
attention [2,3,14,28,29]. Such structures are both of high practical relevance and, at the
same time, difficult to write. A common correctness notion in this context is linearizabil-
ity [15], which requires that every concurrent execution can be linearized to an execution
that could also occur sequentially. For many data structures, linearizability reduces to
checking control-flow reachability in a variant of the data structure that is augmented
with observer automata [2]. This control-flow reachability problem, in turn, is often
solved by means of thread-modular analysis [4,19]. Our contribution is on improving
thread-modular analyses for verifying linearizability of lock-free data structures.

Thread-modular analyses compute the least solution to a recursive equation

X = X ∪ seq(X) ∪ interfere(X) .

The domain of X are sets of views, partial configurations reflecting the perception of
a single thread about the shared heap. Crucially, thread-modular analyses abstract away
from the correlation among the views of different threads. Function seq(X) computes a
sequential step, the views obtained from X by letting each thread execute a command
? This work was supported by the Czech Science Foundation project 16-24707Y, the BUT FIT

project FIT-S-17-4014, the IT4IXS: IT4Innovations Excellence in Science project (LQ1602),
and by the German Science Foundation (DFG) project R2M2.
The full version is available as technical report [16].

?? A part of the work was done when the author was at Aalto University.

2 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

on its own views. This function, however, does not reflect the fact that a thread may
change a part of the shared heap seen by others. Such interference steps are computed by
interfere(X). It is this function that we improve on. Before turning to the contribution,
we recall the existing approaches and motivate the need for more work.

In the merge-and-project approach to interference (e.g., [4,11,19,22]), a merge
operation is applied on every two views in X to determine all merged views consistent
with the given ones. On each of the consistent views, one thread performs a sequential
step, and the result is projected to what is seen by the other thread. The approach
has problems with efficiency. The number of merge operations is exactly the square
of the number of views in the fixed point. In addition, every merge of two views is
expensive. It has to consider all consistent views whose number can be exponential
in the size of the views.

The learning approach to interference [34,24] derives, via symbolic execution, a sym-
bolic update pattern for the shared heap. The learning process is integrated into the
fixed-point computation, which incurs an overhead. Moreover, the number of update
patterns to be learned is bounded only by the number of reachable views. An interference
step applies the learned update patterns to all views, which again is quadratic in the
number of views. Moreover, although update patterns abstract away from thread-local
information, computing each application still requires a potentially expensive matching.
There are, however, fragments of separation logic with efficient entailment [7].

What is missing is an efficient approach to computing interferences among threads.

Main ideas of the contribution. We propose to compute interfere(X) by means of
so-called effect summaries. An effect summary for a method M is a stateless program
QM which over-approximates the effects that M has on the shared heap. With such
summaries at hand, the interference step can be computed in linear time by executing
the method summaries QM for all methods M on the views in the current set X . This is
a substantial improvement in efficiency over merge-and-project and learning techniques,
which require time roughly quadratic in the size of the fixed-point approximant, X , and
possibly exponential in the size of views.

Technically, statelessness is defined as atomicity and absence of persistent local state.
We found both requirements typically satisfied by methods of lock-free data structures.
For our approach, this means stateless summaries are likely to exist (which is con-
firmed by our experiments). The reason why the atomicity requirement holds is that
the methods have to preserve the integrity of the data structure under interleavings.
The absence of persistent state holds since interference by other threads may invalidate
local state at any time.

We propose a heuristic to compute, from a method M , a stateless program QM

which is a candidate for being an effect summary of M . Whether or not this candidate
is indeed a summary of M is checked on top of the actual analysis, as discussed below.
Our heuristic is based on looking for occurrences of a programming idiom common in
lock-free data structures which we call copy-and-check blocks. Such a block is a piece
of code that, despite lock-free execution, appears to be executed atomically. Roughly,
we identify each such block and turn it into an atomic program.

Programmers achieve the above mentioned atomicity of copy-and-check blocks by
first creating a local copy of a shared variable, performing some computation over it,

Effect Summaries for Thread-Modular Analysis 3

checking whether the copy is still up-to-date and, if so, publishing the results of the
computation to the shared heap. A classic implementation of such blocks is based on
compare-and-swap (CAS) instructions. In this case, for a local variable t and a shared
variable T, the copy-and-check block typically starts with an assignment t=T and finishes
with executing CAS(T,t,x) which atomically checks whether t==T holds and, if so,
changes the value of T to x. Hereafter, we will denote such blocks as CAS blocks, and we
will concentrate on them since they are rather common in practice [31,23,8]. However,
we note that the same principle can be used to handle other kinds of copy-and-check
blocks, e.g., those based on the load-link/store-conditional (LL/SC) mechanism.

The idea of program analyses to employ the intended behavior of CAS blocks by
treating them as atomic is quite natural. The reason why it is not common practice is that
this approach is not sound in general. The atomicity may be introduced too coarsely, and,
as a result, an interfere(X) implementation based on the guessed candidate summaries
may miss interleavings present in the actual program. For our analysis, this means that
its soundness is conditional upon the fact that the candidate summaries used are indeed
proper effect summaries. It must be checked that they are stateless and that they cover all
effects on the shared heap. We propose a fully automatic and efficient way of performing
those checks. To the best of our knowledge, we are the first to propose such checks.

To check whether candidate summaries indeed cover the effects of the methods for
which they were constructed, the idea is to let the methods execute under any number
of interferences with the candidate summaries and see if some effect not covered by
the candidate summaries can be obtained. Formally, we use the program Q =

⊕
i QMi

,
which executes a non-deterministically chosen candidate summary QMi

of a method
Mi, execute the Kleene iteration Q∗ in parallel with each method M , and check whether
the following inclusions holds:

Effects(M ‖ Q∗) ⊆ Effects(Q∗).

If this inclusion holds, Q∗ covers the actual interference all methods may cause. Hence,
our novel implementation of interfere(X) explores all possible interleavings. The cost
of the inclusion test is asymptotically covered by that of computing the fixed point, and
practically negligible. It can be checked in linear time (in the size of the fixed point) by
performing, for every view in X , a sequential step and testing whether the effect of the
step can be mimicked by the candidate summaries. It is worth pointing out the cyclic
nature of our reasoning: we use the candidate summaries to prove their own correctness.

Statelessness is an important aspect in the above process. It guarantees that the
sequential iteration of Q∗ explores the overall interference the methods of the data
structure cause. As we are interested in parametric verification, the overall interference
is, in fact, the one produced by an unbounded number of concurrent method invocations.
Hence, computing this interference using candidate summaries requires us to analyse
the program

∏∞
Q, which is a parallel composition of arbitrarily many Q instances.

However, statelessness guarantees that each of these instances executes atomically
without retaining any local state. While the atomicity ensures that the concurrent Q
instances cannot overlap, the absence of local state ensures that Q instances cannot
influence each other, even if executed consecutively by the same thread. Hence, we can
use a single thread executing the iteration Q∗ in order to explore the interference caused
by
∏∞

Q. This justifies the usage of Q∗ for the effect coverage above. The check for

4 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

statelessness is similar to the one of effect coverage. If both tests succeed, the analysis
information is guaranteed to be sound.

Overview of the approach, its advantages, and experimental evaluation. Overall,
our thread-modular analysis proceeds as follows. We employ the CAS block heuristic to
compute candidate summaries. We use these candidates to determine the interferences in
the fixed-point computation. Once the fixed point has been obtained, we check whether
the candidates are valid summaries. If so, the fixed point contains sound information,
and can be used for verification (or, an on-the-fly computed verification result can be
used). Otherwise, verification fails. Currently, we do not have a refinement loop because
it was not needed in our experiments.

Our method overcomes the limitations of the previous approaches as follows. The
summary program, Q, is quadratic in the syntactic size of the program—not in the size
of the fixed point. The interference step executes the summary on all views in the current
set X , which means an effort linear rather than quadratic in the fixed-point approximant.
Moreover, Q is often acyclic and hence needs linear time to execute, as opposed to the
worst case exponential merge or match. In our benchmarks, we needed at most 5 very
short summaries, usually around 3–5 lines of code each. The computation of candidate
summaries (based on cheap and standard static analyses) and their check for validity are
separated from the fixed point, and the cost of both operations is negligible. We stress
that our fixed point as well as the validity check do not rely on the actual algorithm used
to compute the summary.

We implemented our thread-modular analysis with effect summaries on top of our
state-of-the-art tool [14] based on thread-modular reasoning with merge-and-project.
We applied the implementation to verify linearizability in a number of concurrent list
implementations. Compared to [14], we obtain a speed-up of two orders of magnitude.
Moreover, we managed to infer stateless effect summaries for all our case studies except
the DGLM queue [8] under explicit memory management (where one needs to go beyond
statelessness). However, we are not aware of any automatic approach that would be able
to verify linearizability of this algorithm.

2 Effect Summaries on an Example
The main complication for writing lock-free algorithms is to guarantee robustness
under interleavings. The key idea to tackle this issue is to use a specific update pattern,
namely the CAS-blocks discussed in Section 1. We now show how CAS blocks are
employed in Treiber’s lock-free stack implementation under garbage collection, the
code of which is given in Listing 1. The push method implements a CAS block by:
(1) copying the top of stack pointer, top=ToS, (2) linking the node to be inserted to
the current top of stack, node.next=top, and (3) making node the new top of stack
in case no other thread changed the shared state, CAS(ToS,top,node). Similarly, pop
proceeds by: (1) copying the top of stack pointer, top=ToS, (2) querying its successor,
next=top.next, and (3) swinging ToS to that successor in case the stack did not
change, CAS(ToS,top,next).

Following the CAS-block idiom, the only statements modifying the shared heap in
Treiber’s stack are the CAS operations. Hence, we identify three types of effects on
the shared heap. First, a successful CAS in push makes ToS point to a newly allocated

Effect Summaries for Thread-Modular Analysis 5

struct Node { data_t data; Node next; }
shared Node ToS;

void push(data_t in) {
Node node = new Node(in);
while (true) {

Node top = ToS;
node.next = top;
if(CAS(ToS, top, node)){
return;

} } }

S1: atomic {
/* push */
Node node = new Node(*);
node.next = ToS;
ToS = node;

}

bool pop(data_t& out) {
while (true) {
Node top = ToS;
if(top == NULL){
return false;

}
Node next = top.next;
if(CAS(ToS, top, next)){
out = top.data;
return true;

} } }

S2: atomic {
/* pop */
assume(ToS != NULL);
ToS = ToS.next;

}
S3: atomic { /* skip */ }

Listing 1. Pseudo code of the Treiber’s lock-free stack [31] and its effect summaries.

cell that, in turn, points to the previous value of ToS. Second, a successful CAS in
pop moves ToS to its successor ToS.next. Since we assume garbage collection, the
removed element is not freed but remains in the shared heap until collected. Third, the
effect of any other statement on the shared heap is the identity.

With the effects of Treiber’s stack identified, we can turn towards finding an approxi-
mation. For that, consider the program fragments from Listing 1: S1 covers the effects
of the CAS in push, S2 covers the effects of the CAS in pop, and, lastly, S3 produces
the identity-effect covering all remaining statements. Then, the summary program is
Q = S1⊕ S2⊕ S3.

To obtain the non-trivial summaries S1 and S2, it suffices to concentrate on the
block of code between the top=ToS assignment and the subsequent CAS(ToS,top,_)
statement. Without going into details (which will be provided in Section 5), the sum-
maries result from considering the code between the two statements atomic, performing
simplification of the code under this atomicity assumption, and including some purely
local initialization and finalization code (such as the allocation in the push method).

3 Programming Model
A concurrent program P is a parallel composition of threads T . The threads are while-
programs formed using sequential composition, non-deterministic choice, loops, atomic
blocks, skip, and primitive commands. The syntax is as follows:

P ::= T
∣∣ P ‖P T ::= T1;T2

∣∣ T1 ⊕ T2

∣∣ T ∗ ∣∣ atomic T ∣∣ skip ∣∣ C .

We use Thrd for the set of all threads. We also write P ∗ to mean a program P with the
Kleene star applied to all threads. The syntax and semantics of the commands in C are
orthogonal to our development. We comment on the assumptions we need in a moment.

We assume programs whose threads implement methods from the interface of the
lock-free data structure which is to be verified. The fact that, at runtime, we may find an
arbitrary (finite) number of instances of each of the threads corresponds to an arbitrary
number of concurrent method invocations. The verification task is then formulated as
proving a designated shared heap unreachable in all instantiations of the program. Since
thread-modular analyses simultaneously reason over all instantiations of the program, we

6 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

refrain from making this parameterization more explicit. Instead, we consider program
instances simply as programs with more copies of the same threads.

We model heaps as partial and finite functions h:Var ∪N 9 N. Hence, we do not
distinguish between the stack and the heap, and let the heap provide valuations for both
the program variables from Var and the memory cells from N. We use H for the set
of all heaps. Initially, the heap is empty, denoted by emp with dom(emp) = ∅. We
write ⊥ if a partial function is undefined for an argument: h(e) = ⊥ if e 6∈ dom(h).

We assume each thread has an identifier from Tid ⊆ N. A program state is a pair
(s, cf) where s ∈ H is the shared heap and cf : Tid → Thrd ×H maps the thread
identifiers to thread configurations. A thread configuration is of the form (T, o) with
T ∈ Thrd and o ∈ H being a heap owned by T . If cf = {i→ (T, o)} contains a single
mapping, we write simply (s, (T, o)).

Our development crucially relies on having a notion of separation between the shared
heap s and the owned heap o of a thread T . However, the actual definitions of what
is owned and what shared are a parameter to our development. We just require the
separation to respect disjointness of the shared and owned heaps and to be defined such
that it is preserved across execution of program statements. The latter is formalized below
in Assumption 1. To render disjointness formally, we say that a state (s, cf) is separated,
denoted by separate(s, cf), if, for every i1, i2 ∈ dom(cf) with cf (ij) = (Tij , oij) and
i1 6= i2, we have dom(s) ∩ dom(oij) ∩ N = ∅ and dom(oi1) ∩ dom(oi2) ∩ N = ∅.
Note that, in order to allow for thread-local variables, the heaps need to be disjoint only
on memory cells (but not on variables), thus the additional intersection with N.

We use → to denote program steps. The sequential semantics of threads is as
expected for sequential composition, choice, loops, and skip. An atomic block atomic T
summarizes a computation of the underlying thread T into a single program step. The
semantics of primitive commands depends on the actual set C . We do not make it precise
but require it to preserve separation in the following sense.

Assumption 1. For every step (s, (T, o))→ (s′, (T ′, o′)) with separate(s, (T, o)),
we have separate(s′, (T ′, o′)).

The semantics of a concurrent program incorporates the requirement for separation
into its transition rule. A thread may only update the shared heap and those parts of
the heap it owns. No other parts can be modified. Therefore, we let threads execute in
isolation and ensure that the combined resulting state is separated:

(s, cf (i))→ (s′, cf ′′) cf ′ = cf [i→ cf ′′] separate(s′, cf ′)
(PAR)

(s, cf)→ (s′, cf ′)

Although a precise notion of separation is not needed for the development of our
approach in Section 4, we give, for illustration, the notion we use in our implementation
and experiments. In the case of garbage collection (like in Java), the owned heap of a
thread includes, as usual, its local variables and cells accessible from these variables,
which were allocated by the thread but never made accessible through the shared vari-
ables. The shared heap then contains the shared variables, all cells that were once made
accessible from them, as well as cells waiting for garbage collection. For the case of
explicit memory management, we need a more complicated mechanism of ownership

Effect Summaries for Thread-Modular Analysis 7

transfer where a shared cell can become owned again. We propose such a mechanism in
Section 6.

We assume the computation of the program under scrutiny to start from an initial
state initP = (sinit , cf init,P) where sinit is the result of an initialization procedure.
The initial thread configurations, denoted by cf init,T , are of the form (T, emp). The
initialization procedure is assumed to be part of the input program. We are interested in
the shared heaps reachable by program P from its initial state:

SH (P) := {s | ∃ cf . initP →∗ (s, cf)}.

In what follows, we assume that the correctness of a program P can be read of its
reachable shared heaps, SH (P). For this, some instrumentation of P might be needed.
Such instrumentations are possible for a variety of properties. In particular, the instru-
mentation with observer automata from Section 1 allows one to check for linearizability.

4 Interference via Summaries

We now present our new approach to computing the effect of thread interference steps
on the shared heap (corresponding to evaluating the expression interfere(X) from
Section 1 for a set of views X) in a way which is suitable for concurrency libraries.
In particular, we introduce a notion of a stateless effect summary Q: a program whose
repeated execution is able to produce all the effects on the shared heap that the program
under scrutiny, P , can produce. With a stateless effect summary Q at hand, one can
compute interfere(X) by repeatedly applying Q on the views in X until a fixed point is
reached. Here, statelessness assures that Q is applicable repeatedly without any need to
track its local state.

Later, in Section 5, we provide a heuristic for deriving candidates for stateless effect
summaries. Though our experiments show that the heuristic we propose is very effective
in practice, the candidate summary that it produces is not guaranteed to be an effect
summary, i.e., it is not guaranteed to produce all the effects on the shared heap that P
can produce. A candidate summary which is not an effect summary is called unsound.
To guarantee soundness of our approach even when the obtained candidate summary is
unsound, we provide a test of soundness of candidate summaries. Interestingly, as we
prove, it is the case that even (potentially) unsound candidate summaries can be used to
check their own soundness—although this step appears to be cyclic reasoning.

4.1 Stateless Effect Summaries

We start by formalizing the notion of statelessness. Intuitively, a thread is stateless if
it terminates after a single step and disposes its local heap. Formally, we say that a
thread T of a program Q is stateless if, for all reachable shared heaps s ∈ SH (Q∗) and
all transitions (s, cf init,T)→ (s′, cf), we have cf = (skip, emp). A program Q is
stateless if so are all its threads. Note that statelessness should hold from all reachable
shared heaps rather than from just all heaps. While an atomic execution to skip would
be easy to achieve from all heaps, a clean-up yielding emp can only be achieved if we
have control over the thread-local heap. Also note that statelessness basically requires a
thread to consist of a top-level atomic block to ensure termination in a single step.

8 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

For an example, consider the summary S1 of push in Treiber’s stack from Listing 1. It
is stateless because (1) the top-level atomic block ensures execution in a single step, and
(2) the allocated node is published, i.e., moved from the owned heap to the shared heap.

Next, we define the effects of a program P , denoted by EF (P) ⊆ H×H, to be
the set EF (P) = {(s, s′) | initP →∗ (s, cf)→ (s′, cf ′)}. This set generalizes the
reachable shared heaps, SH (P): it contains all atomic (single-step) updates P performs
on the heaps from SH (P).

In Treiber’s stack, as discussed in Section 2, the updates performed by the CAS
statements are effects. The remaining statements also yield effects. However, since they
do not modify the shared heap, they produce the identity effect.

Altogether, a program Q is a (stateless) effect summary of P if it is stateless and
EF (T ‖Q∗) ⊆ EF (Q∗) holds for all threads T ∈ P . We refer to this inclusion as the
effect inclusion. Intuitively, it states that Q∗ subsumes all the effects T may have under
interference with Q∗. The lemma below shows that the effect inclusion can be used to
check whether a candidate summary is indeed an effect summary. Moreover, the check
can deal with the different threads separately.

Lemma 1. If Q is stateless and EF (T ‖Q∗) ⊆ EF (Q∗) holds for all T ∈ P, then we
have EF (P) ⊆ EF (P ‖Q∗) ⊆ EF (Q∗).

In what follows, we describe our novel thread-modular analysis based on effect
summaries. We assume that, in addition to the program P under scrutiny, we have
a program Q which is a candidate for being a summary of P (obtained, e.g., by the
heuristic that we provide in Section 5). In Section 4.2, we first provide a fixed-point
computation where the interference step is implemented by a repeated application of the
candidate summary Q. We show that if the candidate summary Q is an effect summary,
then the fixed point we compute is a conservative over-approximation of the reachable
shared heaps of P . Next, in Section 4.3, we show that the fact whether or not Q is indeed
an effect summary of P can be checked efficiently on top of the computed fixed point
(even though the fixed point need not over-approximate the reachable shared heaps of P).

In the case that the test of Section 4.3 fails, Q is not an effect summary of P , and our
verification fails with no definite answer. As future work, one could think of proposing
ways of patching the summaries based on feedback from the failed test. Then, along the
lines of [5,6], the previously computed, unsound state space can be reused: one applies
the newly added summaries to the already explored states and continues with the analysis
afterwards. However, in our experiments, using the heuristic computation of candidate
summaries proposed in Section 5, this situation has not happened for any program where
a stateless effect summary exists. In the only experiment where our approach failed (the
DGLM queue under explicit memory management, which has not been verified by any
other fully automatic tool), the notion of stateless effect summaries itself is not strong
enough. Hence, a perhaps more interesting question for future work is how to further
generalize the notion of effect summaries.

4.2 Summaries in the Fixed-Point Computation

To explore the reachable shared heaps of a program P , we suggest a thread-modular
analysis which explores the reachable states of the threads T ∈ P in isolation. To account

Effect Summaries for Thread-Modular Analysis 9

for the possible thread interleavings of the original program, we apply interference steps
to the threads T by executing the provided summary Q. Conceptually, this process
corresponds to exploring the state space of the two-thread programs T ‖Q∗ for all
syntactically different threads T ∈ P . Technically, we collect the reachable states of
those programs in the following least fixed point:

X0 = {(sinit , (T, emp)) | T ∈ P}
Xi+1 = Xi ∪ seq(Xi) ∪ interfere(Xi) .

Since Q∗ has no internal state, the analysis only keeps the thread-local configurations of
the threads T . Functions seq(·) and interfere(·) compute sequential steps (steps of T)
and interference steps (steps of Q∗), respectively, as follows:

seq(Xi) = {(s′, cf ′) | ∃ (s, cf) ∈ Xi. (s, cf)→ (s′, cf ′)}
interfere(Xi) = {(s′, cf) | separate(s′, cf) ∧ ∃ s, cf ′.

(s, cf) ∈ Xi ∧ (s, cf init,Q)→ (s′, cf ′)} .

Function seq(Xi) is standard. For interfere(Xi) we apply Q to each configuration
(s, cf) ∈ Xi by letting it start from the shared heap s and its initial thread-local
configuration cf init,Q. Then we extract the updated shared heap, s′, resulting in the post
configuration (s′, cf). Altogether, this procedure applies to the views in Xi the shared
heap updates dictated by Q. The thread-local configurations, cf , of threads T are not
changed by interference. This locality follows from the separation.

The following lemma states that the set of shared heaps collected from the above
fixed point is indeed the set of reachable shared heaps of all T ‖Q∗. Let Xk be the fixed
point and defineR = {s | ∃cf . (s, cf) ∈ Xk}.

Lemma 2. If Q is a summary of P , thenR =
⋃

T∈P SH (T ‖Q∗).

With the state space exploration in place, we can turn towards a soundness result
of our method: given an appropriate summary Q, the fixed-point computation over-
approximates the reachable shared heaps of P .

Theorem 1. If Q is a summary of P , then we have SH (P) ⊆ SH (Q∗) = R.

The rationale behind the theorem is as follows. Relying on Q being a summary of P
provides the effect inclusion. So, Lemma 1 yields EF (P ‖Q∗) ⊆ EF (Q∗). From the
definition of effects we can then conclude SH (P ‖Q∗) ⊆ SH (Q∗). Thus, we have
SH (P) ⊆ SH (Q∗) because SH (P) ⊆ SH (P ‖Q∗) is always true. This shows the first
inclusion. Similarly, the effect inclusion gives SH (T ‖Q∗) ⊆ SH (Q∗) by the definition
of reachability. Hence, we conclude using Lemma 2.

4.3 Soundness of Summarization

Soundness of our method, as stated by Theorem 1 above, is conditioned by Q being a
summary of P . In our framework, Q is heuristically constructed and there is no guarantee
that it really summarizes P . Hence, for our analysis to be sound, we have to check
summarization; we have to establish (1) the effect inclusion, and (2) statelessness of Q.

10 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

To that end, we check that (1) every update T performs on the shared heap in the
system T ‖Q∗ can be mimicked by Q, and that (2) every execution of Q terminates in a
single step and does not retain persistent local state. We implement those checks on top
of the fixed point, Xk, as follows:

∀ (s, cf) ∈ Xk ∀ s′, cf ′, i ∃cf ′′.

(s, cf)→ (s′, cf ′) =⇒ (s, cf init,Q)→ (s′, cf ′′) ∧ (CHK-MIMIC)

(s, cf init,Q(i))→ (s′, cf ′) =⇒ cf ′ = (skip, emp) (CHK-STATELESS)

The above properties indeed capture our intuition. The former, (CHK-MIMIC), states
that, for every explored T -step of the form (s, cf)→ (s′, cf ′), the effect (s, s′) is
also an effect of Q. That is, executing Q starting from s yields s′. This establishes the
effect inclusion as required by Lemma 1. The latter check, (CHK-STATELESS), states
that every thread of Q must terminate in a single step and dispose its owned heap.
This constraint is relaxed to those shared heaps which have been explored during the
fixed-point computation. That is, it ensures statelessness of Q on all heaps fromR. The
key aspect is to guarantee that R includes SH (Q∗) as required by the definition. We
show that this inclusion follows from the check.

The above checks rely on the fixed point, which, in turn, is computed using the
candidate summary Q. That is, we use Q to prove its own correctness. Nevertheless, our
development results in a sound analysis as stated by the following theorem.

Theorem 2. The fixed point Xk satisfies (CHK-MIMIC) and (CHK-STATELESS) if and
only if Q is a summary of P .

5 Computing Effect Summaries

We now provide our heuristic for computing effect summaries. It is based on CAS blocks
between an assignment t=T, denoted as checked assignment, and a CAS statement
CAS(T,t,x), denoted as checking CAS below. Since we compute a summary for each
such block, the number of summaries is at most quadratic in the size of the input.

In what follows, consider some method M given by its control-flow graph (CFG)
G = (V,E, vinit , vfinal). The CFG has a unique initial and a unique final state, which
we will use in our construction. Return commands are assumed to lead to the final
state. As we are only interested in the effect on the shared heap, we drop return values
from return commands. Likewise, we skip assignments to output parameters unless they
are important for the flow of control in M . We assume the summaries to execute with
non-deterministic input values, and so we replace every input parameter with a symbolic
value ∗. Conditionals, loops, and CAS commands are represented by two edges, for the
successful and failing execution, respectively. Let easgn := (vasgns , t=T, vasgnt) be the
CFG edge of the checked assignment, and let the successful branch of the checking CAS
be ecas := (vcas , CAS(T,t,x), vcassuc). Next, let easgn′ := (vasgns , t=T, vasgnt′) be
a copy of the checked assignment to be used as the beginning of the CAS block, and let
ecas′ := (vcas , CAS(T,t,x), vcassuc′) be a copy of the checking CAS to be used as the
end of the CAS block. Here, vasgnt′ and vcassuc′ are fresh nodes.

Effect Summaries for Thread-Modular Analysis 11

To give a concise description of effect summaries, the following shortcuts will be
helpful. We write rand(G) for the CFG obtained from G by replacing each occurrence of
a shared variable by a non-deterministic value ∗. By G− S, we mean the CFG obtained
from G by dropping all edges carrying commands from the set S. Given nodes v1 and
v2, we denote by G(v1, v2) the CFG obtained from G by making v1/v2 the initial/final
node, respectively. Given two CFGs G and G′, we define G;G′ as their disjoint union
where the single final state of G is merged with the single initial state of G′. Finally, we
allow compositions e;G and G; e of a CFG G with a single edge e, by viewing e as a
CFG consisting of a single edge with the initial/final nodes being the initial/final nodes
of e, respectively.

The construction of the summary proceeds in two steps. First we identify the CAS
block and create the control-flow structure, then we clean it up using data flow analysis
and generate the final code of the summary. Note that the clean-up step is optional but
generates a concise form beneficial for verification.

Step 1: Control-flow structure. A summary consists of an initialization phase, followed
by the CAS block, and a finalization phase. The first step results in the CFG

Ginit ;Gblock ;Gfinal .

The guiding theme of the construction is to preserve all sequences of commands that
may lead through the CAS block.

In the initialization phase, which is intended for purely local initialization, the method
is assumed to be interrupted by other threads in the sense that the values of shared pointers
may spontaneously change. Therefore, we replace all dependencies on shared variables
by non-deterministic assignments. Moreover, all return commands are removed since
we have not yet passed the CAS block. Eventually, when arriving at the vasgns location,
the summary non-deterministically guesses that the CAS block should begin, and so the
control is transferred to it via the easgn′ edge. Hence, the initialization is:

Ginit := (rand(G)− {return})(vinit , vasgns) .

The CAS block begins with the easgn′ edge, i.e., with the checked assignment, and
ends with the ecas′ edge, i.e., the checking CAS statement. From the CAS block, we
remove all control-flow edges with assignments t=T as we fixed the checked assignment
when entering the CAS block (other assignments of the form t=T, if present, will give
rise to other CAS blocks; and a repeated execution of the same checked assignment
then corresponds to a repeated execution of the summary). We also remove the return
commands as the finalization potentially still has to free owned heap. Failing executions
of the checking CAS do not leave the CAS block (and typically get stuck due to the
removed checked assignments). Successful executions may leave the CAS block, but
do not have to. Eventually, the summary guesses the last successful execution of the
checking CAS and enters the finalization phase. Hence, we get the following code:

Gblock := easgn′ ; ((G− {return, t=T})(vasgnt , vcas)); ecas′ .

Sometimes, the checked assignment can use local variables assigned prior to the
checked assignment. In such a case, we add edges with these assignments before the

12 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

// Initialization
while (true) {

if (*) goto L1;
Node top=*;
if (top==NULL){

STOP;
}
Node next=top.next;
if(CAS(*,top,next)){

out=top.data;
STOP;

}
}
STOP;

// CAS block
L1:Node top=ToS;
goto L2;
while (true) {
STOP;
L2:if(top==NULL){
STOP;

}
Node next=top.next;
if(*) goto L3;
if(CAS(ToS,top,next)){
out=top.data;
STOP;

}
}
STOP;
L3:if(CAS(ToS,top,next))

goto L4;

// Finalization
while (true) {
Node top=*;
if(top==NULL){
return;

}
Node next=top.next;
if(CAS(*,top,next)){
L4:out=top.data;
return;

}
}

Figure 1. Step 1 in the summary computation for the pop method in Treiber’s stack.

easgn′ edge. This happens, e.g., in the enqueue procedure of Michael&Scott’s lock-
free queue where the sequence tail=Tail;next=tail.next is used. If the checked
assignment is next=tail.next, we start Gblock with edges containing tail=Tail

and next=tail.next.
The finalization phase, again, cannot rely on shared variables. However, here, we

preserve the return statements to terminate the execution:

Gfinal := rand(G)(vcassuc , vfinal) .

Figure 1 illustrates the construction on the pop method in Treiber’s stack. Instead
of a CFG, we give the source code. STOP represents deleted edges and the fact that we
cannot move from one phase to another not using the new edges.

Step 2: Cleaning-up and summary generation. We perform copy propagation using
a must analysis that propagates an assignment y=x to subsequent assignments z=y,
resulting in z=x. That it is a must analysis means the propagation is done only if z=y
definitely has to use the value of y that stems from the assignment y=x. Moreover, we
perform the copy propagation assuming that the entire summary executes atomically.
For the initialization phase, the result is that the non-deterministic values for shared
variables propagate through the code. Similarly, for the CAS block, the shared variables
themselves propagate through the code. For the finalization phase, non-deterministic
values propagate only in the case when a local variable does not receive its value from
the CAS block. As a result, after the copy propagation, the CAS and the finalization
block may contain conditionals that are constantly true or constantly false. We replace
those that evaluate to true by skip and remove the edges that evaluate to false. The result
of the copy propagation is illustrated in Figure 2.

Subsequently, we perform a live variables analysis. A variable is live if it may
occur in a subsequent conditional or on the right-hand side of a subsequent assignment.
Otherwise, it is dead. We remove all assignments to dead variables including output
parameters. In our running example, all assignments to local variables as well as to the
output parameter can be removed.

Effect Summaries for Thread-Modular Analysis 13

// Initialization
while (true) {

if (*) goto L1;
Node top=*;
if(*){

STOP;
}
Node next=*;
if(*){

out=*;
STOP;

}
}
STOP;

// CAS block
L1:Node top=ToS;

goto L2;
while (true) {
STOP;
L2:if(ToS==NULL){
STOP;

}
Node next=ToS.next;
if(*) goto L3;
ToS=ToS.next;
out=ToS.data;
STOP;

}
STOP;
L3:if(CAS(ToS,ToS,ToS.next))

goto L4;

// Finalization
while (true) {
Node top=*;
if(*){
return;

}
Node next=*;
if(*){
L4:out=ToS.data;
return;

}
}

Figure 2. Copy propagation within the summary computation for pop in Treiber’s stack.

Next, we remove code that is unreachable, dead, or useless. Unreachable code can
appear due to the modifications of the CFG. Dead code does not lead to the final location.
Useless code does not have any impact on the values of the variables used, which can
concern even (possibly infinite) useless loops.

Finally, the resulting code is wrapped into an atomic block, and conditionals are
replaced by assume statements. For the pop method in Treiber’s stack, we get the
summary S2 given in Listing 1.

6 Generalization to Explicit Memory Management
We now generalize our approach to explicit memory management. The problem is that
the separation between the shared and owned heap is difficult to define and establish
in this case. Ownership as understood in garbage collection, where no other thread can
access a cell that was allocated by a thread but not made shared, does not exist any more.
Memory can be freed and reallocated, with other threads still holding (dangling) pointers
to it. These threads can read and modify that memory, hence the allocating thread does
not have strong guarantees of exclusivity. However, programmers usually try to prevent
effects of accidental reallocations: threads are designed to respect ownership. That is, a
thread should be allowed to execute as if it had exclusive access to the memory it owns.

Our development is parameterized by a notion of separation between the shared and
owned heap. To generalize the results, we provide a new notion of ownership suitable
for explicit memory management. However, the new notion is not guaranteed to be
preserved by the semantics. Instead, we include into our fixed-point computation a check
that the program respects this ownership, and give up the analysis if the check fails.

To understand how the heap separation is influenced by basic pointer manipulations,
we consider the following set of commands C :

x = malloc, x = free, x = y, x = y.sel i, x.sel i = y .

Here, x, y are program variables and sel0, . . . , seln are selectors, from which the first,
say m, are pointer selectors and the rest are data selectors. Command x = malloc

allocates a record, a free block of addresses a+ 0, . . . , a+ n, and sets h(x) to a. Com-
mand x = free frees the record h(x) + 0, . . . , h(x) + n. Selectors correspond to field
accesses: x.sel i refers to the content of a+ i if x points to a. The remaining commands
have the expected meaning.

14 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

6.1 Heap Separation
We work with a three-way partitioning of the heap into shared, owned, and free addresses.
Free are all addresses that are fresh or have been freed and not reallocated. Shared is
every address that is reachable from the shared variables and not free. The reachability
predicate, however, requires care. First, we must obviously generalize reachability from
the first memory cell of a record to the whole record. Second, we must not use undefined
pointers for reachability. A pointer is undefined if it was propagated from uninitialized
or uncontrolled memory. Letting the shared heap propagate through such values would
make it possible for the entire allocated heap to be shared (since undefined pointers can
have an arbitrary value). Then, owned is the memory which is not shared nor free. The
owned memory is partitioned into disjoint blocks that are owned by individual threads.
A thread gains ownership by moving memory into the owned part, and loses it when
the memory is removed from the owned part. The actions by which a thread can gain
ownership are (1) allocation and (2) breaking reachability from shared variables by an
update of a pointer or a shared variable (ownership transfer). An ownership violation is
then a modification of a thread’s owned memory by another thread. This can in particular
be (1) freeing or publishing the owned memory or (2) an update of a pointer therein. A
program respects ownership if it cannot reach an ownership violation.

Let us discuss these concepts formally. We use ⊥ to identify free cells. That is, in a
heap h address a is free if h(a) = ⊥ (also written a /∈dom(h)). A record is free if so
are all its cells. Consequently, the free command sets all cells of a record to ⊥. The
shared heap is identified by reachability through defined pointers starting from the shared
variables. For undefined pointers we use the symbolic value udef. Initially, all variables
are undefined. Moreover, we let allocations initialize the selectors of records to udef.
We use a value distinct from ⊥ to detect ownership violations by checking whether ⊥
is reachable from the shared heap (see below). Value udef is explicitly allowed to be
reachable (this may be needed for list implementations where selectors of sentinel nodes
are not initialized). Let Ptrs be the shared pointer variables. Then, the addresses of
the shared records in a heap h, denoted by records(h) ⊆ N∪{⊥}, are collected by the
following fixed point (where the address of a record is its lowest address):

S0 = {a | ∃x ∈ Ptrs . h(x) = a 6= udef}
Si+1 = {b | ∃ a∈Si ∃ k. a 6= ⊥ ∧ 0 ≤ k < m ∧ h(a+ k) = b 6= udef}

All addresses within the shared records are shared. The remaining cells, i.e., those that
are neither free nor shared, are owned. This definition establishes a sufficient separation
for Assumption 1. It is automatically lifted to the concurrent setting by Rule (PAR)
following the intuition from above.

It remains to detect ownership violations, which occur whenever a thread modifies
cells owned by other threads. Due to the separation integrated into Rule (PAR), threads
execute with only the shared heap and their owned heap being visible. The remainder
of the heap is cut away. By choice of ⊥ to identify free cells, the cut away part appears
free to the acting thread. In particular, the parts owned by other threads appear free.
Hence, in order to avoid ownership violations, a thread must not modify free cells. To
that end, an ownership violation occurs if (A) a free cell is freed again, (B) a free cell is
written to, or (C) a free cell is published to the shared heap. For (A) and (B) we extend

Effect Summaries for Thread-Modular Analysis 15

the semantics of commands to raise an ownership violation if a free cell is manipulated.
For (C) we check for every program step whether it results in a shared heap where ⊥ is
made reachable.

Formally, we have the following rules.

∃ sel . (s] o)(x).sel /∈ dom(s] o)
(A)

(s, (x = free, o))→ violation

(s] o)(x).sel /∈ dom(s] o)
(B)

(s, (x.sel = y, o))→ violation

(s, cf)→ (s′, cf ′) ⊥ ∈ records(s′)
(C)

(s, cf)→ violation

Note that reading out free cells is allowed by the above rules. This is necessary because
lock-free algorithms typically perform speculating reads and check only later whether
the result of the read is safe to use. Moreover, note that our detection of ownership
violations can yield false-positives. A cell may not be owned, yet an ownership violation
is raised because it appears free to the thread. We argue that such false-positives are
desired as they access truly free memory. Put differently: an ownership violation detected
by the above rules is either indeed an ownership violation or an unsafe access of free
memory, that is, a bug.

6.2 Ownership Transfer
The above separation is different from the one used under garbage collection in the
earlier sections. When an address becomes unreachable from the shared variables, it
is transferred into the acting thread’s owned heap (although other threads may still
have pointers to it). We introduce this ownership transfer to simplify the construction of
summaries. The idea is best understood on an example.

Under explicit memory management, threads free cells that they made unreachable
from the shared variables to avoid memory leaks. Consider, for example, the method
pop in Treiber’s stack (Listing 1). There, a thread updates the ToS variable making the
former top of stack, say a, unreachable from the shared heap. In the version for explicit
memory management, a is then freed before returning. If ownership was not transferred
and address a stayed shared, then two summaries would be needed: one for the update
of ToS and one for freeing a. However, a stateless version of the latter summary could
not learn which address to free since it starts with the empty local heap and with a
unreachable from the shared heap. If, on the other hand, ownership of a is transferred
to the acting thread, then the former summary can include freeing a (which does not
change the shared heap). Moreover, it is even forced to free a in order to remain stateless
since a would otherwise persist in its owned heap.

We stress that our framework can be instantiated with other notions of separation,
like an analogue of the one for garbage collection or the one of [14], which both do not
have ownership transfer. This would complicate the reasoning in Section 4, but could
lead to a more robust analysis (ownership transfer is prone to ownership violations).

6.3 ABA Prevention
Additionally, synchronization mechanisms can be incorporated into our approach. For
instance, lock-free data structures may use version counters to prevent the ABA prob-
lem [23]: a variable leaves and returns to the same address, and an observer incorrectly

16 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

Program Thread-Modular [14] Thread Summaries

Coarse stack GC 0.29s / 343 0.03s / 256
MM 1.89s / 1287 0.19s / 1470

Coarse queue GC 0.49 / 343 0.05s / 256
MM 2.34s / 1059 0.98s / 2843

Treiber’s stack [31] GC 1.99s / 651 0.06s / 458
MM 25.5s / 3175 1.64s / 2926

Michael&Scott’s queue [23] GC 11.0s / 1530 0.39s / 1552
MM 11700s / 19742 102s / 27087

DGLM queue [8] GC 9.56s / 1537 0.37s / 1559
MM unsafe (spurious) violation

Table 1. Experimental results: a speed-up of up to two orders of magnitude.

concludes that the variable has never changed. A well-known scenario of this type causes
stack corruption in a naive extension of Treiber’s stack to explicit memory manage-
ment [23]. To give the observer a means of detecting that a variable has been changed,
pointers are associated with a counter that increases with every update.

In our analysis, such version counters must be persistent in the shared memory.
Since this is an exception from the above definition of separation, a presence of version
counters must be indicated by the user (e.g., the user specifies that the version counter of
a pointer a is always stored at address a+1). The semantics is then adapted in such a way
that (1) version counters remain in the shared heap upon freeing, (2) are retained in case
of reallocations, and (3) are never transferred to a thread’s owned heap. The modifications
can be easily implemented, and are detailed in [16]. Last, the thread-modular abstraction
has to be adjusted since keeping all counters ever allocated in every thread view is not
feasible. One solution is to remember only the values of those counters that are attached
to the allocated shared and the thread’s own heap.

7 Experiments and Discussion
To substantiate our claim for practical benefits of the proposed method, we implemented
the techniques from Sections 4 and 6.4 Therefore, we modified our previous linearizabil-
ity checker [14] to perform our novel fixed-point computation. The modifications were
straightforward leveraging the existing infrastructure.

Our findings are listed in Table 1. Experiments were conducted on an Intel Xeon E5-
2670 running at 2.60GHz. The table includes the running times (averaged over ten runs)
and the number of explored views (the size of set X from Section 1). Our benchmarks in-
clude well-known data structures such as Treiber’s lock-free stack [31], Michael&Scott’s
lock-free queue [23], and the lock-free DGLM queue [8]. We do not include lock-free
set implementations due to limitations of the tool in handling data—not due to limi-
tations of our approach. We ran each benchmark under garbage collection (GC), and
explicit memory management (MM) with version counters. Additionally, we include for
each benchmark a comparison between our novel fixed point using summaries and the
optimized version of the classical thread-modular fixed point from [14].

4 Available at: https://github.com/Wolff09/TMRexp/releases/SAS17/

https://github.com/Wolff09/TMRexp/releases/SAS17/

Effect Summaries for Thread-Modular Analysis 17

Our experiments show that summaries provide a significant performance boost com-
pared to classical interference. This holds true for both garbage collection and explicit
memory management. For garbage collection, we experience a speed-up of one order
of magnitude throughout the entire test suite. Although comparisons among different
implementations are inherently unfair, we note that our tool compares favorably to com-
petitors [2,3,33,34]. Under explicit memory management, the same speed-up is present
for simple algorithms, like Treiber’s stack. For slightly more complex implementations,
like Michael&Scott’s queue, we observe a more eminent speed-up of over two orders
of magnitude. This speed-up is present even though the analysis explores a way larger
search space than its classical counterpart. This confirms that our approach of reducing
the complexity of interference steps rather than reducing the search space is beneficial
for verification.

Unfortunately, we could not establish correctness of the DGLM queue under explicit
memory management with neither of the fixed points. For the classical one, the reason
was imprecision in the underlying shape analysis which resulted in spurious unsafe
memory accesses. For our novel fixed point, the tool detected an ownership violation
according to Section 6. While being correct, the DGLM queue indeed features such a
violation. The update pattern in the deque method can result in freeing nodes that were
made unreachable by other threads. The problematic scenario only occurs when the head
of the queue overtakes the tail. Despite the similarity, this behavior is not present in
Michael&Scott’s queue which is why it does not suffer from such a violation.

As hinted in Section 6, one could generalize our theory in such a way that no owner-
ship transfer is required. Without ownership transfer, however, freeing cells becomes an
effect of the shared heap which cannot be mimicked: a stateless summary cannot acquire
a pointer to an unreachable cell and thus not mimic the free. Consequently, one has to
relax the assumption of statelessness. This inflicts major changes on the fixed point from
Section 4. Besides program threads, it would need to include threads executing stateful
summaries. Moreover, one would need to reintroduce interference steps. However, only
such interference steps are required where stateful summaries appear as the interfering
thread. Hence, the number of interference steps is expected to be significantly lower
than for ordinary interference. We consider a proper investigation of these issues an
interesting subject for future work.

8 Related Work
We already commented on the two approaches of computing interference steps. The
merge-and-project approach [4,11,19,22] suffers form low scalability and precision
due to computing too many merge-compatible heaps. To improve precision of interfer-
ence, works like [12,30,34] track additional thread correlations; ownership, for instance.
However, keeping more information within thread states usually has a negative impact
on scalability. Moreover, for the programs of our interest, those techniques were not
applicable in the case of explicitly managed memory which does not provide exclusivity
guarantees. Instead, [4,2] proposed to maintain views of two threads, allowing one to
infer the context in which a views occurs. Since this again jeopardizes scalability, [14]
tailored ownership towards explicit memory management. Still, computing interference
remained quadratic in the size of the fixed point. Our approach improves dramatically
on the efficiency of [14] while keeping its precision.

18 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

The learning approach in [32,34,35] and [24,25,26] performs a variant of rely/guar-
antee reasoning [18] paired with symbolic execution and abstract interpretation, respec-
tively. In a fixed point, the interference produced by a thread is recorded and applied to
other threads in consecutive iterations. This computes a symbolic representation of the
inteference which is as precise as the underlying abstract domain (although the precision
may be relaxed by further abstraction and hand-crafted joins). Our method improves
on this in various aspects. First, we never compute the most precise interference infor-
mation. Our summaries can be understood as a form of interpolant between the most
precise approximation and the complement of the bad states. Second, our summaries
are syntactic objects (program code) which are independent of the actual verification
procedure and thus reusable. The learned interference may be reused only in the same
abstract domain it was computed in. Third, we show how to lift our approach to explicit
memory management what has not been done before. Fourth, our results are independent
of the actual program semantics relying only on a small core language. Our development
required to formulate the principles that libraries rely on (statelessness) which have not
been made explicit elsewhere.

Another approach to make the verification of low-level implementations tractable is
atomicity abstraction [1,10,9,20,28,27]. The core idea is to translate a given program into
its specification by introducing and enlarging atomic blocks. The code transformations
must be provably sound, with the soundness arguments oftentimes crafted for a particular
semantics only. While generating summaries is closely related to making the program
under scrutiny more atomic, we pursue a different approach. Our rewriting rules (i.e. the
computation of summaries) do not need to be, and indeed are not, provably sound, which
allows for much more freedom. Nevertheless, we guarantee a sound analysis. Our sanity
checks can be understood as an efficient, fully automatic procedure to check whether
or not the applied atomicity abstraction was sound. Additionally, we do not rely on a
particular memory semantics.

Simulation relations are widely used for linearizability proofs [8,9,29,36] and verified
compilation [17,21]. There, one establishes a simulation relation between a low-level
program and a high-level program stating that the latter preserves the behaviors of the
former. Verifying properties of the low-level program then reduces to verifying the same
property for the high-level program. Establishing simulation relations, however, suffers
from the same shortcomings as atomicity abstraction.

Finally, [13] introduces grace periods, an idiom similar to CAS blocks. It reflects
the protocol used by a program to prohibit data corruption. During a grace period, it
is guaranteed that a thread’s memory is not freed. However, no method for checking
conformance to such periods is given. That is, soundness of the analysis results cannot
be checked when relying on grace periods whereas our sanity checks can efficiently
detect unsound verification results.

9 Conclusion

We proposed a new approach for verifying lock-free data structures. The approach
builds on the so-called CAS blocks (or, more generally, copy-and-check code blocks)
which are commonly used when implementing lock-free data structures. We proposed a
heuristic that builds stateless program summaries from such blocks. By avoiding many

Effect Summaries for Thread-Modular Analysis 19

expensive merge-and-project operations, the approach can greatly increase the efficiency
of thread-modular verification. This was confirmed by our experimental results showing
that the implementation of our approach compares favorably with other competing tools.
Moreover, our approach naturally combines with recently proposed reasoning about
ownership to improve the precision of thread-modular reasoning, which allowed us to
handle complex lock-free code efficiently even under explicit memory management. Of
course, our heuristically computed stateless summaries can miss some reachable shared
heaps, but, as a major part of our contribution, we proved that one can check whether
this is the case on the generated state space. Hence, we can perform sound verification
using a potentially unsound abstraction.

In the future, we would like to investigate CEGAR to include missing effects into
our summaries. The main question here is how to refine the program code of a summary
using an abstract representation of the missing effects. Further, it may be necessary
to introduce stateful summaries in order to include certain effects, as revealed by the
DGLM queue under explicit memory management. Moreover, in theory, our approach
could increase not only efficiency but also precision compared with other approaches.
This is due to the atomicity of the CAS blocks that could rule out interleavings that
other approaches would explore. We have not found this confirmed in our experiments.
Nevertheless, we find it worth investigating the theoretical and practical aspects of this
matter in the future.

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. In: LICS. pp. 165–175. IEEE
(1988)

2. Abdulla, P.A., Haziza, F., Holík, L., Jonsson, B., Rezine, A.: An integrated specification and
verification technique for highly concurrent data structures. In: TACAS. LNCS, vol. 7795, pp.
324–338. Springer (2013)

3. Abdulla, P.A., Jonsson, B., Trinh, C.Q.: Automated verification of linearization policies. In:
SAS. LNCS, vol. 9837, pp. 61–83. Springer (2016)

4. Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, S.: Thread quantification for
concurrent shape analysis. In: CAV. LNCS, vol. 5123, pp. 399–413. Springer (2008)

5. Beyer, D., Henzinger, T.A., Keremoglu, M.E., Wendler, P.: Conditional model checking: a
technique to pass information between verifiers. In: SIGSOFT FSE. p. 57. ACM (2012)

6. Christakis, M., Wüstholz, V.: Bounded abstract interpretation. In: SAS. LNCS, vol. 9837, pp.
105–125. Springer (2016)

7. Cook, B., Haase, C., Ouaknine, J., Parkinson, M.J., Worrell, J.: Tractable reasoning in a
fragment of separation logic. In: CONCUR. LNCS, vol. 6901, pp. 235–249. Springer (2011)

8. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verification of a practical lock-free
queue algorithm. In: FORTE. LNCS, vol. 3235, pp. 97–114. Springer (2004)

9. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Simplifying linearizability proofs
with reduction and abstraction. In: TACAS. LNCS, vol. 6015, pp. 296–311. Springer (2010)

10. Elmas, T., Qadeer, S., Tasiran, S.: A calculus of atomic actions. In: POPL. pp. 2–15. ACM
(2009)

11. Flanagan, C., Qadeer, S.: Thread-modular model checking. In: SPIN. LNCS, vol. 2648, pp.
213–224. Springer (2003)

12. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis. In: PLDI. pp.
266–277. ACM (2007)

20 Lukáš Holík, Roland Meyer, Tomáš Vojnar, and Sebastian Wolff

13. Gotsman, A., Rinetzky, N., Yang, H.: Verifying concurrent memory reclamation algorithms
with grace. In: ESOP. LNCS, vol. 7792, pp. 249–269. Springer (2013)

14. Haziza, F., Holík, L., Meyer, R., Wolff, S.: Pointer race freedom. In: VMCAI. LNCS, vol.
9583, pp. 393–412. Springer (2016)

15. Herlihy, M., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. ACM
TOPLAS 12(3), 463–492 (1990)

16. Holík, L., Meyer, R., Vojnar, T., Wolff, S.: Effect summaries for thread-modular analysis.
CoRR abs/1705.03701 (2017), http://arxiv.org/abs/1705.03701

17. Jagannathan, S., Petri, G., Vitek, J., Pichardie, D., Laporte, V.: Atomicity refinement for
verified compilation. In: PLDI. p. 27. ACM (2014)

18. Jones, C.B.: Specification and design of (parallel) programs. In: IFIP. pp. 321–332 (1983)
19. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM

TOPLAS 5(4), 596–619 (1983)
20. Jonsson, B.: Using refinement calculus techniques to prove linearizability. Formal Asp.

Comput. 24(4-6), 537–554 (2012)
21. Leroy, X.: A formally verified compiler back-end. JAR 43(4), 363–446 (2009)
22. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-modular verification is cartesian abstract

interpretation. In: ICTAC. LNCS, vol. 4281, pp. 183–197. Springer (2006)
23. Michael, M.M., Scott, M.L.: Nonblocking algorithms and preemption-safe locking on multi-

programmed shared memory multiprocessors. JPDC 51(1), 1–26 (1998)
24. Miné, A.: Static analysis of run-time errors in embedded critical parallel C programs. In:

ESOP. LNCS, vol. 6602, pp. 398–418. Springer (2011)
25. Miné, A.: Relational thread-modular static value analysis by abstract interpretation. In: VM-

CAI. LNCS, vol. 8318, pp. 39–58. Springer (2014)
26. Monat, R., Miné, A.: Precise thread-modular abstract interpretation of concurrent programs

using relational interference abstractions. In: VMCAI. LNCS, vol. 10145, pp. 386–404.
Springer (2017)

27. Popeea, C., Rybalchenko, A., Wilhelm, A.: Reduction for compositional verification of
multi-threaded programs. In: FMCAD. pp. 187–194. IEEE (2014)

28. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: Tada: A logic for time and data abstraction.
In: ECOOP. LNCS, vol. 8586, pp. 207–231. Springer (2014)

29. Schellhorn, G., Derrick, J., Wehrheim, H.: A sound and complete proof technique for lineariz-
ability of concurrent data structures. ACM TOCL 15(4), 31:1–31:37 (2014)

30. Segalov, M., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv, M.: Abstract transformers
for thread correlation analysis. In: APLAS. LNCS, vol. 5904, pp. 30–46. Springer (2009)

31. Treiber, R.: Systems programming: coping with parallelism. Tech. Rep. RJ 5118, IBM (1986)
32. Vafeiadis, V.: Shape-value abstraction for verifying linearizability. In: VMCAI. LNCS, vol.

5403, pp. 335–348. Springer (2009)
33. Vafeiadis, V.: Automatically proving linearizability. In: CAV. LNCS, vol. 6174, pp. 450–464.

Springer (2010)
34. Vafeiadis, V.: RGSep action inference. In: VMCAI. LNCS, vol. 5944, pp. 345–361. Springer

(2010)
35. Vafeiadis, V., Parkinson, M.J.: A marriage of rely/guarantee and separation logic. In: CON-

CUR. LNCS, vol. 4703, pp. 256–271. Springer (2007)
36. Zhang, S.J., Liu, Y.: Model checking a lazy concurrent list-based set algorithm. In: SSIRI. pp.

43–52. IEEE (2010)

http://arxiv.org/abs/1705.03701

	Effect Summaries for Thread-Modular Analysis

