
Master’s Thesis

Lifetime Analysis for Whiley

Sebastian Schweizer
schweizer@cs.uni-kl.de

University of Kaiserslautern
Department of Computer Science

Master’s Course of Studies in Computer Science

30.05.2016

Examiner: Prof. Dr. Arnd Poetzsch-Heffter
Software Technology Group

mailto:schweizer@cs.uni-kl.de

Lifetime Analysis for Whiley

Abstract

Safety critical environments require high programming standards. Verification is a way to
prove absence of certain faults and to make sure that a program meets a given specification.
Unfortunately, most modern programming languages do not actively support verification.
External tools are necessary and there is no good integration with the development
process.
Whiley is a programming language that aims to popularize verification. Functions

can be annotated with pre- and postconditions and the compiler ships with a verifier
that ensures that the implementation satisfies the specification. Verification is automatic,
the programmer only needs to provide loop invariants. Verified Whiley programs are
guaranteed to be free of runtime failures like index-out-of-bounds access in arrays and
nullpointer dereferences.

Rust is a new programming language that aims to be fast and safe, and it is classified as
a systems programming language. Rust introduces a revolutionary concept of ownership
and lifetimes that allows for automatic and safe memory management without using
garbage collection. A lifetime roughly states how long a dynamically allocated portion
of memory can be used. Each allocation belongs to a unique owner, and as soon as the
owner’s lifetime ends the memory will be freed, without the need for garbage collection.
Memory safety is guaranteed by using static checks at compile time.

This thesis extends theWhiley programming language to introduce a concept of lifetimes
similar to Rust . But both programming languages have a different focus. We therefore
need to adapt the concept such that it fits Whiley ’s environment. Our extension involves
changes to the language syntax and several parts of the compiler and intermediate code
formats. A main challenge is the treatment of lifetimes for subtyping with recursive types
and in method invocations.
Whiley currently compiles to bytecode for the Java Virtual Machine (JVM), using its

garbage collector to deallocate memory. There is an experimental compiler for Whiley
that generates C code, but it is not yet able to deallocate dynamically allocated memory.
We show how the compiler can use lifetimes for memory management without garbage
collection, though the actual implementation for this part is left as future work. This
allows one to greatly improve the Whiley to C compiler, which is necessary to run Whiley
programs on embedded devices that do not have enough resources to execute the JVM.

i

Zusammenfassung

In sicherheitskritischen Umgebungen bedarf es hohen Programmierstandards. Verifikation
stellt sicher, dass bestimmte Laufzeitfehler nicht auftreten können und dass ein Programm
seine Spezifikation erfüllt. Leider bieten die meisten modernen Programmiersprachen
keine integrierte Unterstützung für Verifikation. Mit externen Werkzeugen können Pro-
gramme zwar verifiziert werden, aber sie bieten meist keine gute Integration in den
Entwicklungsprozess.
Whiley ist eine Programmiersprache die versucht, Verifikation beliebter zu machen.

Funktionen können mit Vor- und Nachbedingungen versehen werden. Der Übersetzer
verifiziert das Programm und stellt dabei sicher, dass die Implementierung diese Spezifika-
tionen erfüllt. Verifikation ist automatisiert, der Programmierer muss lediglich Invarianten
für Schleifen angeben. Verifizierte Whiley Programme enthalten zudem keine Laufzeit-
fehler wie Zugriffe außerhalb der Indexgrenzen von Arrays oder Dereferenzierung von
Nullpointern.

Rust ist eine neue Programmiersprache die sich zum Ziel gesetzt hat, schnell und sicher
zu sein. Sie ist als Systemprogrammiersprache klassifiziert. Rust führt ein revolutionäres
Konzept von Ownership und Lifetimes ein. Damit ist es möglich, Speicher automatisiert zu
verwalten und Speichersicherheit zu garantieren, ohne auf Garbage Collection angewiesen
zu sein. Eine Lifetime beschreibt grob gesagt wie lange ein dynamisch zugeteilter Speicher-
bereich benutzt werden kann. Jede Zuteilung gehört immer einem Besitzer (Owner) und
sobald dessen Lifetime endet kann der zugeteilte Speicher freigegeben werden. Dazu
ist keine Garbage Collection notwendig. Speichersicherheit wird durch statische Checks
während der Übersetzung sichergestellt.

In dieser Masterarbeit erweitern wir Whiley um ein Konzept für Lifetimes ähnlich wie in
Rust . Die beiden Programmiersprachen haben jedoch einen unterschiedlichen Fokus, sodass
wir einige Anpassungen am Konzept vornehmen müssen, damit es zur Umgebung von
Whiley passt. Für unsere Erweiterung sind Änderungen an der Sprachsyntax und einigen
Teilen des Übersetzers sowie der Zwischensprache von Whiley nötig. Der Umgang mit
Lifetimes in Verbindung mit Subtyping von rekursiven Typen und bei Methodenaufrufen
ist eine Herausforderung.

Derzeit wird Whiley in Bytecode für die Java Virtual Machine (JVM) übersetzt, dessen
Garbe Collector zur Freigabe von dynamisch zugewiesenem Speicher benutzt wird. Es gibt
einen experimentellen Übersetzer für Whiley , welcher C code generiert, aber dieser kann
dynamisch zugewiesenen Speicher nicht wieder freigeben. Wir zeigen, wie der Übersetzter
Lifetimes zur Speicherverwaltung ohne Garbage Collection verwenden kann. Dies bereitet
einen Weg für eine bedeutende Verbesserung des Whiley zu C Übersetzers. Dadurch wird
es möglich, Whiley Programme auf eingebetteten Geräten auszuführen, die nicht genug
Ressourcen für die JVM haben.

ii

Acknowledgments

I want to thank Dr David Pearce of the School of Engineering and Computer Science
at Victoria University of Wellington. He provided me an excellent topic to work on and
steered me in the right direction when I got stuck. I very much appreciate our regular
discussions on my work and current development of Whiley .

I would also like to thank my examiner Prof. Dr. Arnd Poetzsch-Heffter of the Software
Technology Group at University of Kaiserslautern for getting me known to David and for
the help while planning my journey.

I am grateful to all the nice people that I have met in New Zealand. You made my stay
there so far away from my homeland especially enjoyable. And I would like to thank my
parents and friends at home. Your encouragement bridged such a big distance.

Finally, I want to thank the German Academic Exchange Service for fundings as part
of their PROMOS program, and IBM who supports the German national "Deutschland-
stipendium" scholarship where I got fundings from in my earlier studies.

iii

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than
the declared sources, and that I have explicitly marked all material which has been quoted
either literally or by content from the used sources.

Kaiserslautern, 30.05.2016

Sebastian Schweizer

Eidesstattliche Erklärung

Ich versichere hiermit, dass ich die vorliegende Masterarbeit mit dem Thema Lifetime
Analysis for Whiley selbstständig verfasst und keine anderen als die angegebenen Hilfs-
mittel benutzt habe. Die Stellen, die anderen Werken dem Wortlaut oder dem Sinn
nach entnommen wurden, habe ich durch die Angabe der Quelle, auch der benutzten
Sekundärliteratur, als Entlehnung kenntlich gemacht.

Kaiserslautern, den 30.05.2016

Sebastian Schweizer

v

Contents

1. Introduction 1
1.1. Whiley . 2
1.2. Contributions . 2
1.3. Organization . 3

2. Background 4
2.1. Rust and Lifetimes . 4

2.1.1. Stack, Heap and Ownership . 4
2.1.2. Move Semantics . 5
2.1.3. Boxes and Reference-Counted Pointers 6
2.1.4. Borrowing . 7
2.1.5. Lifetimes . 8
2.1.6. Variance and Subtyping . 10
2.1.7. Summary: Different Ways to Store and Share Values 10

2.2. Whiley . 11
2.2.1. Design . 11
2.2.2. Functions, Methods and Specification 12
2.2.3. Verification . 13
2.2.4. Structural Typing and Records . 15
2.2.5. Union Types . 16
2.2.6. Type Declarations and Recursive Types 16
2.2.7. Flow Typing . 18
2.2.8. Heap-Allocated Memory and References 19

2.3. Related Work . 20
2.3.1. Ownership . 20
2.3.2. Region-Based Memory Management 20
2.3.3. Alias Analysis . 20
2.3.4. Separation Logic . 21

3. Design 22
3.1. Motivation . 22
3.2. Syntax . 24
3.3. Lifetimes . 27

3.3.1. Subtyping . 29
3.3.2. Lifetime Parameters . 29
3.3.3. Context Lifetimes . 30

vii

Contents

3.4. Discussion . 30
3.4.1. Backwards-Compatibility . 30
3.4.2. Mutability and Move Semantics . 31
3.4.3. References to Local Variables . 32
3.4.4. Pointer Types . 33
3.4.5. Lambda Expressions . 33

4. Implementation 36
4.1. Lexing and Parsing . 36

4.1.1. Abstract Syntax Tree . 36
4.1.2. Lexer . 37
4.1.3. Parser . 37

4.2. Type Checking . 39
4.2.1. Lifetime Relation . 40
4.2.2. Reference Types . 40
4.2.3. Method Types . 41

4.3. Lifetime Substitution and Method Lookup 42
4.3.1. Substitution in Return Types . 43
4.3.2. Substitution for Subtyping . 45
4.3.3. Method Lookup . 46

4.4. Intermediate Language . 47

5. Evaluation 48
5.1. Test Cases . 48
5.2. Memory Management . 49

6. Conclusion 51
6.1. Contribution . 51
6.2. Future Work . 52
6.3. Conclusions . 53

A. Bibliography 55

viii

1. Introduction

Programmers today have the choice among dozens of different programming languages.
They can be classified in paradigms. These are for example functional languages (Haskell,
Erlang, Racket), procedural languages (C, Fortran, Pascal) or object-oriented languages
(Java, C++, Perl). Programming languages can be compiled (C, C++, Pascal) or
interpreted (Perl, Python, Ruby). Another difference is the level of abstraction regarding
memory management: some languages like C delegate all memory management to
the programmer, others use automated techniques to free unused memory. The first
approach, manual memory management, comes with some drawbacks: modern programs
are inherently complex and especially when in comes to multi-threaded software, memory
management can be quite cumbersome. While forgetting to free memory in time only
leads to memory leaks, a premature deallocation generates dangling pointers. Accessing
such a pointer is referred to as use after free. It results in undefined behavior, as the
memory pointed to may already have been reallocated to store something else.

One approach to free programmers from the burden of manual memory management is
garbage collection. The runtime environment continuously analyzes which memory is no
longer reachable by the running program and frees it accordingly. One way to implement
it is reference counting. This is known to work well with acyclic structures [4], but more
complex analysis is needed if structures are cyclic. Other algorithms are for example
mark-and-sweep and copying collection [31]. Garbage collection was made popular by the
Java programming language [30].

All techniques for garbage collection impose some form of runtime overhead. Depending
on the algorithm in use it might also be impossible to guarantee specific reaction times,
as garbage collection can nondeterministically interrupt program execution [2]. While
today’s computers get more and more powerful such that garbage collection might not be
a problem, technology comes up with small embedded devices like drones or even small
computers as part of pacemakers. Here we need a small and energy efficient runtime
environment, but cannot allow for any avoidable programming bugs as they might cause
serious incidents with those kinds of devices. Another field where garbage collection is
usually not applicable is operating systems development.

One solution to this trade-off between performance and safety is to statically analyze
the program and let the compiler infer all necessary deallocation points. Rust is a new
programming language that employs a notion of ownership and lifetimes. The programmer
is enforced to obey some constraints and the compiler ensures that program execution
will be safe, without having an expensive runtime environment. In fact, Rust programs
show a similar performance to C programs [3].

1

1. Introduction

1.1. Whiley

The way how Java guarantees memory safety is to add some runtime checks. When access-
ing an array there will be a check that the index is within the array’s bounds. Another com-
mon check is to ensure that a dereferenced pointer is not null. A RuntimeException
gets thrown if one of these checks fails.
An alternative to this approach is verification. Given a program, you should be able

to statically prove that each array access or pointer dereference will be safe for every
possible program execution. This technique ensures that these runtime faults cannot
occur at all and renders those checks redundant. Another application is specification. The
programmer annotates each function with a mathematical description of what is expected
to happen. Using verification, we then can check that this is actually the case for the
given implementation.

Most programming languages do not provide assistance for these tasks. If at all possible,
programmers need to use special extensions or external tools to specify and verify their
software. As a result, casually written programs are often neither verified nor formally
specified. Whiley is a programming language that aims to make specifying and verifying
software a common practice [18]. Included directly in the language core, the compiler ships
with an integrated verifier that checks all functions and methods against their specification.
Furthermore, it ensures absence of runtime exceptions as described above. This provides
a perfect base for safety critical systems. However, Whiley currently compiles to byte
code for the Java Virtual Machine (JVM), which comes with a rather large runtime
footprint unsuitable for some kinds of smaller embedded devices. There have been efforts
to compile Whiley to embedded devices, but memory management was a big challenge,
because Whiley currently relies on garbage collection done by the JVM [28, 20].

1.2. Contributions

In this thesis, we extend the Whiley programming language to introduce a concept of
lifetimes. Similar to Rust , each lifetime describes a region in the source code where a
specific reference is considered to be alive. During that timespan, the memory pointed to
is guaranteed to still be available. Afterwards it can safely be freed by the compiler.
We extend the language syntax to support lifetime annotations. Several internals of

the Whiley compiler are affected by our changes, e.g. the type system needs to statically
check constraints imposed by lifetimes.

We implement our changes and add several test cases. The Whiley maintainer accepted
our code and released a new version including lifetimes1.

Our extension can be used for improved memory management. We describe an approach
how to implement automatic and safe deallocation of heap-allocated memory without
garbage collection. This allows to write Whiley compilers targeting embedded devices
that are not capable of running a full JVM.

1http://whiley.org/2016/05/28/whiley-v0-3-40-released/

2

http://whiley.org/2016/05/28/whiley-v0-3-40-released/

1. Introduction

1.3. Organization

Chapter 2 gives a short introduction to the Whiley and Rust programming languages. We
do not cover every detail of these languages, but we establish a basic knowledge of the key
features and concepts which are necessary to understand our contribution. Afterwards we
examine other related work.

In chapter 3, we give a high level view of our lifetime extension. We first motivate our
changes and then present the new syntax and meaning of lifetimes. Finally, we discuss
possible alternatives and why they have been discarded.
Chapter 4 covers the actual implementation of our language extension in the Whiley

compiler. We provide an overview of the necessary code changes and elaborate on some
difficult parts.
We give an evaluation of our work in chapter 5. We analyze the performance impact

for checking lifetimes using the test programs shipping with Whiley . Furthermore, we
sketch a possible implementation for memory management using lifetimes to show how
the Whiley to C compiler and possibly other backends can benefit from our work.
Chapter 6 concludes this thesis and shows options for future work.

3

2. Background

Rust is a multi-paradigm programming language. It claims to be “a systems programming
language that runs blazingly fast, prevents segmentation faults, and guarantees thread
safety” [24]. To achieve this goal, Rust avoids garbage collection and other runtime
overhead. Instead, static analysis as well as a notion of ownership and lifetimes is used
to ensure memory safety.
Whiley also is a mutli-paradigm compiled programming language. A major feature is

verification: programmers can provide specifications for all functions and the compiler
checks that they are met by the actual implementation. Whiley uses a structural type
system and features flow typing.
For our contribution in this thesis we adapt Rust ’s notion of lifetimes to introduce a

similar approach to the Whiley language. As basic knowledge of both languages and their
differences is essential to understand our work, this chapter provides a brief introduction
to Rust (section 2.1) and Whiley (section 2.2). In 2.3, we present some work related to
static analysis techniques.

2.1. Rust and Lifetimes

We provide here a short introduction of some concepts of Rust that are relevant for this
thesis. A more detailed introduction of the programming language can be found in the
official Rust book [25] and the Rustonomicon [26].

Rust aims to provide a fast and yet safe programming language. Our focus is to examine
its memory model, to see how it can provide automatic memory management without
garbage collection. The three main terms related to this are ownership, borrowing and
lifetimes. Reed [22] established a formal model for the key features that provide memory
safety and proved soundness of that model.

2.1.1. Stack, Heap and Ownership

Like many programming languages, Rust allows to allocate memory on the stack or
on the heap. The stack is an automatically managed portion of memory, where each
function execution allocates a so-called stack frame that contains all local variables. The
stack-frame will be freed automatically once the function returns and therefore anything
allocated there cannot outlive the function itself. On the other hand, the heap is a portion
of memory that is managed more dynamically. Memory there can live longer than a single
function execution.

In Rust , we can use variable bindings to bind a value to a name. The following program
simply binds an integer 42 to the variable x.

4

2. Background

1 fn main() {
2 let x = 42;
3 }

The compiler will insert an integer with value 42 into the current stack frame and use
its address whenever x is used.2 Variable x is said to own that portion of memory. When
the owner goes out of scope, the memory will be freed. The scope of a variable is just the
enclosing pair of curly braces { }. In this example there is nothing special to do, as the
stack frame holding our integer will be freed automatically once function main returns.

Consider now a different program. Since all addresses within a stack frame have to be
calculated at compile time, we cannot store constructs of unknown size in it. Instead,
that data has to be stored on the heap. One example for constructs of variable size in
Rust are vectors.

1 fn main() {
2 let fib = vec![1, 1, 2, 3, 5, 8];
3 }

This example creates a vector containing the first six Fibonacci numbers. Internally,
the vector is stored as a triple denoting its current length, its capacity and a pointer
to the actual data on the heap. In line 3, variable fib goes out of scope. The vector
owned by it will then be deallocated, which includes freeing its data on the heap. This
deallocation step happens directly and deterministically in line 3. There is no need for
reference counting or a garbage collector that eventually finds some unreachable vector
data on the heap.
Note that a vector in Rust differs from an ArrayList in Java: to access an element

in a vector, we have to take the address of the data pointer, add a calculated offset
and access the resulting address. These pointers are called fat pointers, because they
store additional information (length and capacity) together with the address. For an
ArrayList, we must first dereference the list object. Then we read the reference to
the contained array, add the appropriate offset and access that address. There are two
dereference operations necessary while only one is needed for vectors in Rust . Dereferences
are expensive, because the machine’s caching system does not benefit from fetching larger
blocks [13].

2.1.2. Move Semantics

One important property of Rust ’s safety system is that there must only be one owner
for each memory location at any time. When we simply assign one variable to another,
then ownership is transferred because Rust uses so-called move semantics. Consider the
following modified program:

2For the sake of simplicity we do not consider unspilled variables stored in registers and ignore
optimizations like constant propagation.

5

2. Background

1 fn main() {
2 let mut fib = vec![1, 1, 2, 3, 5, 8];
3 let mut fib2 = fib;
4 fib2.push(13);
5 println!("fib[0] is {}", fib[0]); // illegal
6 }

First of all we notice the newly inserted mut keyword. It states that the bound value
is mutable, i.e. we can later modify the assigned vector. In line 3, we assign our vector
from variable fib to a new variable fib2. In line 4, we append one more number to that
vector. The following will happen internally: we start with our initial vector, where length,
capacity and a pointer is stored on the stack and the actual data on the heap. In line 3,
we move fib to fib2. Moving means that all data at fib’s memory location will be
copied to fib2. So we copy the triple consisting of length, capacity and pointer, but not
the actual vector elements. The operation therefore runs in constant time, independent
of the vector’s length.
Now we push a new entry to that vector. That updates the vector’s length and adds

the new element. If the capacity does not allow to add an element, a new and bigger
portion of memory will be allocated on the heap such that the data can be transfered
there. Afterwards, the pointer is updated and the old heap data freed.

The last line now tries to access the vector through our old name fib. This is illegal,
as the value has moved to the new name fib2. If we allow accessing it via its old
variable, then we might access a dangling pointer. The push call in the previous line
might have deallocated the old data array after allocating a bigger one. The semantics of
Rust therefore forbids using moved variable bindings.

For some types this protection provided by move semantics is not necessary. For
example, a primitive type like a number or boolean value can just be copied without
invalidating the old binding. Rust uses a marker trait called Copy to identify those
types. After doing an assignment with such a type, there are two independent values
with separate owners. All primitive types are Copy. Copy can be derived for records if
all their fields are Copy. More complex types like vectors are not Copy.

Some types that are not marked as Copy can still be cloned explicitly, but this process
involves creating a complete deep copy, which is expensive for big data structures.

2.1.3. Boxes and Reference-Counted Pointers

Even bigger structures can be allocated on the stack, if their size is statically known. To
avoid moving around big structures, we can explicitly allocate them on the heap. Rust uses
the type Box for a heap-allocated portion of memory. A Box is just a pointer to the heap.
It is similar to a vector with length one, but as the length cannot change there is no need to
store length or capacity. Each Box has a single owner. Once the owner goes out of scope,
the Box’s content on the heap will be deallocated. For moving a Box, only the pointer
itself has to be copied into the new location. This happens analogue to the behavior
already described for vectors. Boxes are allocated with let b = Box::new(5) and

6

2. Background

can be accessed as *b.
In some cases it might be very difficult to find a flow through your program such that

a Box always has only one owner. For these cases, Rust provides the type Rc which
are reference-counted pointers. This type imposes a runtime overhead, as it manages a
counter that tracks how many pointers to it exist. The Rc owns its contained value and
deallocates it when the last pointer to it goes out of scope.
Rc cannot be shared over different threads in a multi-threaded scenario. There is

a special type Arc (atomic Rc) for that use case. It has proper synchronization and
therefore imposes more overhead than the simpler Rc.
The programmer has to be aware that cyclic reference counted structures will not be

freed automatically and therefore lead to memory leaks [15]. These cycles have to be
broken manually.

2.1.4. Borrowing

Instead of moving the value and thereby transferring ownership to another variable, the
owner can also lend a value to another variable that borrows it for a specific amount of
time. Borrowing allows to give another variable or a called function access to a value
without transferring ownership.

1 fn main() {
2 let fib_original = vec![1, 1, 2, 3, 5, 8];
3 let fib_borrowed = &fib_original;
4 println!("The 4th fibonacci number is {}", fib_original[4]);
5 println!("The 5th fibonacci number is {}", fib_borrowed[5]);
6 }

The notation let fib_borrowed = &fib_original states that fib_borrowed
borrows the vector from fib_original. We can access it through both names, as
fib_borrowed is just a reference to the original value. This immediately should raise
the question how to prevent the situation described above, where one of both variables
contains a dangling pointer after an update.
To see how that problem is solved, we again need to consider mutability. As seen

before, variable bindings must be declared with the mut keyword to allow the value to
be modified. There are mutable and immutable values. The same holds for borrowed
references: A value can be borrowed mutable or immutable. Consider the following
program:

1 fn main() {
2 let mut fib_original = vec![1, 1, 2, 3, 5, 8];
3 let fib_borrowed = &fib_original;
4 println!("The 4th fibonacci number is {}", fib_original[4]);
5 fib_original.push(13); // illegal
6 println!("The 5th fibonacci number is {}", fib_borrowed[5]);
7 }

7

2. Background

This program contains four borrowings: the immutable borrowing in line 3 is directly
visible. But there are two more immutable borrowings in line 4 and 6 to read the value
that is printed. And finally there is a mutable borrowing in line 5. The type Vec<T>
contains a function fn push(&mut self, value: T), which is the one called in
line 5. &mut self hereby means that the object receiving the function call is borrowed
mutable until the function returns. Another way to borrow the vector mutable would be
to replace line 3 by let mut fib_borrowed = &mut fib_original;.
One fundamental principle of Rust ’s borrow system is that there can be only a single

mutable borrowing or multiple immutable borrowings at any time. In line 3 of the
program above fib_borrowed borrows fib_original immutable. That borrowing
remains as long as fib_borrowed stays in scope, i.e. until the closing brace in line 7.
Line 4 is allowed, as it just initiates a second immutable borrowing lasting for that single
statement, and multiple immutable borrowings are allowed. If we had changed line 3 to a
mutable borrowing, line 4 would already have been illegal as it would have combined a
mutable borrowing with an immutable one.

Line 5 attempts to borrow fib_original mutable while it is still borrowed immutable
by fib_borrowed. This is not allowed and the program gets rejected by the compiler’s
borrow checker.

These constraints might look restrictive, but they provide a safe memory model without
additional runtime checks. Data races are avoided by design, as they would need two
pointers to the same variables where at least one of them is mutable. Consider the
following example that iterates over a vector:

1 fn main() {
2 let mut fib = vec![1, 1, 2, 3, 5, 8];
3 for x in &fib {
4 // ...
5 }
6 fib.push(13);
7 }

Hidden in syntactic sugar within line 3, we implicitly call the iter function on fib
which borrows the vector immutable until the end of our loop. Therefore, we cannot modify
the vector within the loop. However, line 6 is fine as the immutable borrowing ends in
line 5 and we can borrow the vector mutable afterwards. Modifying what you are iterating
over is problematic also in other languages. If you try to modify a Collection in Java while
iterating over it, the iterator will throw a ConcurrentModificationException at
runtime. Rust does not allow that situation and the program does not compile in the
first place.

2.1.5. Lifetimes

Memory whose owner goes out of scope will be freed. This is either unavoidable, as the
memory is allocated on the stack and the enclosing stack frame will be deallocated once
the function returns, or it is by design to manage heap-allocated memory without garbage

8

2. Background

collection. In either case we must ensure that there are no other accessible references to
the freed portion of memory. This is why Rust enforces one simple rule for borrowed
references: a borrowed reference must not outlive the actual value. Consider the following
program:

1 fn main() {
2 let mut x = &1;
3 {
4 let y = 2;
5 x = &y; // illegal
6 }
7 println!("x points to value {}", *x);
8 }

Line 2 allocates memory for an integer with value 1. A pointer to this memory is
stored into another portion of memory, which is bound to variable x. The curly braces
start a new scope that spreads from line 3 to 6. Inside this scope, we allocate another
integer that is bound to y. Afterwards we try to store a reference to it into x. This is not
allowed! The memory bound to y will be freed once y goes out of scope. This is at line 6.
As x is still in scope, we might still access it. In fact, we attempt to read the integer
pointed to by x in line 7. As y has been deallocated, we access a dangling pointer.
The Rust compiler rejects the program above due to lifetimes. Each value and each

borrowing is assigned with a lifetime. It describes a part of the program where that value
can be used, i.e. roughly the scope of its declaration. The lifetime for a local variable
starts at its declaration and ends at the end of its enclosing scope. In our example,
lifetime of x goes from line 2 to line 8 and lifetime of y from line 4 to line 6. In line 5, x
tries to borrow the value of y, but it’s own lifetime is longer than the lifetime of y. We
say that the lifetime of y does not outlive the lifetime of x. This is not allowed. There is
no runtime overhead for checking lifetimes, as they are just a restriction checked by the
compiler to ensure memory safety.
To handle lifetimes across functions, Rust offers lifetime parameters. Consider the

following program:

1 fn inc<’a>(x : &’a mut u32) -> &’a mut u32 {
2 *x = *x + 1;
3 return x;
4 }
5

6 fn main() {
7 let mut x = 1;
8 let p = inc(&mut x);
9 }

Function inc is declared to take one parameter x that is a mutable reference to an
unsigned 32 bit integer. The return value will also be a reference to such an integer. And
the annotated lifetime ’a states that both references will have the same lifetime. While
the above program is fine, the following modification will not compile:

9

2. Background

1 fn main() {
2 let p : &u32; // uninitialized declaration
3 {
4 let mut x = 1;
5 p = inc(&mut x); // illegal
6 }
7 println!("p points to {}", *p);
8 }

Because inc returns a reference of the same lifetime as it gets passed as as an argument,
the lifetime of the argument x in line 5 must be at least the lifetime of p, where the result
gets assigned to. But x does not outlive p because it is declared in a smaller scope.

If the function has only one reference type parameter, then you can leave out lifetime
parameters, as Rust automatically declares a lifetime parameter for that reference type
and assigns it to all reference types in the return value. This feature is called lifetime
elision3.

2.1.6. Variance and Subtyping

In Rust , lifetimes are part of the type system and must therefore be considered when talking
about subtyping. To understand the subtyping constraints defined by a programming
language, it is helpful to ask the following question: if I expect type T, what other types
can I be given without breaking safety? For the following, we consider two types Square
and Rectangle, where Square is a subtype of Rectangle.

If you expect to get an immutable reference to a rectangle, you can safely use a mutable
one instead; you just do not make use of its ability to mutate the value pointed to. There
is also no problem if the provided reference is actually a reference to a square, because its
special characteristic does not affect read-only access. Lastly, if the given reference has a
longer lifetime than expected, then you can still safely access it.
If the expected reference is a mutable reference to a rectangle, then the provided one

must obviously be mutable. But now we cannot accept a reference to a square: you might
want to store a non-quadric rectangle to it. This would break safety for other readers that
still expect the reference to point to a square. To summarize and formalize, the following
rules hold for subtyping in Rust (cf. [26]):

• &’a mut T is a subtype of &’a T

• &’a T is covariant over ’a and T

• &’a mut T is covariant over ’a but invariant over T

2.1.7. Summary: Different Ways to Store and Share Values

We have seen different ways to store values in a Rust program. Most importantly, every
value needs a single owner at all times. A value can be directly owned by a local variable.

3Lifetime elision actually can handle more cases than described here. They are not needed for a basic
understanding and therefore left out for simplicity.

10

2. Background

These variable bindings are immutable unless declared as mutable using the mut keyword.
A normal assignment always moves the value, which makes the former name invalid for
future access.
To share a value, it can be borrowed by another reference, using the &T and &mut T

types. A borrowing is immutable unless the mut keyword is used. The borrow checker
imposes constraints to prevent data races. Furthermore, each borrowing has a lifetime
that must be within the lifetime of the borrowed value.

To store a value on the heap, a Box can be used. It owns its contained value, but needs
a single owner for itself. If you are unable to provide a single owner for a value, then it
can be wrapped in one of the types Rc or Arc, but that imposes runtime overhead.

2.2. Whiley

This section provides an introduction to the Whiley programming language. We cover
the language’s main goals and all parts that are relevant for our extension to Whiley .
A more complete specification of Whiley is available in the official Whiley Language

Specification [18]. It introduces Whiley as follows:

“Whiley is a hybrid imperative and functional programming language designed
to produce programs with as few errors as possible. Whiley allows explicit
specifications to be given for functions, methods and data structures, and em-
ploys a verifying compiler to check whether programs meet their specifications.”
[18, p. 7]

2.2.1. Design

method main:

. . .

. . .

. . .

prog.whiley

Parsing
Type Checker

WyIL
bytecode

prog.wyil

Verifier

WyJC

WyCC

JVM
bytecode

prog.class

C code

prog.c

backends

Figure 1: Design of the Whiley compiler

Whiley consists of different components as shown in Figure 1. Programs are written in
the Whiley language and stored as .whiley files. Compilation happens in two steps:
The program is first translated to the Whiley Intermediate Language (WyIL). The WyIL
program is then passed to a backend which generates code for a destination language.
Currently, the only usable backend is the Whiley to Java Compiler (WyJC), which

11

2. Background

generates byte code for the Java Virtual Machine (JVM). There is a backend to generate
C code, but it does not free any memory. Therefore it is not yet usable for large or
long-running programs, or for small embedded systems that do not have a large amount
of memory.
Furthermore, the program can be verified. This is an optional but recommended step

during compilation. Verification is presented in section 2.2.3.

2.2.2. Functions, Methods and Specification

Whiley distinguishes between functions and methods. The former one are pure: a function
will always return the same result if the same arguments are given. Furthermore, functions
cannot have any side-effects. Methods do not obey these restrictions. The can dereference
pointers and issue I/O operations. It is not allowed to call a method from a function.
Whiley uses a call-by-value semantics. The function parameters can therefore be

assumed to be a deep copy of the arguments given by the caller. Furthermore, all values
are copied on assignment to other variables. Even when a function called with an array
a assigns a[0] = 2, it does not affect the caller’s array. This is similar to the types
in Rust that are marked with Copy. There is no aliasing for values in Whiley , unless
references are used. References will be introduced in section 2.2.8.
Specification of functions and methods in Whiley follows a simple precondition-

postcondition schema. Both functions and methods can be specified. If a precondition is
given, then it is not allowed to call that function or method unless the precondition is
satisfied for the given arguments. After executing the function or method, the postcondi-
tion must be satisfied. Both is statically checked by the compiler, provided that it is used
with the -verify flag.

Consider a function that takes an array of numbers and yields the position of the
maximum entry. If the maximum appears more than once in our array, then the first
position shall be given. But what should happen if the array is empty? In Whiley , you
typically specify that the function must not be called with an empty array. A possible
specification is as follows:

Listing 1: Specification for our max function

1 function max(int[] input) -> (int result)
2 requires |input| > 0
3 ensures result >= 0 && result < |input|
4 ensures all { j in 0..|input| | input[j] <= input[result] }
5 ensures all { j in 0..result | input[j] < input[result] }:
6 // ...

Line 1 declares the parameters and the return type. Line 2 states the precondition:
length of the given array must be greater than 0. In line 3 to 5 we give several post-
conditions. All ensures clauses are semantically connected as conjunctions. We can
reference the returned value by the name declared together with the return type, result
in our case. The first postcondition specifies that the returned result is a valid index in
the given array. The second condition ensures that the returned position actually holds a

12

2. Background

maximal value, i.e. all array values are less or equal than the maximal value. The last
condition ensures that we return the first maximal position: all smaller positions hold
values that are smaller (but not equal).

2.2.3. Verification

A simple implementation for the program specified in listing 1 is as follows:

1 int result = 0
2 int i = 0
3 while (i < |input|):
4 if input[i] > input[result]:
5 result = i
6 i = i + 1
7 return result

The idea is as follows: we start with 0 as position holding a maximal value. Then we
iterate through the array. If we find a position with a greater value, then we remember
that new position as holding the maximal value.
But if we enable verification, then the program will not compile. Whiley ’s verifier

can handle sequential program flow quite well. It applies Hoare Logic and strongest
postcondition transformation. This does not work for loops. We have to give a loop
invariant to help the theorem prover that internally does the verification. For values that
are not assigned inside the loop we do not need to give any additional invariants. But our
loop contains assignments to i and result, so we need to come up with an invariant
that somehow contains these values.
Listing 2 presents a working implementation that passes verification. Loop invariants

Listing 2: Specified and verified max function

1 function max(int[] input) -> (int result)
2 requires |input| > 0
3 ensures result >= 0 && result < |input|
4 ensures all { j in 0..|input| | input[j] <= input[result] }
5 ensures all { j in 0..result | input[j] < input[result] }:
6 result = 0
7 int i = 0
8 while (i < |input|)
9 where i >= 0 && i <= |input|

10 where result >= 0 && result < |input| && result <= i
11 where all { j in 0..i | input[j] <= input[result] }
12 where all { j in 0..result | input[j] < input[result] }:
13 if input[i] > input[result]:
14 result = i
15 i = i + 1
16 return result

13

2. Background

are given using the where keyword. Multiple invariants are semantically connected
as conjunctions. Loop invariants must be satisfied before entering the loop and after
executing the loop body.

Our first invariant states that the loop variable i is in bounds of the input array, or
equal to the arrays length. The latter one is for the case after the last loop iteration.
One job of the verifier is to ensure that each array access is in bounds. This invariant
combined with the loop condition ensures that input[i] is always in bounds.
The second invariant states that result is always a valid index and it is smaller or

equal to the current loop variable i. On entry, both variables are 0, which satisfies that
condition because the array is not empty. If result is updated, then it is set to the
current index which is known to be in bounds. The invariant is therefore restored after
each loop iteration.
The last two invariants are very similar to the function’s postcondition. The only

difference is that we consider only values up to position i. Therefore these conditions
trivially hold on loop entry. It is easy to see that the loop restores both conditions with
every iteration.
After exiting from the loop, it is known that !(i < |input|) holds. Further-

more, i <= |input| from our invariants still holds. The combination of both yields
i == |input|. Combined with invariant from line 11 we can satisfy the postcondition
in line 4. The remaining postconditions are directly contained in our loop invariants.

Assert and Assume

Besides loop invariants, Whiley offers two statements that interact with verification:
assert and assume. Both statements will check at runtime that the given condition
is satisfied. At verification time, i.e. on compile time if the -verify flag is given, they
influence the verifier. If assert is used, then the verifier must find a proof for that
condition. The condition will then automatically hold for all program executions.

On the other hand, assume inserts the given condition as an additional assumption at
that position. It can be used to omit verifying at some places, e.g. when the theorem
prover cannot find a suitable proof. A wrong use of assume can compile unsound
programs. The program still aborts at runtime because of the invalid assumption, but
it passes the verifier at compile time although it might contain an out-of-bounds array
access:

1 int[] a = [1, 1, 2, 3, 5, 8]
2 assert |a| == 6
3

4 int i = 7
5 assume i >= 0 && i < |a|
6 int x = a[i] // out of bounds check effectively disabled

14

2. Background

2.2.4. Structural Typing and Records

Another main feature of Whiley is structural typing. To understand this class of type
systems, we look at the differences between nominal and structural typing. In nominal
typing, an entity’s type is defined by the use of a specific name. Even if two type
declarations have exactly the same definition, they declare two different types. In
structural type systems, an explicit type declaration is not needed. The type of an entity
is derived from its structure. Two types with equivalent structures are considered to be
the same.

One example for a use of structural types in Whiley are records. A record is a compound
that contains fields. Each field has a name and a type. There is no specific order among
record fields. Consider the following program:

1 {int x, int y} rec1 = {y: 7, x: 8}
2 {int y, int x} rec2 = {x: 8, y: 7}
3 assert rec1 == rec2
4

5 assert rec1.x == 8
6 rec1.x = 9
7 assert rec1 != rec2

Focus on the first half. We assign two local variables with records. Although the
order of fields does not match, these assignments are valid because records are unordered.
Furthermore, the assertion in line 3 is correct, i.e. both records have the same type and
value. The second half of the program illustrate how we can read and write to record
fields.

Record types can be open. An open record allows to have additional fields that are not
specified by the type itself. Consider the following code snippet:

1 {int x, int y, ...} rec1 = {y: 7, x: 8, z: 9, hello: "world"}
2 {int y, ...} rec2 = rec1

We declare a local variable rec1 as open record and assign a value. The assigned
record actually has more fields than the type, but it is allowed because the type is an
open record. In line 2, we assign our record to another local variable rec2. Interestingly,
the type of rec2 is not at all the same as rec1. Whiley uses the type’s structure for
subtyping and considers {int x, int y, ...} to be a subtype of {int y, ...}.
This is referred to as width subtyping in the literature.

To understand subtyping in Whiley , consider for each type the set of all values it
describes. A type T1 is subtype of T2 if the set of all values with type T1 is a subset of
the values of T2. The type of rec1 in the program above describes the set of all records
that contain at least the fields int x and int y. The type of rec2 describes the set of
all records that contain at least the field int y. It imposes less restrictions to its values
and therefore is a superset of the set described by rec1’s type.

Two types are the same if they are subtypes of each other. This is equivalent to stating
that their sets of values are the same.

15

2. Background

2.2.5. Union Types

Whiley ’s type system allows us to define types as unions of other types. A union contains
all values that are present in any of its components. One possible usage is to use Whiley ’s
null type in a union. The type null has exactly one value, namely null. It is meant
to express the absence of something. Used in a union, it can make the type somehow
optional. Consider a function that takes an array and an element. It should find a
position in that array where the given element occurs. The function can be specified and
implemented as follows:

1 function indexOf(int[] a, int x)->(int|null r)
2 ensures r is null ==> no { j in 0..|a| | a[j] == x }
3 ensures r is int ==> a[r] == x:
4 int i = 0
5 while (i < |a|)
6 where i >= 0 && i <= |a|
7 where no { j in 0..i | a[j] == x }:
8 if (a[i] == x):
9 return i

10 i = i + 1
11 return null

The return type is a union of int and null. The specification ensures that null is
only returned when the given element is not contained in the array.

2.2.6. Type Declarations and Recursive Types

Structural types can be quite long and writing the type every time it is needed might
clutter your program. Type declarations allow to define a name which can be used as
alias for its declared type. Both the name and its structural type refer to the same type:

1 type Point is {int x, int y}
2

3 method main():
4 Point rec1 = {x: 8, y: 7}
5 {int y, int x} rec2 = rec1

Type declarations can carry type invariants. They constrain the declared type to only
contain values that satisfy the given boolean expressions. For example, the following
snippet specifies natural numbers and even numbers:

1 type nat is (int x) where x >= 0
2 type even is (int x) where x % 2 == 0

Type declarations allow to specify recursive types. A recursive type directly or indirectly
refers to itself within its definition. The following program defines and uses a recursive
type LinkedList.

16

2. Background

1 type LinkedList is null | {int head, LinkedList tail}
2

3 method main():
4 LinkedList list =
5 {head: 1, tail: {head: 2, tail: {head: 3, tail: null}}}

Although recursive types are not uncommon in other programming languages, they
impose some challenges when it comes to structural typing. Consider the following type
definitions:

1 type A is null | B
2 type B is {tail: C, head: int}
3 type C is {int head, A tail} | null

After having a close look on these types we can see that A and C are structurally the
same as LinkedList. Whiley therefore considers A, C and LinkedList to be the same
type. Furthermore, all three are a subtype of type B. But there is no obvious algorithm
that detects these relations. A trivial approach is to continuously replace type names
with their declarations and compare the resulting structure. But this will never yield the
same result because unfolding does not terminate for these recursive structures. To solve
this challenge, Whiley uses type automata.

Type Automata

∪

LinkedList

null rec

int

head

tail

Figure 2: Automaton for LinkedList

We give here a concise overview of how types
are internally represented in Whiley . A more
extensive introduction can be found in [17, 19].

A type is represented using a finite state automa-
ton. Each automaton state describes a type. The
type represented by the automaton itself is the one
of its start state, Whiley uses the term root state.
Each state is annotated with a kind that denotes
what class of type that state represents. Possible
kinds are for example the primitive types, union,
reference, record, function and method. Some
states have outgoing transitions to other states,
called children. A reference state has exactly one
child, namely the state describing the referenced
type. States for primitive types do not have any
children. A union state has a child for every type
that is part of the union. States can carry supplementary data. Functions and methods
for example are annotated with the number of parameters. Records carry the names of
their fields and a flag whether the record is open. Figure 2 illustrates the type automaton
for the type LinkedList from the example above.

Values in Whiley always have the form of a finite tree, i.e. they cannot be cyclic. The
recursive type LinkedList does not limit the depth of its values, but Whiley does not

17

2. Background

provide a way to produce a cyclic value or values of infinite depth. The type automata
are designed such that they accept such a tree value if and only if it is contained in the
automaton’s type.
Whiley implements a single operation on type automata: given two automata A1 and

A2 it is possible to check whether the intersection A1 ∩A2 is not empty, i.e. if there is a
value that is accepted by both A1 and A2. It is further possible to optionally invert one or
both automata. We use the notation A for the inversion of automaton A. Subtyping can
be reduced to this intersection problem: T1 is a subtype of T2 if and only if A1 ∩A2 = ∅,
i.e. the intersection is empty, where A1 and A2 are the type automata representing T1
and T2. In other words: the values in T1 are a subset of the values in T2.

The implementation of that intersection check is aware of recursive types. It recursively
descends into the children of both given automata until a decision can be made. For
recursive types, the automata will be cyclic. To break infinite recursion, the algorithm
tracks which states have already been compared and assumes that there is an intersection
for a pair of states if recursion reaches the same comparison again.

2.2.7. Flow Typing

The type of a variable in Whiley changes along the control flow that the program takes.
This technique is called flow typing. Consider the following example:

1 function f(int|bool|null x)->(int r):
2 if x is null:
3 return 0
4

5 if x is bool:
6 if x:
7 r = 1
8 else:
9 r = 0

10

11 else:
12 r = x
13

14 return r

Function f accepts a parameter that can have any of the types int, bool or null.
The type of x is the union of these types, as declared in the function signature. In line 2
we do a so-called type test. Each type test changes the current type of the tested variable.
Inside the true branch x will have type null. Whiley sees that the program flow can
take two paths: if the condition is true, then we will end up in line 3 and immediately
return from our function. The other path implies that x is not null. Whiley calculates
a type int|bool|null - null which simplifies to int|bool. This is the type of x
from line 4 on.

The next type test ensures that x is typed as bool from line 6 to 9. Therefore we can
use it as boolean expression in line 6. Finally, the else branch starting in line 11 knows

18

2. Background

that x is not bool. The type is int|bool - bool which simplifies to int. Therefore
we are allowed to assign x to the local variable r which is typed as int.

2.2.8. Heap-Allocated Memory and References

Whiley allows to allocate memory on the heap. The new operator takes an expression
as argument. It allocates the amount of memory needed to store values of the given
expression’s type. The expression is then evaluated and the result stored in the allocated
space. A reference to it is returned as result from the new operator. It cannot be used in
functions, only methods can allocate memory.
There is no explicit deallocation operator in Whiley . Heap-allocated memory has to

be either garbage collected at runtime or deallocated with operations inserted by the
compiler. The Whiley to Java compiler relies on garbage collection provided by the JVM.
The experimental C backend does not yet do deallocation of heap-allocated memory.

The following program gives some examples for memory allocations:

1 type Point is {int x, int y}
2

3 method m():
4 &int r1 = new 1
5 &bool r2 = new 3 < 4
6 Point p = {x: 5, y: 6}
7 &Point r3 = new p

To access the memory pointed to by a reference, the dereference operator * is used.
We can read from and write to references. References provide a way to produce aliases.
The following program shows some examples:

1 method main(whiley.lang.System.Console console):
2 &int r1 = new 1
3 &int r2 = r1
4 console.out.println(*r1) // 1
5 console.out.println(*r2) // 1
6 *r2 = 2
7 console.out.println(*r1) // 2
8 console.out.println(*r2) // 2
9 r2 = new 3

10 console.out.println(*r1) // 2
11 console.out.println(*r2) // 3
12

13 &(&int) rr = new r1
14 console.out.println(**rr) // 2

r2 is initially declared as alias for r1. The assignment in line 6 changes the value on
the heap, such that both aliases will read the updated value. In line 9 we set the reference
to something else. This does not affect the value stored on the heap, it only removes the
alias we created initially. r2 now points to a separate portion of memory, holding the
value 3.

19

2. Background

Line 13 and 14 illustrate that it is possible to create references to references. In order
to read the actual value, two dereference operators are necessary.

2.3. Related Work

This section provides a rough overview of work related to ownership systems, automatic
memory management without garbage collection, and verification.

2.3.1. Ownership

Work on ownership models dates back to 1998. Clarke et al. [9] presented a type system
featuring ownership types to control aliasing.

Boyapati et al. [5] extend the Real-Time Specification for Java (RTSJ) and introduce a
static type system using ownership types. It guarantees that the runtime checks ensuring
memory safety in RTSJ will not fail, thus allowing to remove these checks.
In order to allow for parametric ownership types, Potanin et al. [21] developed an

ownership system for Java 5, combining both generic types and generic ownership.

2.3.2. Region-Based Memory Management

Grossman et al. developed a programming language called Cyclone [11]. It is an extension
of C that provides safe memory management. The unsafe free operator is removed. The
memory is divided into several regions. Each region corresponds to a block in the program
code. When the control flow leaves the block, then its region is freed automatically.
Intraprocedural static analysis on region annotations in pointer types ensure memory
safety.

Instead of relying on the programmer to annotate the program with regions, [7] proposes
an interprocedural region analysis algorithm that reads a Java program and generates an
equivalent program with region-based memory managed support.

These region-based techniques come with the disadvantage that only a whole region can
be freed, deallocation of a single object inside the region is not permitted. Region-based
memory management therefore utilizes more memory than garbage collection [7, 10].
Dhurjati et al. present an interprocedural analysis for C programs that manages memory
in pools [10]. Explicit free commands are allowed if they do not violate the safety
constraints. Otherwise the command will be removed, but the memory is still freed when
the whole pool gets deallocated.

2.3.3. Alias Analysis

Aliasing is a key problem in memory management and verification. We say that a
reference is an alias if there are multiple references to the same memory location. The
referenced memory can be mutated through any of these aliases, which affects also the
other references. Furthermore, deallocating the memory while there are still aliases to it
leads to dangling pointers.

20

2. Background

AliasJava [1] is an annotation system for Java. It extends the type system to explicitly
annotate to what extend references can be aliased. These annotations enable programmers
to better reason about aliasing. Furthermore, the authors present an algorithm that can
automatically infer suitable annotations.

Brandauer et al. [6] recently proposed Disjointness Domains as a system for fine-grained
alias control. All references belong to these domains that impose restrictions on aliasing
within a single domain and among several domains.

2.3.4. Separation Logic

Separation logic [23] is an extension of Hoare logic [12]. It adds a way to reason about
heap memory. We can make statements about disjointness of heap regions which basically
is the absence of aliasing between both regions. Furthermore, we can reason about the
actual values stored on the heap.

Tuch et al. [29] establish a formal model for a subset of the C programming language.
They use the Isabelle/HOL theorem prover to reason about programs with pointers. A
challenge is to model the real behavior of finite integers with overflow semantics.

21

3. Design

The purpose of this thesis is to introduce lifetimes to the Whiley programming language.
In the following, we present the objective of introducing lifetimes and give a broad overview
of our extensions regarding syntactical changes, a definition of lifetimes in Whiley , and a
discussion about our design decisions. The actual implementation is covered in the next
chapter.
Section 3.1 motivates the introduction of lifetimes, giving a major use case regarding

memory management. In 3.2 we present our syntactical language extensions, providing
formal definitions and example programs. We define lifetimes and their semantics for
Whiley in 3.3. Section 3.4 provides a discussion about alternative approaches and the
rationale behind our design decisions. We also elaborate the differences to the Rust
programming language. Afterwards, chapter 4 provides a detailed view of the actual
implementation for the concepts introduced here.

3.1. Motivation

The main objective of our lifetime extension for Whiley is to create a basis for improved
memory management. Consider the following perfectly fine Whiley code:

Listing 3: Whiley example without lifetimes

1 method inc(&int x) -> &int:
2 return new ((*x) + 1)
3

4 method fourtytwo() -> &int:
5 &int i = new 41
6 i = inc(i)
7 return i
8

9 method main():
10 &int p = fourtytwo()
11 int i = *p
12 assert i == 42

We have three methods: inc is supposed to take a reference to a number and returns
a reference to a number whose value is the input increased by one. Method fourtytwo
should return a reference to a memory location holding the number 42 and main just
checks that this is actually the case.
It might not be that useful to use references in this small example program. But

a bigger real world example could actually benefit from passing references instead of

22

3. Design

values: passing values can be expensive, if a lot of data has to be copied for each method
call. Furthermore, it might me necessary for the program logic to have call-by-reference
semantics.

Before we can discuss compiling this specific program we have to outline typical memory
management done in compilers: memory can be allocated either on the stack or on the
heap. Stack-allocated memory will be freed automatically as its containing stack frame
gets deallocated when the method returns [27]. Data there cannot outlive the current
method invocation. On the other hand, heap-allocated memory has to be explicitly freed
by other means, e.g. garbage collection at runtime or manual memory management done
by the programmer. To avoid this kind of overhead, compiler writers prefer to allocate
memory on the stack whenever possible. This usually holds for local variables. Fixed-size
objects that do not escape the method they are allocated in can also be placed on the
stack [8].
Looking again at our example program from listing 3, we can see that the allocation

from line 5 does not leave the scope of method fourtytwo, as the reference returned in
line 7 is the one allocated by inc in line 2. It might therefore be a good idea to allocate
it on the stack. However, consider the following modified implementation of inc:

Listing 4: Modified implementation of inc

1 method inc(&int x) -> &int:
2 *x = (*x) + 1
3 return *x

From a method-local point of view within fourtytwo we cannot know what method
inc will be doing with the passed reference. While it is totally safe to do the initial
allocation on the stack for the program in listing 3, it is not possible for the modified
version in listing 4.

In a real-world example both methods could be part of different program packages.
Only expensive inter-procedural static analysis can find out whether stack-allocation is
possible. Utilizing these kind of analysis comes with the disadvantage that you cannot
compile single units any more: Changing the implementation of inc from listing 3 to
listing 4 does not change its signature, but turns compiled code for method fourtytwo
unsafe if it uses stack-allocation.

Our system of lifetimes in Whiley solves that problem by encoding more behavior into
method signatures. The first example can be annotated with lifetimes as follows:

1 method <a> inc(&a:int x) -> &*:int:
2 return new ((*x) + 1)
3

4 method fourtytwo() -> &*:int:
5 &this:int i = this:new 41
6 &*:int i2 = inc(i)
7 return i2

The signature of method inc states that it accepts one parameter which must be a
reference to an integer, where the reference can have any lifetime a. Lifetime a is a

23

3. Design

lifetime parameter for method inc. Furthermore, the return type is declared to be a
reference with the default lifetime *.

Method fourtytwo can now do its allocation using the special lifetime this which is
valid for the whole method body. Calling inc with type &this:int instantiates lifetime
parameter a with this. The return type is &*:int. We store it to a separate variable
that can then be returned from method fourtytwo.
When we try to annotate the modified version from listing 4 with lifetimes, we end

up with method <a> inc(&a:int x) -> &a:int as method signature. We cannot
declare the return type as &*:int as the return expression’s type is &a:int and our
system does not allow that one to be a subtype of &*:int. If we try to use a method
inc with the modified signature, it no longer returns type &*:int. Instead, the lifetime
parameter a gets substituted with the actual lifetime given as method argument, which
in our case is this. Again, method fourtytwo cannot return a value of that type, as
the declared return type is &*:int.

It is important to see that our extension allows to analyze both methods independently.
The decision whether it is safe to allocate memory in fourtytwo on the stack instead
of using the heap can be made only considering the own method body as well as all
signatures of called methods. Their actual implementation does not matter.

3.2. Syntax

This section states syntax extensions we make to the Whiley language. Only updates to
the grammar are given, the full specification is available in [18]. An introduction to the
Whiley language is provided in section 2.2. The syntax is given in a form derived from the
popular Backus–Naur Form [14]. Optional elements are enclosed in square brackets [].
Groups are enclosed in parentheses (). Repetitions are denoted by a superscript star.
Nonterminals are presented as plain words and terminals (tokens) are contained in a box.
The core extension is to annotate reference types with a concept of lifetimes:

ReferenceType ::= & Type

| & Lifetime : Type

Lifetime ::= * | this | Ident

The first option for ReferenceType is from the current Whiley specification. Type
&int represents a reference to int and is equivalent to &*:int, where * explicitly
specifies the default lifetime. It is meant to be used when the programmer cannot or
does not want to specify any lifetime. The compiler then has to manage memory for that
reference by some form of static analysis or garbage collection. Form &this:int uses
the special lifetime name this that denotes the lifetime of the current method body. We
introduce this as new keyword to the Whiley language. Finally, any declared lifetime
identifier a can be used in the form &a:int.

24

3. Design

Allocation of memory in Whiley is done using the new operator. We extend the syntax
such that we can optionally define a lifetime for the allocated portion of memory:

NewExpr ::= new Expr

| Lifetime : new Expr

While new 42 and *:new 42 allocate an integer with default lifetime, the new options
are this:new 42 and a:new 42, which allocate memory for the annotated lifetime.

To declare new lifetime names we introduce named blocks. They can occur in method
bodies and may be nested with other blocks:

1 method m():
2 int x = 1
3 myblock: // declares a new lifetime ’myblock’
4 &myblock:int y = new x
5 int i = 0
6 while (i < 5):
7 i = i + 1
8 mynestedblock:
9 &mynestedblock:int z = new i

10 // ...
11 // here neither ’myblock’ nor ’mynestedblock’ are valid

Formally, we define an additional statement NamedBlock:

NamedBlock` ::= Ident : Blockγ (where ` < γ)

A Block is a list of statements. The annotated condition ` < γ states that all statements
whose indentation is greater than the Ident’s indentation are considered as part of the
Block, i.e. line 4 to 10 in the example program above belong to the Block of myblock.
Keyword this is not allowed as identifier for lifetime names in named blocks.
Furthermore, we extend the syntax of method declarations to allow for specifying

lifetime parameters. Function declarations do not need to be extended, as functions are
pure and must not make use of references. Inspired by the syntax for Java generic type
parameters, we declare all lifetime names used in method parameters and return type
into angle brackets before the method name:

1 method <a, b> m1(&a:int x, &b:int y) -> &a:int:
2 method <a> m2(&{&a:int val} container) -> &a:int:

The relevant update to the grammar is as follows:

MethodDecl ::= method [< LifetimeParameters >]

Ident (Parameters) . . .

LifetimeParameters ::= [Ident (, Ident)∗]

25

3. Design

The omitted part contains elements not affected by our lifetime extension, namely return
type, requires and ensures declarations, and the method body. As seen before in
named blocks, the special lifetime this is considered to be a keyword and must not
appear in LifetimeParameters.
Our next syntax extension affects method invocations. It is needed to pass lifetime

names into the LifetimeParameters that we just defined. In line 2 of the following
program we call a method min with two lifetime parameters. Its actual implementation
is not relevant for this extension, but given as an example:

1 method main():
2 &this:int x = min<this, this>(this:new 3, this:new 5)
3

4 method <a, b> min(&a:int x, &b:int y) -> &a:int|&b:int:
5 if (*x) < (*y):
6 return x
7 else:
8 return y

The updated grammar for method invocation is:

InvokeExpr ::= Name [< LifetimeArgsList >]

(ArgsList)

LifetimeArgsList ::= [Lifetime (, Lifetime)∗]

Readers familiar with the Java syntax for invoking methods with generic type parameters
might be concerned about the defined syntax. A detailed discussion is given in section 4.1.

As Whiley combines functional and imperative features, we can use methods as values.
To do so, there is a syntactical representation for method types. Furthermore, methods
can be declared as an anonymous method, using so-called Lambda expressions. We have
to update both concepts to allow for specifying lifetime parameters.

The following program utilizes our updated syntax. It declares a type alias mymethod
for methods that take two references of possibly different lifetimes and yields a reference
with default lifetime. The lambda expression in line 4 represents such a method. We call
it in line 5, using the already introduced syntax for specifying lifetime arguments.

1 type mymethod is method<a, b>(&a:int, &b:int)->(&*:int)
2

3 method main():
4 mymethod m = &<a, b>(&a:int x, &b:int y -> new (*x) + (*y))
5 &int p = m<this, *>(this:new 1, new 2)
6 assert (*p) == 3

The updated grammar also introduces a concept named context lifetimes. These are
lifetimes from the enclosing method that can be used inside the lambda expression.
The example above does not use that concept. A detailed explanation will be given in
section 3.4.5. The updated grammar is as follows:

26

3. Design

MethodType ::= method [[ContextLifetimes]]

[< LifetimeParameters >]

ParameterTypes [-> ParameterTypes]

ContextLifetimes ::= [ContextLifetime (, ContextLifetime)∗]

ContextLifetime ::= this | Ident

ParameterTypes ::= ([Type (, Type)∗])

LambdaExpr ::= & [[ContextLifetimes]]

[< LifetimeParameters >] (

[Type Ident (, Type Ident)∗]

-> Expr)

3.3. Lifetimes

A lifetime in our extension to Whiley describes a region in the source code. Possible
regions are method bodies and named blocks. Each lifetime has a name. The lifetime
for method bodies is named this. The lifetime of named blocks have the block’s name.
Furthermore, the special lifetime * persists for the entire program.
Each reference type is annotated with a lifetime. It states when the memory pointed

to by that reference should be alive. More precisely, the following invariant must be
maintained by the compiler:

Invariant 1. An initialized reference of type &a:T points to a portion of memory that
will be alive at least until the program’s control flow leaves the region described by lifetime
a.

Definition 1. A memory location is alive if and only if:

• it has been allocated using the new operator and

• it has not yet been freed by the runtime system

We explain the invariant using the example program from listing 5. Line 2 declares a
local variable p without initializing it with a value. This is where the condition initialized
reference of invariant 1 comes into play. Although the local variable has already been
declared as reference, it does not yet hold a value, i.e. does not point to anything. It is
uninitialized. The Whiley compiler already ensures definite assignment, i.e. we cannot
read a variable v if there might be a control flow path to that read operation without
prior assignment to v [18, pages 71, 82].

27

3. Design

Listing 5: Example program to illustrate invariant 1

1 method main():
2 &this:int p
3 int x = 1
4 p = this:new x
5 myblock:
6 &myblock:int q = p
7 &myblock:int r = myblock:new 2
8 p = r // ilegal
9 x = *p

We initialize p in line 4. The declared type of p is &this:int. Its lifetime is this,
which denotes the body of method main. Invariant 1 therefore demands that the memory
pointed to by p must not be freed before the control flow leaves method main. The new
operator is annotated with a lifetime. It tells the compiler that the allocated memory
must be alive until the control flow leaves method main such that it matches the type’s
lifetime.
In line 6, we assign p to another reference q. The type of q is &myblock:int. To

satisfy invariant 1, the memory pointed to by the assigned reference must not be freed
before control flow leaves myblock. On the other hand, invariant 1 ensures that the
memory pointed to by p will not be freed before the control flow leaves method main. This
holds regardless of what has been assigned to p, because its declared type is &this:int.
Memory that will not be freed before the control flow leaves main will in particular not
be freed before the control flow leaves myblock, because the first implies the latter. We
can therefore allow this assignment.
There is an assignment in line 8 where we attempt to assign r to p. Using the same

argumentation, we know that the memory pointed to by r will not be freed before the
control flow leaves myblock. But p must point to memory that cannot be freed before
the control flow leaves method main. The implication does not hold in this case. We
cannot allow this assignment because it would break invariant 1 and the safety of other
commands might rely on it. In fact, we dereference p in line 9. It points to the memory
assigned in line 7. The new operator was annotated with lifetime myblock, telling the
compiler that this specific allocation can be freed when control flow leaves myblock.
Allowing the assignment in line 8 could therefore lead to dereferencing freed memory,
which is unsafe.

We can distinguish the allowed from the forbidden assignment by looking at the involved
lifetimes. In the first case, the lifetime of the assigned value is longer than demanded by
the declared type of the variable that we assigned to. We say that lifetime this outlives
lifetime myblock.

Definition 2. A lifetime a outlives lifetime b if the region described by b is fully contained
in the region described by a.

Note that definition 2 is reflexive, i.e. a lifetime always outlives itself. Furthermore, the

28

3. Design

lifetime * outlives all lifetimes.

3.3.1. Subtyping

Whether or not assigning a value to a variable is allowed depends on their types. Whiley
allows to assign a value x to a variable v if and only if the type of x is a subtype of
v’s declared type [18, p. 40]. We therefore need to extend subtyping for references to
compare their lifetimes.

Definition 3. A type &a:A is subtype of &b:B if and only if

• lifetime a outlives lifetime b and

• A and B describe the same type

The first condition is part of our extension, the second condition is Whiley ’s existing rule
for subtyping of references. We cannot allow A to only be a subtype of B here because
the following snippet breaks memory safety:4

1 method m(&any x):
2 *x = 5 // allowed because x points to ’any’ type
3

4 method main():
5 &bool p = new true
6 m(p) // allowed if &bool is a subtype of &any
7 bool b = *p // saves ’5’ into a bool variable

Types in Whiley describe sets of values. Type T1 shall be a subtype of T2 if the set of
values in T1 is a subset of values in T2 [18, p. 37].

Our extension complies with the intended semantics, though the set analogy is compli-
cated for references. Assume A and B describe the same type and a outlives b. Let p be
a reference of type &a:A. Using invariant 1, we know that p points to memory that will
be alive at least until the control flow leaves a. Since a outlives b, the memory will in
particular be alive until the control flow leaves b. Reference p is therefore also in type
&b:B.

3.3.2. Lifetime Parameters

Methods can accept references as their parameters. A method can also return references.
As with every reference type, parameter and return types need a lifetime. Furthermore, it
might be necessary to relate lifetimes of parameter and return types. Lifetime parameters
provide a way to declare lifetime names that describe lifetimes originating from the
method’s caller. The caller will pass actual lifetime arguments for these parameters.
We do a lifetime substitution for a method call: Lifetime parameters are mapped to

the provided lifetime arguments. Every occurring lifetime in the method’s parameter and
4Whiley actually used to allow it, but the bug was found and resolved while working on this thesis. See
https://github.com/Whiley/WhileyCompiler/issues/583

29

https://github.com/Whiley/WhileyCompiler/issues/583

3. Design

return types is substituted by its appropriate lifetime argument. Consider the following
example:

1 method <a> m(&a:int x) -> &a:int:
2 if ((*x) == 42):
3 return x
4 else:
5 return a:new 42
6

7 method main():
8 &this:int x = new 1
9 &this:int y = m<this>(x)

The program above declares a method m that accepts and returns type &a:int.
Lifetime a is a lifetime parameter. The method therefore returns a reference of the same
lifetime than given as parameter. When calling m, we give this as lifetime argument.
Lifetime a in the parameter and return type is therefore substituted with this, such that
the method invocation returns &this:int where this refers to main’s method body.

3.3.3. Context Lifetimes

Anonymous methods, so-called lambda methods, can access local variables from the
enclosing method. This also holds for references. If such a reference is dereferenced inside
the lambda method, then we have to ensure that the referenced memory location is still
alive when the lambda method is executed.
To solve this problem, we extend lambda methods and method types with a concept

called context lifetimes. These are lifetimes from the enclosing method that can be
dereferenced inside a lambda method. A detailed discussion on the problem and our
solution is given in section 3.4.5.

3.4. Discussion

This section gives a discussion on our design decisions provided in the previous sections.
We present possible alternatives and the reasons why they have been discarded.

Our extension to Whiley has been developed as part of this Master’s Thesis. The
extend of work for this thesis is limited to six months, done by a single student. All
implementation and the scientific elaboration had to be done with these limited resources.
This imposes some constraints on the extent of changes that can be made.

3.4.1. Backwards-Compatibility

One goal for our work was to maintain backwards compatibility. Whiley is still a developing
language, such that backwards-incompatible changes are basically possible, but being
able to use all existing test cases to see whether our changes break intended behavior and
semantics of Whiley was a big benefit.

30

3. Design

However, some changes are not fully backwards-compatible: The introduction of this
as a keyword breaks every program that uses it as identifier. Indeed, some test cases and
also some components of Whiley ’s standard library had to be adopted for that change.
But a simple replacement of affected identifiers resolves the problem.

We decided against a requirement to explicitly annotate every reference with a lifetime.
This allows to still compile programs that do not make use of our extension. The implicit
default lifetime for references without explicit annotation therefore had to be a lifetime
that does not impose additional constraints to existing programs. References can be
passed between methods, so the default lifetime should outlive all methods. The legacy
notation &int can therefore be regarded as syntactic sugar for &*:int.

One possibility for future optimization is to infer shorter lifetimes if no explicit lifetimes
are given. As an example, a method whose parameter and return types do not contain
any reference types cannot leak references to the caller. All allocations and references in
that method can therefore be assumed to be annotated with lifetime this instead of *.
But this is not possible for the general case where methods take and return references.
Inferring a shorter lifetime for these programs would need expensive inter-procedural
static analysis, which is out of scope for this thesis.

3.4.2. Mutability and Move Semantics

In Whiley , functions have call-by-value semantics. We can describe call-by-value semantics
with two properties:

1. the caller will not observe any modifications of passed values done within the callee

2. the callee will not observe any concurrent modifications of passed values done by
other parts of the program

The second point is trivial as there is not yet a concept for concurrency in Whiley . The
compiler is responsible to ensure the first point.
Rust distinguishes between mutable and immutable values and references. A primary

use for it is to classify borrowed references: there can either be multiple immutable
borrowings or only one mutable borrowing at any time. Call-by-reference semantics with
immutable references is basically the same as call-by-value semantics: the callee cannot
make any changes to the referenced value. This ensures the first point described above.
Furthermore, the value is borrowed immutable for the time that the callee is executed.
The borrow checker in Rust ensures that the value cannot be mutated during that time,
so also the second point holds.
To provide a function with read-only access to a value, we can pass it an immutable

reference in Rust . This is equivalent to calling the function with the value itself in Whiley .
When we want to provide the callee also with write access, we have different options in
Rust : we can pass the value itself. Ownership will be transferred to the callee and the
caller’s former variable binding cannot be used anymore. Alternatively, we can pass a
mutable reference to that value. Then the caller remains owner of the value. In Whiley ,
the only option is to pass a reference. To modify the referenced value, the callee uses the

31

3. Design

dereference assignment. The callee therefore needs to be a method, because dereference
operations are not allowed in pure functions.
Whiley has a focus on verification. But verification with references is difficult, as there

might be numerous aliases and an assignment can affect multiple variables. The current
verifier in Whiley cannot handle references.

1 method main():
2 &int x = new 1
3 assume (*x) == 1
4 *x = 2
5 assume (*x) == 2

Neither of the two verification conditions generated by the assume statements passes
verification. It therefore is a good practice to use values instead of references when
possible.
Whiley does not have a concept of immutable values or references. We decided against

introducing them for two reasons. First of all, it is not possible to add the invariant of
having only one mutable or several immutable references without breaking backwards
compatibility. Existing programs can create multiple aliases and mutate the value via
all of these references. That invariant is particularly useful in a concurrent setting, as it
prevents data races. But Whiley does not yet have concurrency.
Another point to consider are function or method parameters: in Rust , a function

with two references as parameters where at least one of them is mutable can always
assume that they do not point to the same memory. This is due to the fact that the
caller cannot borrow the value mutable and immutable at the same time. If a method in
Whiley relies on the fact that parameters are not aliases of each other, we can simply add
an appropriate precondition using requires.

Call-by-value as inWhiley and call-by-reference semantics can differ in their performance:
for a call-by-reference semantics we only need to pass an address to the callee. For call-
by-value, the implementation in general needs to generate a deep-copy of the passed
value in order to allow the callee to modify an independent copy. But if there is no such
modification the compiler can optimize the code by using a call-by-reference semantics.

3.4.3. References to Local Variables

Rust allows to create references to local variables. We cannot allow that in Whiley , as it
would easily break type safety. This is due to flow typing as described in section 2.2.7.
Consider the following program:

1 int|null x = 5
2 &int y = new 42;
3 if x is int:
4 y = &x // invalid syntax!
5 x = null
6 int z = *y

32

3. Design

Assume line 4 would store a reference to x into y, similar to Rust ’s borrowed references.
Due to flow typing, the static type of x in line 4 is int. Therefore the assignment in
line 4 is fine. In line 5, x has again type int|null. Therefore we should be able to
assign null to it. In line 6, we dereference y. It expects type &int and therefore should
yield an integer. But the actual value will be null!

Flow typing relies on the fact that there are no aliases for local variables. Allowing
to create references to local variables would introduce these aliases. As there is no easy
solution to keep flow typing in a backwards-compatible way while handling aliases, our
extension does not allow creating references to local variables.

3.4.4. Pointer Types

As discussed in section 3.4.2, references are a challenge for verification. While values in
Whiley cannot have aliases we always have to consider side-effects when calling a method
with references or doing dereference assignments. Rust offers several different type of
values and pointers: First of all, there is the owned value itself. It can be mutable or
immutable. Furthermore, there are borrowed references, Box, Rc and Arc. Each of them
comes with different advantages and benefits. The choice of the right type suitable for
the specific use-case is important. Changing your decision later on involves refactoring
all types, e.g. in function signatures or explicitly typed variable bindings. In its current
state, Whiley should remain as simple as possible. This is also the reason why the former
support for floating point numbers has been removed during recent development5. Rust
offers these different types to be as performant as possible: the types provide different
trade-offs between imposed restrictions and runtime overhead. An Arc<Box<T>> can
always be used instead of &T, but the additional overhead might not be necessary.
As described above, references to local variables are not a feasible option for our

extension. Instead, we need to have all references memory to be allocated using the new
operator. The compiler needs to decide whether the allocated memory can be placed
on the stack and therefore use a similar performance as local variables. A key input
to that decision are lifetimes. The Whiley reference type &T is similar to Rust ’s type
Rc<Box<T>>. Our extension leaves it up to the compiler to optimize that type to an
equivalent of &T. The Whiley language itself stays simple, as the decision where to allocate
the memory is delegated to the compiler. The programmer can influence that process by
annotating lifetimes, telling the compiler how long an allocation can be accessed. Without
lifetime annotations, the backwards-compatible default will be assumed.

3.4.5. Lambda Expressions

Lambda expressions allow to declare anonymous functions and methods. They differ from
normal functions and methods in such a way that they are declared in a context. We can
access variables that are declared outside from inside the lambda expression:

5http://whiley.org/2016/01/29/whiley-v0-3-38-released/

33

http://whiley.org/2016/01/29/whiley-v0-3-38-released/

3. Design

1 method main():
2 int x = 5
3 function(int)->(int) f = &(int y -> x + y)
4 int z = f(3)
5 assert z == 8

Even though variable x is declared in method main, we can still access it in the
anonymous function declared in line 3. We can assume that these anonymous functions
store a copy of all accessed variables that are declared in the outer context. For actual
values this works well. When it comes to references, then we have to ensure that the
memory pointed to is still alive. This is trivial when using garbage collection, but consider
the following program using our extension:

1 method generateLambda() -> method(int)->(int):
2 &this:int x = this:new 5
3 method(int)->(int) f = &(int y -> (*x) + y)
4 return f
5

6 method main():
7 method(int)->(int) f = generateLambda()
8 int z = f(3)

Similar to our first example, we have an anonymous method declared in line 3 that
accesses the variable x declared in line 2. It is important to realize that x does not
hold an integer. It holds a reference, i.e. the address of a memory location holding that
integer. The lambda expression therefore stores a copy of that address. The address is
dereferenced inside the lambda expression.
Our lifetime extension suggests that x should be allocated on the stack, because its

annotated lifetime is this. That implies that the memory holding our value 5 is freed
when generateLambda returns. But the actual dereference operation to that memory
happens afterwards, due to the call of method f in line 8. We dereference freed memory!

There are two general approaches to prevent that problem: first of all we can forbid to
use the dereference operator inside lambda expressions, or at least forbid dereferencing of
variables that are part of the lambda’s context. The second approach is to prevent calling
lambda expressions after the end of a lifetime that is dereferenced inside. We selected the
second choice, because it is less restrictive.

The lifetimes of references from the lambda’s context that are dereferenced inside the
lambda expression are called context lifetimes. In the example above, this is a context
lifetime for the lambda expression declared in line 3 because x is dereferenced inside
the lambda expression but declared outside and its lifetime is this. The programmer
has to specify a set of context lifetimes that he wants to dereference inside the lambda
expression: &[this](int y -> (*x) + y). Furthermore, the context lifetimes are
part of the method’s type: method[this](int)->(int). These context lifetimes are
considered to be using occurrences, i.e. the specified lifetime names need to be declared
before and still be in scope. This is what ensures effectiveness of our approach. In the
program above, we can add the context lifetime to both the lambda expression itself and

34

3. Design

its type in line 3. But we cannot add it to the return type of generateLambda, because
lifetime this is only valid in the method body and not in return types.
To call a lambda method we need to access its value. The value can be stored in a

local variable, in an array or in a record. In all cases, its declaration will be in scope. The
declaration states the type, containing the method’s context lifetimes. This transitively
ensures that the context lifetimes are still in scope when calling a lambda function.
therefore also all context lifetimes will be in scope.

When type-checking a dereference operation inside a lambda expression, the compiler
now has to extract the lifetime of the given reference. It has to be part of the context
lifetimes. Alternatively, the context lifetimes may also contain a lifetime that outlives the
reference’s lifetime.
Context lifetimes have to be considered for subtyping. First of all, there is no

order among context lifetimes. They can be treated as sets, i.e. all of the three
types method[a,b]()->(), method[a,b]()->(), and method[a,b,a]()->()
are equivalent. If a method is allowed to access some context lifetimes but actually does
make use of it, then the execution is still save. Subtypes therefore can have a subset of
the supertype’s context lifetimes. Consider the case that the method type declares b as
context lifetime. That imposes a restriction that the method can only be executed while
b is still in scope. If there is another lifetime a that outlives b, then it is also safe to
dereference references with lifetime a. We therefore define the following restriction for
subtyping among references: every context lifetime in the subtype must outlive a context
lifetime in the supertype.

35

4. Implementation

This chapter provides a detailed view on the different parts of the implementation. A
broad overview of our design and a discussion among alternative solutions has been given
in chapter 3.
Whiley is an open source project. The compiler is written in Java and its source code

can be found at https://github.com/Whiley/WhileyCompiler. The lifetime
extension covered by this thesis has already been merged into the develop branch. A
copy of that git repository is also stored on the digital medium attached to this thesis.

The implementation of our lifetime extension comprises a total of 2388 added and 464
removed lines of Java source code, excluding new test cases which add another 549 lines.
Furthermore, the author of this thesis contributed some independent changes to Whiley ,
mainly in order to fix bugs discovered while developing the lifetime extension. These
changes cover additional 665 added and 96 removed6 lines.

Section 4.1 presents how we change the parser to accept the new syntax. In section 4.2,
we extend the type checker to respect lifetimes. Method calls and lifetime substitution
are presented separately in section 4.3. Section 4.4 shows the changes to the intermediate
language.

4.1. Lexing and Parsing

The Whiley parser can be found in package wyc.io and consists of two parts: the lexer,
implemented in class WhileyFileLexer, transforms the source file into a token stream.
Class WhileyFileParser is the actual parser which generates an abstract syntax tree
(AST) from these tokens.

We had to adjust these components to support the syntax changes presented in
section 3.2.

4.1.1. Abstract Syntax Tree

The Java classes for the AST nodes can be found in package wyc.lang. The following
additions have been made:

• Declared Method: a list of lifetime parameters was added to the AST node
representing a method.

6This number excludes the 5725 removed lines from https://github.com/Whiley/
WhileyCompiler/pull/582. That change removed an explicit list of JUnit test cases and
added a parameterized test that runs for all available test programs.

36

https://github.com/Whiley/WhileyCompiler
https://github.com/Whiley/WhileyCompiler/pull/582
https://github.com/Whiley/WhileyCompiler/pull/582

4. Implementation

• Lambda Expression: a list of lifetime parameters and a set of context lifetimes
was added to the AST node representing a lambda expression.

• Method Invocation Expression: a list of lifetime arguments was added to the
AST node representing a method invocation expression and the return type now
reflects lifetime substitution as presented in section 4.3.1.

• Reference Type: a lifetime name was added to the AST node representing a
reference type.

• Method Type: a list of lifetime parameters and a set of context lifetimes was
added to the AST node representing a method type.

• Named Block: a new AST node for named blocks was added. It contains the
block’s name and the list of statements within that block.

4.1.2. Lexer

The only change to the lexer is to add this as a new keyword. That change is backwards-
incompatible, because it affects all programs that use this as an identifier. Some of the
existing test cases were affected and had to be updated to use another name instead of
this. This is due to the historic actor model in Whiley that has been removed a long
time ago. It is unlikely that many programs are affected by our change.

4.1.3. Parser

Changes to WhileyFileParser are more complex. The parser is structured in several
methods that are responsible to consume tokens for a specific AST node, e.g. an expression,
a method declaration or a type. To chose the right method, a lookahead of one or more
next tokens is used.

Enclosing Scope

While parsing a function or method, some contextual information is tracked in an object
of a class called EnclosingScope. The main purpose of it is to store declared variable
names. We extend that class to also store the declared lifetime names.

Whiley already expects variable names to be unique in a scope, i.e. it is not allowed to
declare a local variable where the name is already used for another variable that is still in
scope. We extend this constraint for lifetimes. Particularly, local variables and lifetimes
must have different names. We use this fact later for method invocations.
We add helper methods in EnclosingScope to declare new variables or lifetimes.

They check whether the name is already in use and throw an appropriate exception if
that is the case.

37

4. Implementation

Methods

The main entry point for parsing Whiley functions and methods is the parser method
parseFunctionOrMethodDeclaration. We extend it to also parse lifetime parame-
ters for method declarations. They are added to the EnclosingScope such that the
lifetime names can be used in a method’s parameter and return types and within the
method body. Lifetime this, denoting the body of a method, is added just before parsing
the method body, thus ensuring that it cannot be used in parameter or return types.

Headless Statements

Some statements are not identifiable with a dedicated keyword. They are called headless
statements and handled in method parseHeadlessStatement. Whiley used to have
the following headless statements: assignments, invocations, and variable declarations.
The latter one starts with a type. But there are token sequences that can be parsed as a
type or expression, for example an identifier can refer to a type alias or a local variable.
The sequence &foo can denote the type reference to foo or an address expression, where
the value is the method with name foo.

To disambiguate these cases, the compiler attempts to parse a type and checks whether
it cannot be parsed as expression. In case of such a definite type, the headless statement
is a variable declaration. The check is done in method mustParseAsType.
We extend that check to be aware of lifetimes in reference types. The sequences

&*:foo, &this:foo and &a:foo cannot be parsed as expression. The legacy form
&foo is syntactic sugar for &*:foo. But the check needs to know whether the default
lifetime * was explicitly given or omitted. We therefore also extend the AST node for
reference types to store such a flag.

Named Blocks

The newly introduced named blocks are headless statements. We therefore extend
parseHeadlessStatement. A named block starts with an identifier followed by a
colon and a line break.

1 myblock:
2 // statements inside the block

When parsing a named block, an independent clone of EnclosingScope is created.
We add the identifier as a lifetime name and parse the statements within the named block.
All following statements with greater indent are considered to be part of the named block.
The logic for parsing that kind of indented blocks already existed, e.g. to parse the body
of while loops. We reused that logic for named blocks.

Method Invocations

Method invocation expressions can now have optional lifetime arguments. Our syntax
for calling a method with explicit lifetime arguments is m<a, b>(x, y). But the part

38

4. Implementation

m<a could also be an expression, where both m and a are numeric local variables. To
disambiguate, we enforce that lifetime names and local variables are disjoint. If a is a
lifetime, then it has to be an invocation. The new disambiguation logic has been added
in parseAccessExpression and parseTermExpression.

Reference Type and Method Type

Reference types are parsed in parseReferenceType and method types in
parseFunctionOrMethodType. We extend both methods to reflect our
syntax extension. Reference types can be annotated with a lifetime, e.g.
&this:int. Method types now include context lifetimes and lifetime parameters,
e.g. method[this]<a,b>(&a:int,&b:int)->(&this:int).

The parser checks that the lifetime name in reference types and the context lifetimes for
method types are already declared. Declared lifetimes are stored in the EnclosingScope
object. We therefore need it as parameter to both methods and all methods that call them
either directly or transitively. Most of the parser methods already have that parameter,
but some methods and their invocations had to be adjusted to add it.

Allocation Expression

Memory allocation is done using the new expression. Our extension allows to specify a
lifetime for the allocated portion of memory: this:new 1. Allocation expressions are
parsed by method parseNewExpression. We extend it to parse the optional lifetime.
Allocation expressions can now start with different tokens: either new if the lifetime

is omitted, or any lifetime (identifier, this, or *). There is a lookahead logic in
parseTermExpression that decides when to call parseNewExpression. We extend
that logic to also consider a sequence of three tokens: lifetime, colon, new.

Lambda Expressions

Lambda expressions are parsed in method parseLambdaExpression. We extend that
method to parse optional context lifetimes and lifetime parameters.

4.2. Type Checking

The next phase after parsing a Whiley program is type checking. The type checker ensures
that all functions, methods, statements and expressions are well-typed. A key part of it
is subtyping.

All types inWhiley are represented as automata, as described in section 2.2.6. The imple-
mentation for subtyping can be found in class wyil.util.type.SubtypeOperator.
The SubtypeOperator object stores the type automata of the two types that should
be tested. Method isSubtype translates the subtype query into an intersection test:
T1 is a subtype of T2 if and only if the intersection of T1 with the complement of T2 is
non-empty.

39

4. Implementation

An intersection can either return a result immediately or depend on one or more
recursive intersection queries. The intersection of int and bool is empty. Types &a and
&b intersect if and only if types a and b intersect. Recursive queries use the same type
automata, but a different automaton state as entry point. The isIntersectionmethod
therefore takes the automaton state index for both types as parameter. Furthermore, it
takes for both types a flag denoting whether we consider the complement instead of the
type itself. In the following, we write !T to denote the complement of type T.
For recursive types, recursive intersection tests can incur an infinite recursion. To

mitigate that problem, the intersection test is split into two methods, isIntersection
and isIntersectionInner. The first one contains logic to break recursion. When
recursion leads to the same test again, then the intersection is assumed to be non-empty.
Method isIntersectionInner contains the actual intersection logic that needs to be
extended in order to introduce lifetimes.

4.2.1. Lifetime Relation

The new subtyping rules presented in section 3.3.1 use the outlives relation among lifetimes.
We introduce a new class wyil.util.type.LifetimeRelation that stores this rela-
tion. Entries are added while recursing the AST in wyc.builder.FlowTypeChecker.
An instance of LifetimeRelation is passed to SubtypeOperator in order to check
the outlives constraints in subtyping rules.

The outlives relation is a partial order. Lifetimes declared in named blocks are ordered
such that the lifetimes of outer blocks outlive the lifetimes of inner blocks. We store the
currently declared named blocks in a Stack. The type checker treats lifetime this like
a named block: method bodies are assumed to be enclosed in a block with name this
such that it is always the outermost block. Furthermore, we store a Set of declared
lifetime parameters. They outlive all named blocks, because the lifetimes are declared by
the current method’s caller. But there is no order within lifetime parameters.

4.2.2. Reference Types

We need to extend the intersection logic for reference types to respect the annotated
lifetimes. One or both types can be inverted for the test, such that we have to consider
four cases:

1. &a:A ∩ !(&b:B)
This intersection is empty if and only if &a:A is a subtype of &b:B. As described
in section 3.3.1, this is the case if

• lifetime a outlives lifetime b and

• A and B describe the same type, i.e. the intersections A ∩ !B and B ∩ !A are
empty.

The first condition can be checked using the newly introduced LifetimeRelation.
Remember that our definition of outlives is reflexive. The second one incurs two
recursive intersection queries.

40

4. Implementation

2. !(&a:A) ∩ &b:B
This case is symmetric to the first one.

3. &a:A ∩ &b:B
We have to check whether there is a value in both &a:A and &b:B. We claim that
this is equivalent to intersecting &A and &B, i.e. using the lifeitme * instead of a
and b. If there is a value in both &a:A and &b:B, then we can take that value
and change its lifetime to *, which outlives all lifetimes. Due to the subtyping rule
for references, the value will then be in both &A and &B. For the other direction,
assume that there is a value in both &A and &B. Then it is also in both &a:A and
&b:B because the lifetime * outlives a and b.

4. !(&a:A) ∩ !(&b:B) The complement of a reference type contains values of types
that are not references, e.g. true and 0. These values are in the intersection, so it
is non-empty regardless of a, b, A and B.

4.2.3. Method Types

Our extension adds lifetime parameters and context lifetimes to method types. These
concepts have been introduced in sections 3.3.2 and 3.3.3. They have to be considered for
intersection tests.
Lifetime parameters are an ordered list of lifetime names that may appear in the

methods parameter and return types. The actual name of these lifetime parameters does
not matter for the method’s type, they are only placeholders. Consider the following
method types:

1. method<a,b>(&a:int)->(&b:int)

2. method<b,a>(&b:int)->(&a:int)

3. method<a,b>(&b:int)->(&a:int)

Our intuition suggests that the first two types are the same, because we only need to
rename the lifetime parameters. But the third type is different: it cannot be transformed
into the first two types only by renaming lifetime parameters.
In section 4.3.2 we present an algorithm to substitute the actual lifetime names with

abstract placeholders. The first lifetime parameter will be named $1, the second one $2
and so forth. The types above will therefore be transformed to:

1. method<$1,$2>(&$1:int)->(&$2:int)

2. method<$1,$2>(&$1:int)->(&$2:int)

3. method<$1,$2>(&$2:int)->(&$1:int)

Using this substitution and ignoring the symmetric and trivial case, we have to adopt the
following intersections:

41

4. Implementation

1. method1 ∩ !method2
This intersection is empty if and only if method1 is a subtype of method2. As
described in section 3.4.5, every context lifetime in the subtype must outlive a
context lifetime in the supertype. Furthermore, the number of lifetime parameters
must be the same in both method types.

The remaining condition is that parameter types are contra-variant and return types
co-variant. This is not changed by our lifetime extension, except for the substitution
of lifetime parameters.

2. method1 ∩ method2
We have to check whether there is a method that is in both method types. For such
a method to exist, the number of lifetime parameters must match. But we do not
need to consider context lifetimes here: an intersecting method can be chosen with
an empty set of context lifetimes. Then it is in method types with arbitrary context
lifetimes, provided that the remaining conditions are met.

The remaining condition is that return types intersect. This is not changed by our
extension, but we need to apply the lifetime substitution.

4.3. Lifetime Substitution and Method Lookup

So far we have discussed two different scenarios for lifetime substitution:

1. Section 3.3.2 describes substitution of lifetime parameters to calculate the actual
return type of method invocations. Lifetime parameters have to be substituted with
the appropriate lifetime arguments.

2. In section 4.2.3, we discussed subtyping and intersection of method types. In order
to compare two method types we need to ensure that their lifetime parameters have
the same names. We therefore substitute them with ordered placeholders $1, $2,
and so forth.

Even though both use cases involve some form of substitution, they have different
requirements: For the first case, we need to calculate the resulting type because it is
the type that will be assigned to an invocation expression. This is not necessary for
the second case. Here we only need the boolean result, whether or not the input types
intersect. But the intersection algorithm has to be aware of recursive types and must
avoid an infinite recursion.
We therefore discuss appropriate substitution algorithms separately. Section 4.3.1

presents a solution for the first case, i.e. the substitution in return types. Section 4.3.2
discusses lifetime substitution for subtyping.
Whiley allows for method overloading, i.e. we can have multiple methods with the

same name but different parameter types. Furthermore, our extension allows method
invocation without specifying lifetime arguments. The compiler then needs to select a
suitable method and infer appropriate lifetime arguments. The necessary changes to the
method lookup algorithm are presented in section 4.3.3.

42

4. Implementation

4.3.1. Substitution in Return Types

Motivation

Assume we have a method m of type method<a>(&a:int)->(&a:int). To calculate
the type of the invocation m<this>(this:new 1), we need to substitute lifetime
parameters in the return type of m, i.e. instantiate lifetime parameter a with the actual
lifetime argument this. The substituted type in that example is &this:int.
The input to our algorithm is a type and a substitution. A substitution is a mapping

from lifetime parameters to their appropriate lifetime arguments. The output of our
algorithm is the substituted type.
An intuitive solution would be to take the type automaton and simply replace all

lifetime names according to the provided substitution. But this does not work because
we could capture lifetimes that are bound to lifetime parameters of nested method types.
Consider the following program:

1 method <a, b> m1(&a:int x, &b:int y) -> int:
2 return *x + *y
3

4 method <a> m2() -> method<a,b>(&a:int,&b:int)->(int):
5 return &m1
6

7 method main():
8 b:
9 any m = m2()

What should be the type of the invocation expression in line 9? We call the substitution
algorithm with the return type of m2, i.e. method<a,b>(&a:int,&b:int)->(int),
and the substitution a 7→ b. The substituted type should be equivalent to

method<c,d>(&c:int,&d:int)->(int).
In particular, we must not substitute it to

method<a,b>(&b:int,&b:int)->(int) or
method<b,b>(&b:int,&b:int)->(int).

Whiley supports recursive types. We previously discussed LinkedList as an example
for recursive record types, but also method types can be recursive. The following program
uses a recursive method type:

1 type mymethod is method()->(mymethod)
2 method m()->mymethod:
3 return &m

Recursive types are challenging for lifetime substitution. The structure of the substituted
type might be different from the original one and the type automaton might get bigger
during substitution. Consider the recursive method type declared by

type mymethod is method<a>(&*:mymethod)->(&a:mymethod).
Its type automaton is provided in Figure 3a.

Our substitution algorithm will be called on the return type. We therefore first need to

43

4. Implementation

method<a>

mymethod

&*: &a:

pa
ra
m return

(a) recursive method type

&a:

method<a>

&*:

param return

(b) return type

&this:

method<a>

&*: &a:

p r

(c) substituted return type

Figure 3: Substitution in a type automaton for a recursive method type.

extract the type automaton for the return type. It is shown in Figure 3b. This extraction
is easy, as we only need to change the root state.
Assume there is a method m of this type mymethod and we invoke it as

m<this>(new &m). To calculate the type of this invocation expression we need to
apply the substitution a 7→ this to the extracted return type from Figure 3b. The result
is given in Figure 3c.

The substituted type is bigger than the original one, i.e. the automaton has more states.
It is therefore important to prevent infinite recursion in the substitution algorithm.

Solution

Our substitution algorithm is aware of these challenges. The implementation can be
found in class wyil.util.type.LifetimeSubstitution. It takes a type and a
substitution as input and returns the substituted type.

The key approach is as follows: the algorithm uses the extracted type automaton from
the original type and builds a new type automaton for the substituted type. We recursively
copy all automata states, beginning with the root state. We apply the substitution while
copying the states to the new automaton.

The algorithm recurses down the automaton structure in a depth-first manner. When
we reach a method type, then we remember its lifetime parameters in an ignored set.
They will not be substituted while copying the method’s parameter and return types.
This prevents the capturing problem described above.

Finally, we need a solution to mitigate infinite recursion for recursive types. We
therefore store a mapping of all previously copied states to their new states. If we need
to copy the same state again, then we take the one that has already been copied. But the
mapping needs to be aware of lifetime parameters that are excluded from substitution:

44

4. Implementation

we can only re-use an already copied state if the previous and current ignored sets are
compatible.
To see whether two ignored sets are compatible, we additionally store the set of

substituted lifetimes for each copied state. It contains only the lifetimes from the
substitution that have actually been replaced while copying that state and its children.
We can re-use a copied state if the current ignored set is a superset of the previous one
and it does not contain any lifetimes that have been substituted while when copying the
state. In particular, two ignored sets will be compatible if they are the same.

We can have several copies of the same original state that use different ignored sets.
The resulting automaton therefore might have more states than the original one. But the
size is limited: all ignored sets are subsets of lifetimes contained in the substitution.
For an original automaton with n states and a substitution that contains m lifetimes, the
resulting automaton has a maximum of n ∗ 2m states.

4.3.2. Substitution for Subtyping

The second use-case for substitution is subtyping and intersection of method types. The
key problem is that we need to compare two type automata that might be cyclic, i.e.
for recursive types. The logic that avoids infinite recursion relies on the fact that the
automata do not change, we only use a different state as root state. We therefore cannot
use the algorithm from section 4.3.1.

Our solution is added to class wyil.util.type.SubtypeOperator. The intersec-
tion algorithm recurses down both automata structures. We maintain for each automaton
a lifetime substitution. It is applied when comparing lifetimes.

The substitution maps lifetime parameters to $1, $2, etc. By choosing the $-prefixed
names we avoid collision with other lifetime names, because identifiers cannot start with $.
Furthermore, we can avoid capturing of nested lifetime parameters easily: when recursion
visits a nested method type, then the current substitution is updated. We add entries for
the nested lifetime parameters, overwriting any existing substitution for that name. This
way we ensure that lifetime names in structures with nested method types are always
bound to the innermost lifetime parameter with the same name, i.e. the outer lifetime
parameters cannot capture any lifetime names from nested method types.

We have to distinguish lifetime parameters from different nesting levels. The two types
method<a>() -> method[a](&a:int)->(&b:int) and
method<a>() -> method[a](&b:int)->(&a:int)

are different. But both a and b refer to a first lifetime parameter of a method and
therefore would be replaced with $1. We therefore encode a nesting level into the lifetime
names. The lifetime parameters from the innermost method type will be substituted with
$1, $2, etc. For each outer level we prepend a $, i.e. $$1 and $$2 for one nesting level,
$$$1 and $$$2 for two nesting levels and so forth. For the two types above, &a:int will
be substituted with &$$1:int and &b:int with &$1:int. This allows to distinguish
both types.

We start with an empty substitution for both automata. When we hit a method type
then we first prepend a $ to each entry that is already part of the current substitutions.

45

4. Implementation

Then we add the new entries, overwriting possibly existing ones. Instead of modifying
the automata we apply the substitution when reading a lifetime name. This allows us to
keep the existing logic that avoids infinite recursion.

4.3.3. Method Lookup

Method lookup is the process of resolving overloading, i.e. selecting a suitable method
when there are multiple methods with the same name. Whiley collects all methods that
have compatible parameter types, i.e. the given argument is a subtype of the expected
parameter type. From these candidates, the method with the most specific parameter
types is used. If there is not a unique most specific candidate, then the method call is
said to be ambiguous, which is a compile-time error. This is similar to Java’s behavior
for calling overloaded methods.
The method lookup algorithm needs to apply a lifetime substitution in parameter

types. Furthermore, the lifetime arguments might not be explicitly specified. Consider
the following program:

1 method <a> id(&a:int x) -> &a:int:
2 return x
3

4 method main():
5 &this:int x = id(this:new 1)

To see whether the method from line 1 is a candidate for the invocation in line 5, we
need to compare the parameter types with the types of the actual arguments. The first
method parameter is of type &a:int, but the provided parameter has type &this:int.
In order to compare them, we need to replace the lifetime parameter a with a lifetime
argument. But there are no lifetime arguments provided in the program. Assume we
guess this as suitable lifetime argument for a. Then we use the substitution a 7→ this
and the substituted parameter type &this:int matches the provided argument type.
Our extension considers that substitution when comparing parameter and argument

types. We use the substitution algorithm from section 4.3.1. But the challenging task is
to actually guess suitable lifetime arguments if they are not provided by the programmer.

Our solution is as follows: we consider all lifetimes occurring in the provided argument
types and the default lifetime * as possible values for lifetime arguments. Then we
enumerate all possible combinations for a list of lifetime arguments with these values.

Let p be the number of lifetime parameters and a be the number of lifetimes extracted
from the given arguments, including *. We have a different options for each of the p
parameters. The total number of combinations therefore is ap.
Method lookup is implemented in the resolveAsFunctionOrMethod method

of class wyc.builde.FlowTypeChecker. It first collects all methods with
the right name and number of parameters. The actual selection logic is in
selectCandidateFunctionOrMethod. If lifetime arguments have been specified
explicitly, then we only consider methods with a matching lifetime parameter count. We
check each method with the substitution defined by the provided lifetime arguments.

46

4. Implementation

If the lifetime arguments are omitted, then we first extract the lifetimes that shall be
used as lifetime arguments. Then we try out all combinations for every method. A valid
candidate is a pair of method and lifetime arguments.

A single method can yield multiple valid candidates. Consider the following method:

1 method <a, b> fst(&a:int x, &b:int y) -> &a:int:
2 return x

Assume we call fst as fst(this:new 1, *:new 2). Our algorithm extracts the
lifetimes this and * from the arguments. There are four combinations for lifetime
arguments: <this, this>, <this, *>, <*, this>, and <*, *>. The latter two
do not yield a valid candidate because the first argument is of type &this:int which
is not a subtype of the substituted first parameter type &*:int. The former two will
successfully type-check, we therefore get two valid candidates. The substituted parameter
types for the first valid candidate are (&this:int, &this:int), the types for the
second candidate are (&this:int, &*:int). We have to chose the one with the most
specific parameter types. We see that the types in the second candidate are subtypes of
the first candidate. The second candidate is therefore more specific than the first one.
Our algorithm iterates over all valid candidates. If there is another candidate that is

more specific, then the less specific one is discarded. If there is more than one choice left
then the method invocation is ambiguous.

4.4. Intermediate Language

The Whiley Intermediate Language (WyIL) is a byte-code format. The Whiley compiler
first translates the source file to the intermediate language. This step involves parsing, type-
checking and method lookup. The intermediate code is then translated to a destination
language. This step is done by a backend, e.g. the Whiley to Java Compiler.

We needed to adjust some parts of the intermediate language for our lifetime extension.
The main part is to extend types. Class wyil.lang.Type contains logic to print types
in a human-readable format, to save types in a byte-code format and to interpret that
byte-code format to construct the type again. The affected types are reference types and
method types.

The type automata nodes are annotated with supplementary data, e.g. the field names
in records types. There is an Object typed field data for that purpose. Reference types
do not yet use that field. We therefore can store the lifetime name in it.
Method types are more complicated. They use the data field to store the number

of parameters. We define a dedicated Data class for method types, containing the
number of parameters, the context lifetimes, and the lifetime parameters. Whiley uses
an algorithm to normalize type automata. It relays on suitable equals and hashCode
methods and uses an order among types. To define that order, we need to implement
Comparable<Data> in our Data class.

47

5. Evaluation

In this chapter we evaluate our contribution. We defined a concept of lifetimes for the
Whiley programming language and implemented our changes. This chapter provides a
short performance evaluation and a case study on how to use our extension for improved
memory management.

5.1. Test Cases

Whiley ships with a collection of test cases in the form of programs. There are valid
and invalid programs. The test cases check that valid programs compile successfully and
their execution passes all assert and assume runtime checks. Compilation of invalid
programs has to fail and yield the expected error message.
To see the performance impact of our lifetime extension on legacy programs, we

compare execution times of existing tests with and without the lifetime extension. The
test execution time is the compilation time for the test program and for the valid programs
additionally the program’s execution time. To minimize the effect of statistical distribution,
we run the tests 25 times each and take the average value for comparison. We execute
the tests on an Intel Core i3 2 GHz dual core processor.

There are 483 existing test cases for valid programs. The total test execution time for
these tests increases from 51.95 to 57.49 seconds when using our extension. This is an
increase of 10.66%. Compilation time of the 261 existing invalid programs increases from
9.09 to 9.81 seconds, i.e. by 7.92%.

test case old new diff [ms] diff [%]

FunctionRef_Valid_11 0.119 0.188 69 57.98
FunctionRef_Valid_12 0.097 0.212 115 118.56

Table 1: Tests with significantly changed execution time

We filtered for the tests
with an increase of at least
60ms absolutely and at the
same time 25% relatively.
this yields only two tests,
they are listed in Table 1.

Both test programs call functions with other functions as parameter, e.g. f1(&f2).
The compiler then has to check whether the type of function f2 is a subtype of the
parameter type of f1. Subtyping on function and method types got more complicated
because we have to consider context lifetimes and lifetime parameters. Even for programs
that do not use lifetimes these checks impose some overhead because of added case
distinctions. The general increase in execution time can be explained with an increased
size for the abstract syntax tree and type representations.
Our implementation ships with 17 new valid and 14 new invalid programs. The total

execution time for these tests is 2.12 seconds for the valid and 0.12 seconds for the invalid

48

5. Evaluation

programs. The test cases also cover the method lookup algorithm with omitted lifetime
arguments as discussed in section 4.3.3. None of these tests takes longer than 0.2 seconds.

5.2. Memory Management

One goal of introducing lifetimes in Whiley is to provide a basis for improving memory
management. In particular, we want to allow for deallocating dynamically allocated
memory without garbage collection.

We establish here a short study on how our lifetime extension can be used for memory
management. This is especially interesting for the Whiley compiler backend that generates
C code because it currently cannot deallocate dynamically allocated memory. Some parts
of the presented work can also be implemented in the Whiley to Java Compiler, but
the crucial step of deallocating memory is not possible in the JVM because it relies on
garbage collection.

The tactic presented in the following avoids garbage collection. Memory that is allocated
with a lifetime other than * will be deallocated automatically. For memory allocated
with *, we rely on reference counting and accept that cyclic structures cannot be freed
without manually breaking the cycles. This also holds for Rust [15].

A program’s memory is divided into the stack and the heap. The stack contains local
variables and management information to organize method calls. The heap contains
dynamically managed data. Data on the stack is addressed as a statically known offset
to the current stack pointer. This imposes the constraint that the size of these objects
must be known at compile-time. This holds for primitive types like booleans or 32-bit
integers. Also arrays of these types with a known length have a known size, but we cannot
calculate the size of an array with unknown length.
Consider the following program:

1 type u8 is int x where 0 <= x && x < 256
2 method main():
3 &this:u8 x = this:new 1
4 m(x) // method<a>(&a:u8)
5 // ...

...

1

x:

...

Figure 4: Stack Layout

We define a type u8 for 8 bit unsigned integers, because
Whiley ’s type int is not bounded in size. We allocate an
integer and pass its pointer x to a method m. That method
can then modify the referenced value and main can see the
changes afterwards. We can allocate the integer directly
on the stack. Figure 4 sketches a possible stack layout for
method main. x actually contains the memory address of the
cell pointed to by the arrow. Method m expects a reference as
parameter, i.e. a memory address. It does not need to know
whether the address is part of the stack (as in the figure)
or part of the heap. There is no need to explicitly free the memory allocated in line 3,

49

5. Evaluation

because the whole stack frame will be freed when main returns.
If the allocation is inside a loop and the loop’s body does not outlive the lifetime of

the allocation, then it might not be possible to place these allocations on the stack: each
loop iteration allocates a distinct portion of memory and with an unknown number of
iteration it might not be possible to statically compute a stack layout with space for every
allocation. These allocations and allocations of objects with unknown size must be placed
on the heap.
But also the heap-allocated memory can be deallocated without garbage collection:

for each lifetime we manage a list of memory allocations. When the lifetime goes out of
scope, i.e. at the end of a named block or a method, then the allocations in that list will
be freed. Each allocation with new generates an entry in that list. Consider the following
sketch of a program:

1 type unknownSize is ...
2 method main():
3 &this:unknownSize x = this:new ...

The memory layout can be as follows:

...

allocations:

x:

...

Stack

length = 1

variable object

Heap

The address of the allocation done in line 3 will be stored in the dynamic allocations
list. Assigning another reference to x later in the program does not affect the reference
in that list. When method main ends then we free all memory from the allocations
list and the list itself. The list is placed on the heap such that we can dynamically add
elements, this might be necessary for loops.

When calling a method with lifetime parameters, then the compiler will also pass these
allocation lists for all argument lifetimes. That way, allocations in the callee that use
a lifetime parameter can be linked in the appropriate allocations list.

Only lifetimes that are used with new or passed as lifetime argument to another method
need an allocations list. We can omit the list for other lifetimes. Lifetime arguments,
either explicitly given or automatically inferred, are available to the called method as
lifetime parameters. The called method might allocate memory for those lifetimes and
therefore needs access to their allocations lists.
Furthermore, if the number of allocations for a lifetime is statically known, then we

can place the allocations list for that lifetime as an array directly onto the stack.

50

6. Conclusion

This chapter briefly revisits the contributions from this thesis. Furthermore, we provide
some options for future extensions of Whiley . We outline how these extensions are affected
by and possibly can benefit from our work on lifetimes. Afterwards, we draw our final
conclusions.

6.1. Contribution

• We extended the Whiley language and introduced the concept of lifetimes. Our
extension fits to Whiley ’s environment. We had to consider structural typing and
flow typing, both features are not present in Rust . We kept the Whiley language as
simple as possible and mostly backwards-compatibility, with keyword this being
the only breaking change. We gave a discussion on our design decisions and found
a solution that can be implemented as part of this thesis.

• We presented all changes to the Whiley syntax. We gave formal specifications for
each change such that they can be easily incorporated into the Whiley Language
Specification. The given examples help especially those readers who are unfamiliar
with Whiley to understand each change.

• We implemented the lifetime extension for the Whiley compiler which is written
in Java. Our implementation covers all aspects that are presented in this thesis.
We can now compile and run Whiley programs with lifetimes and the compiler
statically checks all defined constraints. Main challenges were the substitution
algorithm for subtyping, the algorithm for method lookup, and the handling of
lambda expressions. Our implementation has been merged and released as part of
Whiley v0.3.407.

• We documented the implementation in chapter 4. Example programs, figures and
further explanation aim to improve understandability of the algorithms in our
implementation.

• We outlined a possible future extension for the Whiley compiler backends that
utilizes lifetime information for automatic and safe memory management. The
presented technique can be used to greatly improve the Whiley to C compiler
(though actually doing this remains as future work).

7http://whiley.org/2016/05/28/whiley-v0-3-40-released/

51

http://whiley.org/2016/05/28/whiley-v0-3-40-released/

6. Conclusion

• Our implementation ships with several additional test cases, covering valid and
invalid programs. They demonstrate expressiveness of our lifetime extension and
are a good indication of correctness of our implementation.

6.2. Future Work

Embedded Devices and Memory Management

One main reason for porting the idea of lifetimes from Rust to Whiley was to provide a
basis for automatic and safe memory management without garbage collection. Previous
work on compiling Whiley programs to embedded devices could not deallocate dynamically
allocated memory [28]. In section 5.2, we presented a technique how a Whiley compiler
backend can use lifetime information for this purpose.

Parametric Type Declarations

There are two main reasons for type declarations in Whiley : they shorten programs
because we can use the type’s name instead of its possibly long definition, and more
importantly, they allow to define recursive types. There is currently no way to declare
types with parametric lifetimes. For example, it might be desirable to declare a type for
linked lists where all components are connected using references of the same lifetime:

1 type LinkedList<a> is null | &a:{int: head, LinkedList tail}
2 method <a> add(LinkedList<a> l, int x):
3 // should modify l and append x
4 method main:
5 LinkedList<this> l = this:new {head: 2, null}
6 add(l, 4)

The syntax LinkedList<a> is not yet supported. A future extension could add
support for parametric lifetimes together with parametric types, i.e. allowing to define
one LinkedList that can be instantiated for int and bool types as head.

Inference

Some programming languages allow to declare variables without specifying the type
explicitly, the type will then be inferred from the remaining program. Rust is one of these
languages. Type inference can speed up programming, because there is less code that has
to be written. On the other hand, explicitly specified types can improve understandability
of programs.

Our implementation is able to infer suitable lifetime arguments for method invocations
as part of the method lookup algorithm. But we currently require the programmer to
specify lifetimes on reference types and when using the new operator. If no lifetime is
given, then the default lifetime * is assumed. It might be desirable for some places to
omit an explicit lifetime annotation and automatically infer a better solution.

52

6. Conclusion

To benefit from the memory management strategy outlined in section 5.2, we should
avoid * and use smaller lifetimes when possible. First of all, the lifetime in a new
expression can be chosen as the smallest lifetime in scope such that the expression still
meets the expected type. An assignment like &this:int x = new 1 should allocate
an integer of lifetime this and not *. But inferring the expected type might not be
possible if the expression is an argument for a method call: with overloading, the method
to chose and therefore the expected parameter types depend on the provided argument
types. Furthermore, lifetime parameters without lifetime arguments might prevent such a
type inference for the method arguments.

For reference types without specified lifetime we currently assume lifetime *. In some
cases it is possible to change these lifetimes to this, in particular when the method’s
parameter and return types do not contain any references.
Another possible optimization affects method signatures: a method declared as

method m(&int x, &int y) -> &int accepts two references of type &*:int and
returns such a reference. Depending on the method body, it might be possible to change
the signature to method <a> m(&a:int x, &a:int y) -> &a:int. This change
does not affect the caller: the compiler is able to find a suitable lifetime argument for a.
It can be *, then the change does not have any effect. But the compiler might also be
able to type-check the method call with smaller lifetimes for a, e.g. the caller’s method
body denoted by this.

Concurrency

As of the time of writing, Whiley does not yet provide concurrency. The challenge is to
support concurrency in a safe way such that data races and runtime faults are avoided,
and that it is still possible to verify programs easily.
Verifying programs with shared memory is non-trivial. The safe core of the Rust

language uses communication channels instead of shared memory. Rust additionally
provides some unsafe operations. They are used in libraries that expose a safe interface
for accessing shared memory only via mutual exclusion locks.
We can reason about shared memory using Concurrent Separation Logic as proposed

by O’Hearn [16]. The main challenge here is to find suitable partitions of the heap to
establish a proof. It seems to be difficult to find an algorithm that automatically verifies
programs without a lot of work done by the programmer.

6.3. Conclusions

The goal of this thesis was to design and implement a concept of lifetimes for Whiley .
This has been achieved and our added test cases demonstrate that the implementation is
actually working.

Furthermore, we hoped that a lifetime system can optimize memory management and
in particular remove the dependency on garbage collection. As shown in the evaluation
chapter, our lifetime extension successfully satisfies that goal.

53

A. Bibliography

[1] Aldrich, J., Kostadinov, V., and Chambers, C. Alias annotations for program
understanding. In Proceedings of the 17th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (New York, NY, USA,
2002), OOPSLA ’02, ACM, pp. 311–330.

[2] Andreae, C., Coady, Y., Gibbs, C., Noble, J., Vitek, J., and Zhao, T.
Scoped types and aspects for real-time java memory management. Real-Time Systems
37, 1 (2007), 1–44.

[3] Benchmarks Game. Rust programs versus c gcc. benchmarksgame.alioth.
debian.org/u64q/rust.html. Retrieved 2016-05-01.

[4] Bevan, D. PARLE Parallel Architectures and Languages Europe: Volume II: Parallel
Languages Eindhoven, The Netherlands, June 15–19, 1987 Proceedings. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1987, ch. Distributed garbage collection using
reference counting, pp. 176–187.

[5] Boyapati, C., Salcianu, A., Beebee, Jr., W., and Rinard, M. Ownership
types for safe region-based memory management in real-time java. In Proceedings
of the ACM SIGPLAN 2003 Conference on Programming Language Design and
Implementation (New York, NY, USA, 2003), PLDI ’03, ACM, pp. 324–337.

[6] Brandauer, S., Clarke, D., and Wrigstad, T. Disjointness domains for
fine-grained aliasing. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications
(New York, NY, USA, 2015), OOPSLA 2015, ACM, pp. 898–916.

[7] Cherem, S., and Rugina, R. Region analysis and transformation for java programs.
In Proceedings of the 4th International Symposium on Memory Management (New
York, NY, USA, 2004), ISMM ’04, ACM, pp. 85–96.

[8] Choi, J.-D., Gupta, M., Serrano, M., Sreedhar, V. C., and Midkiff, S.
Escape analysis for java. In Proceedings of the 14th ACM SIGPLAN Conference on
Object-oriented Programming, Systems, Languages, and Applications (New York, NY,
USA, 1999), OOPSLA ’99, ACM, pp. 1–19.

[9] Clarke, D. G., Potter, J. M., and Noble, J. Ownership types for flexible alias
protection. In Proceedings of the 13th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications (New York, NY, USA, 1998),
OOPSLA ’98, ACM, pp. 48–64.

55

http://benchmarksgame.alioth.debian.org/u64q/rust.html
http://benchmarksgame.alioth.debian.org/u64q/rust.html

A. Bibliography

[10] Dhurjati, D., Kowshik, S., Adve, V., and Lattner, C. Memory safety without
runtime checks or garbage collection. In Proceedings of the 2003 ACM SIGPLAN
Conference on Language, Compiler, and Tool for Embedded Systems (New York, NY,
USA, 2003), LCTES ’03, ACM, pp. 69–80.

[11] Grossman, D., Morrisett, G., Jim, T., Hicks, M., Wang, Y., and Cheney,
J. Region-based memory management in cyclone. SIGPLAN Not. 37, 5 (May 2002),
282–293.

[12] Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM
12, 10 (Oct. 1969), 576–580.

[13] Kahn, O. D., Spillinger, I. Y., and Yoaz, A. Mechanism for prefetching targets
of memory de-reference operations in a high-performance processor, Oct. 13 1998.
US Patent 5,822,788.

[14] Knuth, D. E. Backus normal form vs. backus naur form. Commun. ACM 7, 12
(Dec. 1964), 735–736.

[15] Matsakis, N. D. On reference-counting and leaks. smallcultfollowing.com/
babysteps/blog/2015/04/29/on-reference-counting-and-leaks/.
Retrieved 2016-05-01.

[16] O’Hearn, P. W. Resources, concurrency, and local reasoning. Theoretical computer
science 375, 1 (2007), 271–307.

[17] Pearce, D. J. The whiley automata library (wyautl). whiley.org/2011/09/
20/the-whiley-automata-library-wyautl/. Retrieved 2016-05-01.

[18] Pearce, D. J. The whiley language specification. whiley.org/download/
WhileyLanguageSpec.pdf. Retrieved 2016-05-01.

[19] Pearce, D. J. An Algorithmic Framework for Recursive Structural Types. School
of Engineering and Computer Science, Victoria University of Wellington, 2011.

[20] Pearce, D. J. Integer range analysis for whiley on embedded systems. In
Object/Component/Service-Oriented Real-Time Distributed Computing Workshops
(ISORCW), 2015 IEEE International Symposium on (2015), IEEE, pp. 26–33.

[21] Potanin, A., Noble, J., Clarke, D., and Biddle, R. Generic ownership for
generic java. In Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and Applications (New York, NY,
USA, 2006), OOPSLA ’06, ACM, pp. 311–324.

[22] Reed, E. Patina: A formalization of the rust programming language. University
of Washington, Department of Computer Science and Engineering, Tech. Rep. UW-
CSE-15-03-02 (2015).

56

http://smallcultfollowing.com/babysteps/blog/2015/04/29/on-reference-counting-and-leaks/
http://smallcultfollowing.com/babysteps/blog/2015/04/29/on-reference-counting-and-leaks/
http://whiley.org/2011/09/20/the-whiley-automata-library-wyautl/
http://whiley.org/2011/09/20/the-whiley-automata-library-wyautl/
http://whiley.org/download/WhileyLanguageSpec.pdf
http://whiley.org/download/WhileyLanguageSpec.pdf

A. Bibliography

[23] Reynolds, J. C. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science, 2002. Proceedings. 17th Annual IEEE Symposium on
(2002), IEEE, pp. 55–74.

[24] Rust Team. Rust homepage. www.rust-lang.org. Retrieved 2016-05-01.

[25] Rust Team. The rust programming language. doc.rust-lang.org/book/.
Retrieved 2016-05-01.

[26] Rust Team. The rustonomicon - the dark arts of advanced and unsafe rust
programming. doc.rust-lang.org/nomicon/. Retrieved 2016-05-01.

[27] Seidl, H., Wilhelm, R., and Hack, S. Compiler Design - Analysis and Trans-
formation. Springer, 2012.

[28] Stevens, M. Demonstrating whiley on an embedded system. Bachelor’s thesis,
Victoria University of Wellington, 2014.

[29] Tuch, H., Klein, G., and Norrish, M. Types, bytes, and separation logic. In
Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (New York, NY, USA, 2007), POPL ’07, ACM, pp. 97–108.

[30] Venners, B. Inside the Java Virtual Machine. McGraw-Hill, Inc., New York, NY,
USA, 1996.

[31] Zorn, B. Comparing mark-and sweep and stop-and-copy garbage collection. In
Proceedings of the 1990 ACM Conference on LISP and Functional Programming
(New York, NY, USA, 1990), LFP ’90, ACM, pp. 87–98.

57

https://www.rust-lang.org/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/nomicon/

	Abstract
	Acknowledgments
	Contents
	1 Introduction
	1.1 Whiley
	1.2 Contributions
	1.3 Organization

	2 Background
	2.1 Rust and Lifetimes
	2.1.1 Stack, Heap and Ownership
	2.1.2 Move Semantics
	2.1.3 Boxes and Reference-Counted Pointers
	2.1.4 Borrowing
	2.1.5 Lifetimes
	2.1.6 Variance and Subtyping
	2.1.7 Summary: Different Ways to Store and Share Values

	2.2 Whiley
	2.2.1 Design
	2.2.2 Functions, Methods and Specification
	2.2.3 Verification
	2.2.4 Structural Typing and Records
	2.2.5 Union Types
	2.2.6 Type Declarations and Recursive Types
	2.2.7 Flow Typing
	2.2.8 Heap-Allocated Memory and References

	2.3 Related Work
	2.3.1 Ownership
	2.3.2 Region-Based Memory Management
	2.3.3 Alias Analysis
	2.3.4 Separation Logic

	3 Design
	3.1 Motivation
	3.2 Syntax
	3.3 Lifetimes
	3.3.1 Subtyping
	3.3.2 Lifetime Parameters
	3.3.3 Context Lifetimes

	3.4 Discussion
	3.4.1 Backwards-Compatibility
	3.4.2 Mutability and Move Semantics
	3.4.3 References to Local Variables
	3.4.4 Pointer Types
	3.4.5 Lambda Expressions

	4 Implementation
	4.1 Lexing and Parsing
	4.1.1 Abstract Syntax Tree
	4.1.2 Lexer
	4.1.3 Parser

	4.2 Type Checking
	4.2.1 Lifetime Relation
	4.2.2 Reference Types
	4.2.3 Method Types

	4.3 Lifetime Substitution and Method Lookup
	4.3.1 Substitution in Return Types
	4.3.2 Substitution for Subtyping
	4.3.3 Method Lookup

	4.4 Intermediate Language

	5 Evaluation
	5.1 Test Cases
	5.2 Memory Management

	6 Conclusion
	6.1 Contribution
	6.2 Future Work
	6.3 Conclusions

	A Bibliography

