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Abstract Solving games on models of computation is a typical approach in program
synthesis. Concurrent, recursive programs can be modelled by multi-pushdown sys-
tems. Previous work has shown an upper bound of k-EXPTIME for k bounded
phase multi-pushdown parity games [13]. We present a k-EXPTIME lower bound
on the complexity of reachability games on k + 2 bounded context switching and k
bounded phase multi-pushdown systems and a k-EXPTIME upper bound on parity
games over k + 2 bounded context switching multi-pushdown systems.
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1 Introduction and related work

Programs are omnipresent in every sector of today’s world, ranging from entertain-
ment systems, communication and science to defense, health care and transportation.
Dependent on project size and application, software is developed in a vast variety of
fashions, often including globally distributed teams of developers. Up until today,
programs are handwritten and, by human nature, they regularly contain bugs. The
critical application fields dramatically increase the need for programs that are known
to be correct.
Even though formal proof systems with the capability of showing program correct-

ness exist, they are rarely used in practice [8–10]. This is mainly due to additional
complexity during the development process, which is already consumed by a rapidly
growing demand for software solutions.
Today’s most common approach to bug reduction in a program is testing. Testing

can be very dynamic and finds bugs in any component of a development process,
but it is “hopelessly inadequate for showing their absence” [7]. This is particularly
true for concurrent programs where bugs are hard to reproduce. By their nature,
the interaction of threads in a concurrent program increases the number of possible
computations drastically.
This motivates a shift towards automated procedures ensuring program correct-

ness. In theoretical computer science, showing correctness of a program belongs to
the field of verification. The perspectives for formal verification of program prop-
erties seemed to be very limited after the results of Turing’s halting problem and
Rice’s theorem [12, 15]. They conclude that even simple properties like termination
of programs are already undecidable. In principle, for any looping programs that
have two counters and the ability to test them for being zero, most properties are
undecidable. If the counters are bound however, the state space of the program is
finite and those properties become decidable. However, complexity theory states
most verification problems as computationally hard.
One part of formal verification is Model checking. Model checking introduces an

automatic way to use logical specifications for bug finding, making it applicable for
practical use. The basic concept of model checking is simple. The paradigm consists
of the following parts:

• Modelling. The program is abstracted to a transition system which is an ade-
quate model for finite state systems like programs. The specific type of model
depends on the type of program.

• Specification. A language to formalize conditions on finite state systems is
usually utilized in the form of logics. Common examples are temporal logics
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1 Introduction and related work
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Figure 1.1: Model checking

like LTL or BTL, but the logic is usually tied to the expressiveness of the
modelled system.

• Algorithms. These form the backbone of model checking as they are procedures
for solving whether the model satisfies the specification.

The typical methodology for model checking involves each of the parts, its general
concept is displayed in Figure 1.1. A system description (program) is compiled
into the model M of the system, some kind of transition system, and the system
specification is translated into a formula ϕ of the logic. Both are serve as input to
the model checker, where a decision procedure concludes whether the model satisfies
the formula (M � ϕ) or not (M 6� ϕ). If M 6� ϕ, the model checker usually also
yields a counterexample, witnessing the violation of the formula in the model.
Work in the branch of model checking focuses on two major parts. Finding new

algorithms for existing models and specifications and showing their computational
hardness or creating new models and specifications in order to model new kinds of
programs or hardware.
The introduction of model checking offers some advantages over other methods

known. Firstly, the algorithmic nature of model checking. As such, model checking
can be automated and meets the goal to be integrated into the development process
of programs. Secondly, model checking can be used on very different systems, from
abstract modeling languages to hardware implementations. While each needs its
own model and specification language, the methodology stays the same across all
applications of model checking and knowledge can be spread across the fields. At
last, it can be used for checking concurrent programs, for which testing is not a
sufficient option due to the interaction of parallel processes. As an automated tool
designed to explore large state spaces, model checking is applicable for showing
correctness of concurrent programs.
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Moving beyond the verification part of theoretical computer science, newer research
has explored the problem of synthesis. While verification focuses on showing the
correctness of a program, synthesis is about constructing a system that acts compliant
with a specification. The motivation for synthesis is relief for the programmer from
implementation details, increasing their focus on conceptual design. At the same
time, synthesis entails a formal correctness proof for each generated program.
A typical setting for synthesis are “reactive systems”. Their specification consists

of input and output parameters and they are generated such that the correct outputs
for any inputs are produced. The synthesis problem motivates an extension to the
model checking methodology by the use of games.
A typical model checking algorithm for a model M and a formula ϕ creates an

automaton A¬ϕ for the negated formula and builds the product modelM×A¬ϕ and
runs an language emptiness test on it. If there is no accepting path in it,M satisfies
ϕ. If there is an accepting path, it is a witness for a faulty behaviour. One could
interpret these actions as a question “is there any input sequence such thatM enters
a faulty state?”. Naturally, the product automaton is a non-deterministic automaton
where the environment of the program chooses the input parameters.
In the synthesis environment, this question needs to be adapted to “is there a

model M that reacts to every input with the correct output, such that no input
sequence bringsM to a faulty state?”. Implicitly, this question brings a second kind
of non-determinism into the synthesis problem. The first type of non-determinism
is the environment, deciding the inputs as in typical model checking, the second
one is the synthesizer, deciding the outputs with the ability to react to the input.
Formally, synthesis can be seen as a two player perfect information game and the
task of finding a modelM corresponds to finding a winning strategy in such a such
game.
The concept of synthesis is displayed in Figure 1.2. A specification is translated

into a formula ϕ, which is further translated into an automaton A. The automa-
ton is then modified into a game G. Intuitivly, we split each transition of A into
two halfs: the input transitions, which belong to the environment, and the output
transitions, which belong to the synthesizer. If there is a winning strategy for the
synthesizer, it outputs a modelM that satisfies ϕ. Otherwise, there is no model for
the specification. Synthesis based on this paradigm shares the positive properties of
model checking. It can be automated and integrated into the development process.
However, the computational complexity of solving games on a model is usually a lot
harder than the verification problem.
In this work, we focus on a model for concurrent, recursive programs: Multi-

pushdown systems. Pushdowns can be used to model call stacks of recursive pro-
grams, while a finite state space abstracts the set of (bounded) global variables.
In a concurrent world of recursive programs, each having their own call stack, the
adequate model also needs multiple pushdowns. As discussed earlier, only two push-
downs and a common finite state space are sufficient for most properties to become
undecidable. Various under-approximations have been suggested in order to arrive
at a decidable model, including bounded context switching and bounded phase com-
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Figure 1.2: Program synthesis

putations [11, 14]. A context is part of a computation where only one pushdown is
active, i.e. the system uses transitions acting on that stack only for the duration of
the context. Similarly, a phase is part of a computation where only one pushdown
uses pop transitions, i.e. the system uses any transitions execpt pop transitions.
These may only occur for the active pushdown during the phase. A multi-pushdown
system with bounded context switching or bounded phase allows only computations
that do not exceed a fixed number of contexts or phases.
The model checking problem for multi-pushdown systems with bounded context

switching (phase) has been solved in EXPTIME (2-EXPTIME) [3], where the number
k of contexts (phases) is part of the input. In this work, we focus on reachability and
parity games on multi-pushdown systems with bounded context switching and phase,
settling the complexity for game based synthesis and other proceedures looking to
solve games on this model.
1996, Walukiewicz introduced the complexity of EXPTIME for single pushdown

games by creating a finite state game, exponential in the size of the pushdown sys-
tem [4, 16]. Key to the construction is to only remember the top of stack symbol of
the pushdown and maintain a prediction of possible popping scenarios. Whenever
a symbol would be pushed, one of the players proposes such a prediction P ⊆ Q
which is a subset of the states. The other player may either skip to one of the pro-
posed states or remember the set in the state. Whenever a symbol would be popped
from the pushdown, the winner of the play is determined depending on whether
P contained the popping scenario. The exponential size of the finite state game
is immediate, because the states space of the game consits of the whole powerset
of states. However, the construction could only determine the winner of positions
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with an empty stack. 2003, Cachat provided a uniform solution for pushdown games
including arbitrary starting configurations [5].
Seth adapted Walukiewicz’s approach in 2009 to find an algorithm solving bounded

phase multi-pushdown games [13]. The construction contains a slight error, leading to
missing winning strategies for the predicting player even though the original bounded
phase multi-pushdown game was winning for them. We construct a very similar
game to solve this problem for the bounded context switching case, resulting in a
difference of two exponents in complexity to the bounded phase problem. In that
work, Seth also suggests a non-elementary lower bound, encouraging further work in
this direction.
Very recently, in 2017, there has been work in order to find a uniform solution

for bounded phase multi-pushdown games as well [2]. The authors also mention an
idea on how to show the non-elementary lower bound. In another publication [1],
they find a non-elementary lower bound on model checking branching time logic
for bounded context switching multi-pushdown systems by reducing from a Turing
machine.
In this work, we settle a tight k-EXPTIME lower bound for k + 2 context bound

multi-pushdown games and k phase bound multi-pushdown games. This confirms
the non-elementary lower bound for both problems and tightens them for each fix
bound on the contexts or phases. We use key elements of the construction in [1]
of bounded context switching and bounded phase multi-pushdown games such as
the idea of storing a computation of the Turing machine on one stack, encoding the
configurations of the Turing machine into a layered indexing system. We also use a
kind of “Guess & Check” approach heavily for the correctness of the construction.
We also provide an upper bound of k-EXPTIME for k+ 2 context bounded multi-

pushdown games. Together with Seth’s upper bound on the bounded phase case,
we can conclude k-EXPTIME completness for k + 2 context bounded and k phase
bounded multi-pushdown games.
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2 Preliminaries

First settle notation and definition of basic structures involved in multi-pushdown
games. We define multi-pushdown systems, games, plays, winning conditions and
games on multi-pushdown systems.

2.1 Multi-pushdown systems

A multi-pushdown system consists of a single state space, a finite number of stacks
and a transition relation. Like a regular pushdown system, each transition pushes
or pops a symbol on one of the stacks. Each stack is affected only by the transitions
acting on them. A transition acting on one stack does not change the contents of
any other stack.

Definition 1. A multi-pushdown system (mpds) P is a tuple (Q,Γ, δ, n) where Q
is a finite set of states, n is the number of stacks, Γ is a finite alphabet and δ =
δint ∪ δpush ∪ δpop is a set of transition rules with

δint ⊆ Q× [1..n]×Q δpush ⊆ Q× [1..n]× Γ×Q δpop ⊆ Q× Γ× [1..n]×Q.

We denote the set of transition rules acting on stack r by

δr = (δint∩ (Q×{r}×Q))∪ (δpush∩ (Q×{r}×Γ×Q))∪ (δpop∩ (Q×Γ×{r}×Q)).

A configuration of P is of the form (q,S) where q ∈ Q is the configuration’s state and
S : [1..n] → Γ∗⊥ are its stack contents. Each stack r is being assigned its content
Sr ∈ Γ∗⊥. The bottom of each stack consists of a non-removable symbol ⊥. We
sometimes denote configurations of mpds with n stacks by (q,S1, . . . ,Sn). The top
of the stack is on the left side in our notation.
The set of all configurations is C = Q× (Γ∗⊥)n. We define the transition relation

of the associated transition system.

Definition 2. The transition relation 7→ ⊆ C×δ×C implements the transition rules
given by P on its configurations. For any two configurations, ((q,S), τ, (q′,S ′)) ∈ 7→
if

• τ = (q, r, q′) ∈ δint and Sr = S ′r or

• τ = (q, r, s, q′) ∈ δpush and sSr = S ′r or

• τ = (q, s, r, q′) ∈ δpop and Sr = sS ′r

13



2 Preliminaries

and for all stacks j 6= r, Sj = S ′j .

We also denote this by (q,S)
τ7−→ (q′,S ′). If the transition τ is of no importance, we

may omit it. A computation of P is a sequence π = π0 . . . πl ∈ C∗ of configurations
with π0 7→ π1 7→ · · · 7→ πl.
We restrict our computational model by introducing a bound to phases or contexts.

Definition 3. A context on stack r is a non-empty computation α = α0
τ07−→ α1

τ17−→
. . .

τl−17−−→ αl such that each transition rule acts on stack r. I.e. for each position
0 ≤ p < l, τp ∈ δr.
A phase on stack r is a non-empty computation α = α0

τ07−→ α1
τ17−→ . . .

τl−17−−−→ αl such
that each pop transition rule acts on stack r. Formally, there is a transition rule
τt ∈ δr ∩ δpop and for each position 0 ≤ p < l, if τp ∈ δpop then τp ∈ δr ∩ δpop.
A computation π = π0

τ07−→ π1
τ17−→ . . .

τl−17−−→ πl is a k context (phase) computation, if
it consists of k contexts (phases):

α1 = π0
τ07−→ . . .

τp1−17−−−→ πp1 α2 = πp1
τp17−−→ . . .

τp2−17−−−→ πp2 . . .

αk = πpk−1

τpk−17−−−→ . . .
τl−17−−→ πl.

Example 4. Let P = ({q1, . . . , q6}, {a, b}, δ, 2) where δ is given by the following
figure. A transition

q q′
push1a

states the transition rule (q, 1, a, q′) and vice versa for popping transitions.

q1start q2

q3

q4 q5 q6

push1a

pop1a

push2b

pop2b pop1a

push1a

push1b

An example configuration of P is (q2,S) where S1 = a⊥ and S2 = ⊥, also denoted
by (q2, a⊥,⊥).
An example computation is

(q1,⊥,⊥)
(q1,1,a,q2)7−−−−−−→ (q2, a⊥,⊥)

(q2,2,b,q4)7−−−−−−→ (q4, a⊥, b⊥)
(q4,b,2,q5)7−−−−−−→

(q5, a⊥,⊥)
(q5,1,a,q6)7−−−−−−→ (q6,⊥,⊥)

(q6,1,b,q6)7−−−−−−→ (q6, b⊥,⊥)
(q6,1,b,q6)7−−−−−−→ (q6, bb⊥,⊥) . . .

14



2.2 Games

which is a 3 context computation. It switches context at the transition (q2, 2, b, q4)
and (q5, 1, a, q6) and then stays in context 3 forever.
When limiting contexts to 2 for example, the computation would stop in (q5, a⊥,
⊥) and no transitions could be used anymore.

2.2 Games

A game consists of a set of positions, a set of moves, two players, called Eve and Ana,
and a winning condition. Each player owns a partition of the positions. They can
play the game from some starting position and whenever the play is in a position
owned by Eve or Ana respectivly, they choose a move from the set of moves to
continue the play to the next position. When they complete a play, the winning
condition decides the winner of that play.

Definition 5. A game is a tuple (V,E,W) together with an ownership function
own : V → {Eve,Ana}, where V is a non-empty set of positions, E ⊆ V 2 is the set
of moves and W : V ω → {Eve,Ana} is the winning condition.
Let � ∈ {Eve,Ana} and V� = {v ∈ V | own(v) = �}.
A play is a sequence π = (πp)p∈N, such that for all p, πpπp+1 ∈ E.
A play π is winning for � if W(π) = �.
A strategy for � is a function σ : V ∗V� → V such that vσ(πv) ∈ E.
A strategy is positional, if σ : V� → V .
A play π is compliant with strategy σ of � if for all πp ∈ V�: πp+1 = σ(πp).
A strategy σ is called winning for � from v ∈ V if all plays compliant with σ

starting in v are won by �.

There are a variety of different winning conditions. We focus on two winning
conditions relevant in model checking: reachability and parity winning condition.

Definition 6. The reachability winning condition Wreach consists of a set of winning
positions Vreach ⊆ V and the winner of a play is determined by visiting a winning
position:

Wreach(π) =

{
Eve if there is πi with πi ∈ Vreach
Ana otherwise

.

A reachability game is the tuple (V,E, Vreach).
The parity winning conditionWm consists of a parity assignment Ω : V → [1..max]

and the winner of a play is determined by the greatest infinitly occuring parity during
the play:

Wparity(π) =

{
Eve if the greatest infinitly occuring parity in (Ω(πi))i∈N is even
Ana otherwise

.

A parity game is the tuple (V,E,Ω).
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2 Preliminaries

Even though plays are infinite by definition, we will allow games to contain posi-
tions v that do not offer a move, i.e. E(v) = ∅. A play ending in such a position
v is losing for own(v) and thus winning for their opponent. There is a game equiv-
alent to G, where we introduce the positions Evewin and Anawin with the moves
(�win,�win) and (v,�win) if E(v) = ∅ and own(v) = � 6= �. We also complete
the winning condition by

Wnew(π) =

{
� if �win occurs in π
W(π) otherwise

.

We use the term “� possesses a strategy from v to V ′”, where V ′ ⊆ V , as abbre-
viation for: Player � possesses a strategy σ, such that each play π compliant with
σ starting in v visits a position πj ∈ V ′ or is winning for player � = W(π).

2.2.1 Game simulation

Later, we want to carry strategies from one reachability game to another. We intro-
duce game simulation for reachability games in order to find those strategies without
having to explicitly name them. Intuitivly, a game simulating another offers to re-
produce moves from the original game. However, these do not have to be a single
move. Instead we require a strategy for the owner of each state, that will bring them
to the desired successing position.

Definition 7. A reachability game (V A, EA, V A
reach) is simulated by (V B, EB, V B

reach)
if there is a function f : V A → V B such that for each position v ∈ V A, with
own(v) = � and � their opponent,

• own(v) = own(f(v))

• v ∈ V A
reach if and only if f(v) ∈ V B

reach

• If v′ ∈ EA(v), then � possesses a strategy σv,v′ from f(v) to f(v′). Player �
possesses a strategy σv from f(v) to f(EA(v))

• Let π = π0π1 . . . be any play from f(v) compliant with σv,v′ that contains a
first position p with πp = f(v′). Then, for all 0 < u < p, πu 6∈ V B

reach

• Let π = π0π1 . . . be any play from f(v) compliant with σv that contains a first
position p with πp ∈ f(EA(v)). Then, for all 0 < u < p, πu 6∈ V B

reach.

Lemma 8. Let A = (V A, EA, V A
reach) be simulated by B = (V B, EB, V B

reach) via f .
A position v ∈ V A is winning for Eve if and only if f(v) is winning for Eve.

Proof. Let � possess a winning strategy σA from a position v ∈ V A. We construct
a winning strategy σB for � from f(v). We construct this non-positional strategy
by remembering a play prefix π0π1 . . . πi of A that is compliant with σA. We show,
how σB acts to continue a play prefix π′0π′1 . . . π′ψ(i) in B, where ψ : N → N maps
positions in π to positions in π′ such that

16
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• for each u ∈ [0..i], f(πu) = π′ψ(u)

• for each t ∈ [0..i− 1] and all ψ(t) < u < ψ(t+ 1), π′u 6∈ V B
reach.

Strategy σB either wins the play π′ from π′ψ(i) or continues to π
′
ψ(i+1) together with

some πi+1, such that π0 . . . πiπi+1 is compliant with σA. We construct σB and show
the correctness via induction:

Base Case (i = 0). πi = π0 = v, ψ(0) = 0, π′ψ(i) = π′0 = f(v).

Inductive Case. Assume π′0 . . . π′ψ(i) is compliant with σB and π0 . . . πi is compliant
with σA and ψ is constructed according to the above invariant.

Case 1 (there is a position p, such that π′p ∈ V B
reach): By induction, the play prefixes

are according to the invariant. Thus, for each position 0 ≤ t < i, all ψ(t) < u <
ψ(t + 1) fulfill π′u 6∈ V B

reach. The only position possible for p is p = ψ(t) for some
0 ≤ t ≤ i. By the invariant, f(πt) = π′ψ(t) = π′p, and by definition of simulation
πt ∈ V A

reach. Any play with the prefix π0 . . . πi is winning for Eve. Since σA was
winning for � and by induction, π0 . . . πi is compliant with σA, Eve = �. Indeed,
the winner of any play with prefix π′0 . . . π′ψ(i) is winning for Eve.

For the rest of the inductive case, assume that for all positions 0 ≤ p ≤ ψ(i),
π′p 6∈ V B

reach. In particular, the winning condition is independent of the play up to
πψ(i).

Case 2 (own(v) = �): Let v′ = f(σA(v)), Player � continues the play by using
strategy σv,v′ , until
Case 2.1 (there occurs a first position p in π′, such that π′p = f(v′)): Set ψ(i+1) = p.
Continue π0 . . . πi by πi+1 = v′. By definition of simulation and σv,v′ , for all ψ(i) <
u < ψ(i+ 1), π′u 6∈ V B

reach.
Case 2.2 (f(v′) is not visited by π′): By definition, σv,v′ is a strategy from f(v)
to f(v′). Thus, any play compliant with that strategy that does not visit f(v′) is
winning for �.

Case 3 (own(v) = �): Player � continues the play by using strategy σv, until
Case 3.1 (there occurs a first position p in π′, such that π′p = f(v′), where v′ ∈ EA(v)):
Set ψ(i+ 1) = p. Continue π0 . . . πi to πi+1 = v′. By definition of simulation and σv,
for all ψ(i) < u < ψ(i+ 1), π′u 6∈ V B

reach.
Case 3.2 (f(EA(v)) is not visited by π′): By definition, σv is a strategy from f(v) to
f(EA(v)). Thus, any play compliant with that strategy that does not visit f(EA(v))
is winning for �.

Towards contradiction assume a play π′ compliant with σB is losing for �. Then,
neither Case 1, Case 2.2 nor Case 3.2 happend during the play. Thus, π′ is an infinite
play compliant with σB and there is an infinite play π compliant with σA together
with a function ψ according to the above conditions.
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Case 1 (� = Eve): Since σA is winning for Eve, there is a position πp ∈ V A
reach and

thus π′ψ(p) = f(πp) ∈ f(V A
reach) ⊆ V B

reach, i.e. π
′ is winning for Eve.

Case 2 (� = Ana): Since σA is winning for Ana, π does not visit V A
reach and thus

for all i ∈ N, π′ψ(i) 6∈ V
B
reach. Furthermore, for all ψ(i) < u < ψ(i + 1), π′u 6∈ V B

reach.
Then, π′ does not visit V B

reach and the play is winning for Ana.

2.3 Multi-pushdown games

A multi-pushdown game is a game on the configurations of a multi-pushdown system.
The set of positions is the set of configurations of the multi-pushdown system and
the set of moves is the transition relation. Ownership is determined by partition of
the state space of the multi-pushdown system.

Definition 9. Let P = (Q,Γ, δ, n) be a multi-pushdown system.
A multi-pushdown game (mpdg) (P,W) is the game (C, 7→,W) with ownership func-
tion own : Q→ {Eve,Ana} that carries over to positions of the game via own(q,S) =
own(q).

For the winning condition, we consider state reachability games, configuration
reachability games and parity games.

Definition 10. The configuration reachability mpdg (P,Creach) with winning region
Creach ⊆ C is the reachability game (C, 7→, Creach).
The state reachability mpdg (P,Qreach) with winning states Qreach ⊆ Q is the con-
figuration reachability mpdg (P,Qreach × (Γ∗)n).
The parity mpdg (P,Ω) with parity assignment Ω : Q → [1..max] is the par-
ity game (C, 7→,Wparity) where the parity assignment carries over to positions via
Ω(q,S) = Ω(q).

As a stronger computational model than multi-pushdown systems, multi-pushdown
games are also Turing complete. We apply the previous restrictions for multi-
pushdown systems.

Definition 11. A k-context (phase) bounded multi-pushdown game (P,W, k) is a
variation of the mpdg (P,W) where no play may exceed the k’th context (phase).
Moves that would introduce a k + 1’th context (phase) do not exist.

We omit a more formal definition for the sake of notation. It should be noted
that this way some plays may not be continued at all. There are different ways to
approach this. We choose that the player owning the position, from which the play
can not be continued, looses the game. The lower bound construction is unaffected
by this, as the mpdg constructed there will stay within k contexts (phases) for any
computation and will always offer a possible transition. For the upper bound, we

18



2.3 Multi-pushdown games

assume that there will always be a possible transition from each position without
introducing a k + 1’th context. An equivalent mpdg with this condition can be
constructed analoge to the construction in section 2.2 about games in general.

Example 12. We use the multi-pushdown system from example 4 for an exam-
ple multi-pushdown game. We add the ownership function own : {q1, . . . , q6} →
{Eve,Ana} by shaping the states in the mpds graph. A round state belongs to Eve
and a rectangle one to Ana. We also set a parity function Ω : {q1, . . . , q6} → {0, 1}
by writing the parities at the bottom of each state.

q1start

q3

q5 q6

q2

q4

1 0

0

1 1 0

push1a

pop1a

push2b

pop2b pop1a

push1a

push1b

Since the parities Ω(q3) = Ω(q6) = 0 are winning for Eve, each play is winning for
Eve in this multi-pushdown game.
If we limit the amount of contexts to 2 however, Ana gains a winning strategy, by
taking using the transition rule (q2, 2, b, q4). The play continues to the configuration
(q5, a⊥,⊥). As in example 4, the number of contexts can not be further increased
and Eve, who owns q5, has no transitions they can take which causes them to loose
the play.

For better construction of mpdg, we introduce push and pop transitions of regular
expressions instead of single symbols. Each such transition is a short notion for a
set of transitions, that allow the player owning the state to push or pop any word
matching the regular expression.

Definition 13. Let R be a regular expression and (QA, δA, IA, FA) be the NFA
accepting R.
We write the transition rules

(q, r,R, q′) for pushing a word belonging to R onto stack r
(q,R, r, q′) for popping a word belonging to R from stack r

as a replacement for a finite number of transition rules.
A pushing transition rule (q, r,R, q′) is replaced by finitly many transition rules:
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2 Preliminaries

q qinit

qA q′A

qout q′

for each qin ∈ IA

for each (qA, s, q
′
A) ∈ δA

for each qout ∈ FA

intr

pushrs

intr

We also set the ownership of all qA ∈ QA to own(qA) = own(q).
Analogously for a popping transition rule, except that we pop instead of pushing:

qA q′A for each (qA, s, q
′
A) ∈ δA.

poprs

However, this construction has a flaw. In a reachability mpdg, a pushing transition
of the above form may allow Ana to loop in an infinite cycle within the NFA and not
ever complete the transition. This would result in a winning play for them. Popping
transitions do not suffer this problem as the stack height is finite. We circumvent
this problem by only using regular expressions that do not contain kleene iteration
or complement when giving Ana a regular expression pushing transition, as there are
NFA without cycles to accept them.

Example 14. The regular expression {a, b}∗ has the NFA

qAstart a, b

A pushing transition (q, r, {a, b}∗, q′) is replaced by the transitions

q qA q′
intr

pushra, b

intr

In a reachability game, Ana can loop forever in qA which might form a winning
strategy for them, as no other state would ever be visited.
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3 Upper bound

In this section, we present a finite game that is equivalent to a context bounded
multi-pushdown game. The size of the finite game depends on the number of contexts
allowed.

Theorem 15. k + 2-context bounded multi-pushdown parity games can be solved in
k-EXPTIME.

For the rest of the section, letGP = (P,Ω, k) be a k-context bound multi-pushdown
game with P = (Q,Γ, δ, n), Ω : Q→ [0..max] and own : Q→ {Eve,Ana}. The game
GP consists of infinitly many positions: The set of configurations of P is infinite,
because the stack contents can grow arbitrarily large. The goal is to reduce this
amount of positions to a finite number. Intuitivly, we forget the exact stack contents
and only remember the top of stack symbol for each stack. This idea is similar to
Walukiewicz’s construction [16]. In fact it is a variation of Anil Seth’s construction
for bounded phase multi-pushdown games, which contains a slight constructional
error. We will see an example for which Eve fails to obtain a winning strategy in
Seth’s finite game, even though they possess a winning strategy in the original mpdg.
Remembering only the top of stack symbol for each stack makes it impossible to

continue a play that used a pop transition, since the next top of stack symbol was
forgotten. To circumvent this problem, we use a Guess & Check approach that ends
any play when it discovers its first pop transition. Whenever a symbol is pushed
on one of the stacks, Eve suggests a set of popping scenarios for this symbol. The
idea is that Eve can fix their strategy and they can predict all plays compliant with
this strategy. They can collect all situations where eventually the pushed symbol is
popped and create the desired set of popping scenarios. We call this set a prediction
set. Given a prediction set, Ana has two choices. They can choose one of the popping
scenarios given in the prediciton set and move to its corresponding position, skipping
the play in between. Or they actually perform the pushing transition. In the second
case, we remember the prediction set in the positions of the finite game. This is
necessary to determine a winner, when a popping transition is used. Whenever a
popping transition is used, the game looks up whether the remembered prediction
set contains the current situation as a popping scenario and determines the winner
of the play.

3.1 Push-pop-pairs, stairs and notation

We first settle some notation and define push-pop-pairs, last unmatched pushes and
stairs. Remember that a play of GP is a computation (q0,S0)

τ07−→ (q1,S1)
τ17−→ . . .
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3 Upper bound

where each q is a state and each S is a function assigning each stack its contents.
In the rest of the section occur many functions of the form T : [1..n]→ A assigning

each stack some information.

Definition 16. Let T : [1..n] → A for some set A. For each r ∈ [1..n] and x ∈ A,
we use the notation T j for T (j) and T [x/r] which replaces the information for stack
r by x:

T [x/r]j =

{
x j = r

T j otherwise.

A push-pop-pair of a play for an mpdg are two positions. The first position is a
pushing transition and the second is the popping transition that pops precisly the
symbol pushed by the push transition.

Definition 17. A push-pop-pair of a play (q0,S0)
τ07−→ (q1,S1)

τ17−→ . . . of GP are two
indices (p, p′) ∈ N2 such that there is a stack r with

• p < p′

• τp ∈ δr ∩ δpush

• τp′ ∈ δr ∩ δpop

• min{|Sp+1
r |, . . . , |Sp

′
r |} > |Spr | = |Sp

′+1
r |

Note that each p ∈ N is in at most one push-pop-pair.

Definition 18. Let π = π0
τ07−→ π1 . . . be a play of GP . We call a pushing position

p ∈ N with τp ∈ δpush matched, if there is p′ ∈ N such that (p, p′) is a push-pop-pair.
Otherwise, the push is unmatched.
For each stack j, we define the function lupπj : N → N which finds the last un-

matched push of stack j in π.

lupπj (p) = max
0≤u<p
τu∈δpush

{u | u unmatched in π0 . . . πp}

Be aware, that if no such pushing position exists, lupπj (p) = ⊥ is undefined.

Definition 19. Let π be a play and p ∈ N. Let πp = (qp,Sp).
A stair p ∈ N of π is a position where for all i ∈ N with p ≤ i and each stack

j ∈ [1..n], |Spj | ≤ |Sij |.
Be aware, that by this definition there is no push-pop-pair (p′, p′′) such that p′ <

p < p′′.
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3.2 Finite state game

3.2 Finite state game

We construct the finite state game FSG equivalent to the multi-pushdown game GP .
It consists of positions of the form

(Check, q, c, d, γ,P,m).

They represent positions of GP with additional information. The positions contain

• q, the state of the configuration.

• c, the context of the computation.

• d, the stack holding the current context.

• γ : [1..n]→ Γ, the current top of stack symbols.

• P : [1..n]→ P, a prediction set for each stack. This is explained later.

• m : [1..n]→ [1..max], the maximal parity seen for each stack since the the last
unmatched push of that stack.

We will define a set of predictions P. Each element of P describes a popping
scenario. We partition the set in smaller sets P = ∪r∈[1..n],j∈[1..k]Pr,j . An element
of Pr,j describes a situation where the top of stack symbol from stack r is popped
during context j.

Intuitivly, when a player wants to use a pushing transition for stack r, instead Eve
will guess a set Pr ⊆ ∪j∈[1..k]Pr,j . After Eve suggests such a prediction set, Ana may
either choose a popping scenario from the set and skip the computation in between,
or actually perform the pushing transition. In this case, either the pushed symbol
is never popped, or when it is popped, one of the players is determined as winner of
this play by the use of the current prediction sets P.
A popping scenario contains more than just the top of stack symbols, the state

and the context after popping. It also contains the maximal parity for each stack
since their last unmatched push and a prediction set for each stack.
Such a popping scenario can be thought of as an abstraction of the computation

from the pushing position up to the popping position. Other stacks can have pushed
or popped symbols in the mean time, creating different prediction sets for them. A
popping scenario thus also contains a prediction set for each other stack.

Definition 20. Let q, γ,m range over Q,Γn, [1..max]n. For each r ∈ [1..n], j ∈
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3 Upper bound

[3..k − 1] define the prediciton sets

Pr,k = {(P1, . . . ,Pr−1, (q, k, γ,m),Pr+1, . . . ,Pn) | P1 = · · · = Pn = ∅}
Pr,1 = {(P1, . . . ,Pr−1, (q, 1, γ,m),Pr+1, . . . ,Pn) | P1 = · · · = Pn = ∅}
Pr,2 = {(P1, . . . ,Pr−1, (q, 2, γ,m),Pr+1, . . . ,Pn) | P1 = · · · = Pn = ∅}
Pr,c = {(P1, . . . ,Pr−1, (q, c, γ,m),Pr+1, . . . ,Pn)

| P1 ⊆ ∪kc′=c+1P1,c′ , . . . ,Pn ⊆ ∪kc′=c+1Pn,c′}
for 3 ≤ c < k

Pr =

k⋃
c=1

Pr,c

An element of P ∈ Pr,c describes a situation where the topmost symbol from stack
r is popped in context c. It contains the tuple (q, c, γ,m), containting information
of the configuration after popping:

• q the state

• c the context

• γ the top of stack symbols

• m the maximal parity seen for each top of stack symbol since its respective
push operation.

It also contains P1, . . . ,Pr−1,Pr+1, . . . ,Pn, a guarantee for the prediction sets that
were created during computation up to this popping scenario for each top of stack
symbol. We call them a guarantee, because the prediction set for another stack j at
the popping position may actually contain more popping scenarios than Pj . That
prediction set was made before the popping scenario P happened. Thus, there might
be popping scenarios for that top of stack symbol that don’t include P in their play.

Example 21. Recall example 12. We used the following multi-pushdown game.

q1 q2

q3

q4 q5 q6

1 0

0

1 1 0

push1a

pop1a

push2b

pop2b pop1a

push1a

push1b
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3.2 Finite state game

Assume a play in configuration (q1,⊥,⊥) in a context c > 2 on stack 1 (We want
the context to be greater than 2 for demonstration purposes). The next transition
(q1, 1, a, q2) is a pushing transition. In the corresponding FSG, Eve has to push a
prediction set. They do not know whether Ana wants to continue the play to either
q3 or q4. Eve has to collect all possible popping scenarios for the symbol that is
being pushed. Looking at the transitions, it is immediate that there are precisly
two popping scenarios. One is the transition (q2, a, 1, q3) and the other transition is
(q5, a, 1, q6) for another play.
Eve then proposes a prediction set P with two elements P1 and P2 where they
include the correct parameters for

P1
1 = (q3, c, (⊥,⊥), (0, 0))

P2
1 = (q6, c+ 2, (⊥,⊥), (1, 1)).

As discussed, Eve also has to propose guarantees for the prediction sets for stack 2
in each scenario. Since in both scenarios, the top of stack symbol of stack 2 is ⊥
which is never popped, the sets P1

2 = P2
2 = ∅ are empty.

Assume Ana decides not to skip to one of the predicted scenarios. Instead, we
remember P for stack 1 and the game continues in q2. Let Ana choose the transition
(q2, 2, b, q4). Eve has to make a new prediction, this time for stack 2. There is only
one popping scenario P ′ for this symbol:

P ′2 = (q5, c+ 1, (a⊥,⊥), (1, 1))

and the prediction guarantee for the current stack 1 top of stack symbol. Note that
Eve now knows more precisly about the possible popping scenarios of the pushed a.
They can reduce the prediction set for that stack by setting

P ′1 = {P2}.

Be aware that they cannot even add the prediction P1 to this set: Since P ′2 ∈ P2,c+1

is a scenario for popping in context c+ 1 and P1 ∈ P1,c is a scenario for popping in
context c, the construction does not allow that scenario as a guarantee (see Definition
20).
Assume Ana again does not skip to the proposed popping scenario but remembers
the prediction set {P} for stack 2. Note that the remembered prediciton set for stack
1 is still P = {P1

,P2}. The next transition is a popping transition (q4, b, 2, q5) and
the finite state game is supposed to find a winner for the play. It will see that the
prediction set for stack 2 is {P}. The context, the resulting state after popping,
the top of stack symbols and the maximal parities seen for each stack are correct
in P. Also, the given guarantee P ′1 for stack 1 is fitting. The current remembered
prediction is still P = {P1

,P2} ⊇ {P2} = P ′1. In other words, it contained the
popping scenarios which were guaranteed to exist by the popping scenario P ′.
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3 Upper bound

3.2.1 Construction

We construct the finite state game for GP . For a position (Check, q, c, d, γ,P,m),
and a stack r, define

c′ =

{
c d = r

c+ 1 d 6= r
.

The following moves are only introduced, if c′ ≤ k.

1. (q, r, q′) ∈ δint:
(Check, q, c, d, γ,P,m) → (Check, q′, c′, d′, γ,P,m′) where

a) m′j = max{mj ,Ω(q′)} for each 1 ≤ j ≤ n

b) d′ = r

2. (q, r, s, q′) ∈ δpush:

a) (Check, q, c, d, γ,P,m) → (Pushr, c′, γ,P,m, q′, s)

b) (Pushr, c′, γ,P,m, q′, s) → (Claimr, c
′, γ,P,m, q′, s,P) where P ⊆ Pr.

c) (Claimr, c
′, γ,P,m, q′, s,P) → (Check, q′, c′, r, γ[s/r],P[P/r],m′) where

for each stack j 6= r, m′j = max{mj ,Ω(q′)} and m′r = Ω(q′).

d) • (Claimr, c
′, γ,P,m, q′, s,P)→ (Jumpr, q′′, c′′, γ′[γr/r],P

′
,m′,mr) for

each P ′′ ∈ P, where P ′′r = (q′′, c′′, γ′,m′) with c′′ 6= 2 and P ′ =

P ′′[Pr/r].

• (Claimr, c
′, γ,P,m, q′, s,P) → (Jumpr, q′′, c′′, γ′[γr/r],P,m′,mr) for

each P ′′ ∈ P where P ′′r = (q′′, 2, γ′,m′).

e) (Jumpr, q, c′′, γ′,P
′
,m′,mr) → (Check, q′′, c′′, r, γ,P ′,m′′) where

m′′j =

{
max{Ω(q), t′r,mr} j = r

max{Ω(q), t′j} j 6= r

3. (q, s, r, q′) ∈ δpop:

• (Check, q, c, d, γ[s/r],P,m) → Evewin if P ′ ∈ Pr

• (Check, q, c, d, γ[s/r],P,m) → Anawin if P ′ 6∈ Pr

where

P ′ = ∅[(q′, c′, γ,m)/r] if c′ = k or c′ = 2

P ′j ⊆ Pj , P ′r = (q′, c′, γ,m) for all j 6= r, if 2 6= c′ < k
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3.2 Finite state game

Together with the parity assignment

ΩFSG((Check, q, c, d, γ,P,m)) = Ω(q)

ΩFSG((Pushr, . . . )) = ΩFSG((Claimr, . . . )) = 0

ΩFSG((Jumpr, q, c
′′, γ′,P ′,m′,mr)) = m′r

ΩFSG(Evewin) = 0

ΩFSG(Anawin) = 1

this defines a parity game FSG = (VFSG, EFSG,ΩFSG).

Constructional error in Seth’s construction Seth’s construction [13] is very similar
to the above one. However, in the transitions introduced for popping a symbol and
determining a winner of the play, the guarantees had to equal the current prediction
in the position, i.e. given a transition rule (q, s, r, q′) ∈ δpop, the following moves
were introduced

• (Check, q, c, d, γ[s/r],P,m) → Evewin if P ′ ∈ Pr

• (Check, q, c, d, γ[s/r],P,m) → Anawin if P ′ 6∈ Pr

where

P ′ = ∅[(q′, c′, γ,m)/r] if c′ = k or c′ = 2

P ′j = Pj , P ′r = (q′, c′, γ,m) for all j 6= r, if 2 6= c′ < k

The constructional difference is P ′j = Pj instead of P ′j ⊆ Pj . In example 21, we can
see that Eve has no way to achieve this equality in that particular multi-pushdown
game. Even though Eve possesses a winning strategy in the multi-pushdown game
(See example 12), Ana would possess a winning strategy in the resulting finite state
game.

3.2.2 Strategy automaton

To transport a strategy σ of FSG to GP , we introduce a strategy automaton Sσ.
Intuitivly, this is an multi-pushdown system with the same number of stacks as P .
At any point in the game, the stack heights of Sσ are identical to the stack heights
of P . However, we will not use the transitions of a common mpds. Instead, each
transition will change all the top of each stack at once. Also, the stack alphabet of
Sσ is Γ× 2P × [1..max] and has another state space.
The strategy automaton remembers information of the finite state game in the

following sense. If the finite state game would be in a position (Check, q, c, d, γ,P,m),
then the strategy automaton is in state (q, c, d) and the top of stack tuple of each
stack r is (γr,Pr,mr). At the same time, it mimics moves of GP . The automaton
can use the additional stack information to choose the next move by using σ from
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3 Upper bound

the position (Check, q, c, d, γ,P,m) if it belongs to Eve. Otherwise, it just mimics
the move made by Ana. Below is listed, how Sσ updates upon a move in GP . This is
independent to whichever player makes the move. Be aware, that the configuration
of Sσ can be used to derive a move for Eve, when they possess a strategy in FSG.

Definition 22. Given a strategy σ for Eve in FSG, the strategy automaton Sσ is a
tuple Sσ = (Q× [0..k]× [0..n],Γ× 2P × [1..max], 7→, n) where

• Q× [0..k]× [0..n] is the state space,

• Γ× 2P × [1..max] is the stack alphabet and

• 7→ is a transition relation, that is defined on the set of configurations.

A configuration of Sσ is ((q, c, d),R), where R : [1..n]→ (Γ× 2P × [1..max])∗ are
the stack contents. For each stack j,

Rj = Rj |Rj |
Rj |Rj |−1

. . . Rj 1,

where Rj |Rj |
is the top of stack symbol. Since each stack symbol Rj i is a tuple, we

denote them by Rj i = ( γj i, P
j

i, m
j

i).
For the sake of notation, we introduce a context sensitive top of stack pointer ↑.

It obtains the index value of the top of stack symbol:

Rj = Rj |Rj |
Rj |Rj |−1

. . . Rj 1

= Rj ↑ R
j
↑−1 . . . R

j
1.

This notation also carries over to the individual tuple contents. Thus,

γj ↑ = γj |Rj |
Pj ↑ = Pj |Rj | mj ↑ = mj |Rj |

.

We call the set of all configurations CSσ .

Definition 23. We define a function F : CSσ → VFSG mapping configurations of Sσ
to positions in FSG.

F (((q, c, d),R)) = (Check, q, c, d, γ,P,m)

where γj = γj ↑,Pj = Pj ↑ and mj = mj ↑.

Definition 24. We define the transition relation ((q, c, d),R)
τ7−→ ((q′, c′, r),R′),

where

c′ =

{
c d = r

c+ 1 d 6= r
and γ′j = γ′

j
↑.

Let F (((q, c, d),R)) = (Check, q, c, d, γ,P,m). A transition is only introduced, if
c′ ≤ k and one of the following is true.
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3.2 Finite state game

1. τ = (q, r, q′) ∈ δint and each of the following

a) own(q) = Ana or σ((Check, q, c, d, γ,P,m)) = (Check, q′, c′, r, γ,P,m′)

b) R = R′, except

• for each stack j, m′j
↑ = max{Ω(q′), mj ↑}.

2. τ = (q, r, s, q′) ∈ δpush and each of the following

a) own(q) = Ana or σ((Check, q, c, d, γ,P,m)) = (Pushr, c′, γ,P,m, q′, s)

b) R = R′, except

• for each stack j 6= r, m′j
↑ = max{Ω(q′), mj ↑},

• R′r = (s,P,Ω(q′))Rr, where

σ((Pushr, c′, γ,P,m, q′, s)) = (Claimr, c
′, γ,P,m, q′, s,P).

3. τ = (q, s, r, q′) ∈ δpop and each of the following

a) own(q) = Ana or σ((Check, q, c, d, γ,P,m)) = Evewin

b) there is P ∈ Pr ↑ with Pr = (q′, c′, γ′,m) such that for each stack j 6= r,

• c′ 6= 2 and Pj ⊆ Pj ↑ or

• c′ = 2 and Pj = ∅

c) R = R′, except

• for each j 6= r,

– m′j
↑ = max{Ω(q′), mj ↑}

– P ′j
↑ =

{
Pj c′ 6= 2

Pj ↑ c′ = 2

• R′r = ( γr ↑−1, Pr ↑−1, m
′r
↑) Rr ↑−2 Rr ↑−3 . . . Rr 1

where m′r
↑ = max{ mr ↑, m

r
↑−1,Ω(q′)}.

4. τ = (q, s, r, q′) ∈ δpop and each of the following

a) own(q) = Ana or σ((Check, q, c, d, γ,P,m)) = Anawin

b) there is no P ∈ Pr ↑ with Pr = (q′, c′, γ′,m) such that for each stack
j 6= r,

• c′ 6= 2 and Pj ⊆ Pj ↑ or

• c′ = 2 and Pj = ∅

c) R = R′, except

• for each j 6= r, m′j
↑ = max{Ω(q′), mj ↑}

29



3 Upper bound

• R′r = ( γr ↑−1, Pr ↑−1, m
′r
↑) Rr ↑−2 Rr ↑−3 . . . Rr 1

where m′r
↑ = max{ mr ↑, m

r
↑−1,Ω(q′)}.

The strategy automaton is an enhanced version of the multi-pushdown system P .
As such, its stack contents share the same height and only the elements in the top
of stack tuples are changed during a transition.

Lemma 25. Let η = ((q, c, d),R) and η′ = ((q′, c′, d′),R′) with η τ7−→ η′ in Sσ. For
each stack j ∈ [1..n], let shj = min{|Rj |, |R

′
j |}.

For each stack j ∈ [1..n], P ′j
shj
⊆ Pj shj

and for each u ∈ [1.. shj −1], Rj u = R′j
u.

Proof. By the construction of Sσ, for all stacks j ∈ [1..n], for each u ∈ [1.. shj −1],
Rj u = R′j

u.

Case 1 (τ = (q, r, q′) ∈ δint): By construction, for each stack j, shj = |Rj | = |R′j |
and Pj shj

= P ′j
shj

.

Case 2 (τ = (q, r, s, q′) ∈ δpush): By construction for each stack j 6= r, shj = |Rj | =
|R′j | and P

j
shj

= P ′j
shj

.

For stack r, shr = |Rr| = |R
′
r| − 1 and Rr shr

= R′r
shr .

Case 3 (τ = (q, s, r, q′) ∈ δpop): For stack r, shr = |Rr|−1 = |R′r| and P ′
r

shr = Pr shr
.

Case 3.1 (the transition is by condition 3 of Sσ)): By construction for each stack
j 6= r, shj = |Rj | = |R

′
j |. If c′ = 2, P ′j

shj
= Pj shj

. Otherwise, P ′j
shj
⊆ Pj shj

.
Case 3.2 (the transition is by condition 4 of Sσ)): By construction for each stack
j 6= r, shj = |Rj | = |R

′
j | and P ′

j
shj

= Pj shj
.

A run of the strategy automaton is a sequence ((qinit, 0, 0), (⊥,∅,Ω(qinit)
n) =

η0
τ07−→ η1

τ17−→ . . . . We can use the strategy automaton to define a strategy ν on
(P,Ω) for starting positions of the form (qinit,⊥n). We define ν inductivly on the
play prefix. As Sσ is an enhanced version of the multi-pushdown system P of the
game GP , we require the invariants stated by the next lemma that hold between the
play π of GP compliant with ν and the run η of Sσ.

Lemma 26. At any position p ∈ N, if ηp = ((q, c, d),R), then

1. πp = (q, ( γ1 ↑ γ
1
↑−1 . . . γ

1
1, γ

2
↑ γ

2
↑−1 . . . γ

2
1, . . . , γ

n
↑ γ
n
↑−1 . . . γ

n
1)).

2. πp is in context c of stack d.

3. • If lupπj (p) is defined, maxu∈[lupπj (p)..p]{Ω(qu)} = mj ↑.

• If lupπj (p) is undefined, maxu∈[0..p]{Ω(qu)} = mj ↑.

Proof.
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3.2 Finite state game

Base Case (π0, η0). π0 = (qinit,⊥n), η0 = ((qinit, 0, 0), (⊥,∅,Ω(qinit))
n).

Inductive Case (πi to πi+1, ηi to ηi+1). By induction, there is a play prefix π0
τ07−→

. . .
τi−17−−→ πi = (q,S) of (P,Ω). The strategy automaton has a run prefix η0

τ17−→
. . .

τi−17−−→ ηi = ((q, c, d),R), where c, d and R are as by the lemma.
In case of own(ηi) = Eve, all transitions enabled in ηi belong to a single transition

πi
τi7−→ πi+1. We extend ν by setting ν(π0 . . . πi) = πi+1.
In the other case, for every transition τi enabled in πi, the same is enabled in Sσ.

Let πi
τi7−→ πi+1 for some τi enabled in ηi. We continue η as described by its definition

ηi = ((q, c, d),R)
τi7−→ ((q′, c′, d′),R′) = ηi+1.

Remains to show, that the lemma holds for position i+ 1 as well.
The second condition is fulfilled by construction of Sσ: By induction, πi is in

context c of stack d. If τi ∈ δd, then c′ = c and d′ = d. This is compliant with the
lemma as πi+1 is in the same context of the same stack. Otherwise, c′ = c + 1 and
d′ = r where τi ∈ δr, which again fits context and stack of position πi+1.
For all stacks j 6= r, the third condition is also fulfilled by construction. By

induction the maximal parity seen since position lupπj (i) is mj ↑. For all stacks j 6= r,
the stack height does not change. There has been seen a new parity Ω(q′). The
construction sets m′j

↑ appropriatly to max{Ω(q′), mj ↑}.

Case 1 (τi = (q, r, q′) ∈ δint): The first condition is fulfilled trivially, since the
symbols in the stack contents did not change. For the thrid condition, in this case,
the same arguments apply as for the other stacks.

Case 2 (τi = (q, r, s, q′) ∈ δpush): For the first condition, the symbols in the stack
contents don’t change for all stacks j 6= r. For stack r however, R′r = (s,P,Ω(q′))Rr,
such that s is the new additional symbol, meeting the lemma’s requirenment.
For the third condition, Ω(q′) is the only parity seen since the push of s.

Case 3 (τi = (q, s, r, q′) ∈ δpop): Be aware that Sσ contains multiple possible transi-
tions for τi. These only differ in the prediction sets Pj ↑ for each stack j. The lemma
does not state any conditions on the prediction sets, so there is no need for case
distinction.
For the first condition, the symbols in the stack contents don’t change for stacks

j 6= r. For stack r however, (s,P,Ω(q′))R′r = Rr, removing the top most symbol
from the stack, meeting the stack symbols of Sr.
For the third condition, the maximal parity seen since the push of γ′r

↑ is deter-
mined by the maximal parity seen since the last unmatched push before pushing s,
the just popped symbol. This is the position lupπr (i+ 1) = lupπr (lupπr i).

The correct parity is chosen by m′r
↑ = max{ mr ↑, m

r
↑−1,Ω(q′)}.

The next lemma ensures that the strategy automaton Sσ and the mapping F of
configurations from Sσ to positions in FSG behave well with respect to the strategy
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3 Upper bound

σ itself. When the strategy automaton is able to make a move η τ7−→ η′, then there
should be transitions F (η) 7→ · · · 7→ F (η′) compliant with σ in FSG.

Lemma 27. Let σ be a strategy for Eve in FSG and Sσ the strategy automaton. Let
η = η0

τ07−→ η1
τ17−→ . . . be a computation of Sσ starting in a stair η0.

For each position i ∈ N, let

ηi = ((qi, ci, di),Ri) F (ηi) = (Check, qi, ci, di, γi,P i,mi)

where for each stack j, Rij = ( γj i
↑, P
j i
↑, m
j i
↑)( γ

j i
↑−1, P

j i
↑−1, m

j i
↑−1) . . . ( γj i

1, P
j i

1, m
j i

1).
Let i ∈ N. Let ηi

τi7−→ ηi+1 be a transition of Sσ that is not by condition 4.
Then the following transitions exist in FSG and are compliant with σ.

• If τi = (qi, r, qi+1) ∈ δint:

F (ηi) = (Check, qi, ci, di, γi,P i,mi) 7→

(Check, qi+1, ci+1, di+1, γi+1,P i+1
,mi+1) = F (ηi+1)

• τi = (q, r, s, q′) ∈ δpush:

F (ηi) = (Check, qi, ci, di, γi,P i,mi)

7→ (Pushr, ci+1, γi,P i,mi, qi+1, s)

7→ (Claimr, c
i+1, γi,P i,mi, qi+1, s, Pj i+1

↑ )

7→ (Check, qi+1, ci+1, r, γi[s/r],P i[ Pj i+1
↑ /r],mi+1) = F (ηi+1)

• τi = (q, s, r, q′) ∈ δpop: Since η0 is a stair, position i is in a push-pop-pair (t, i).

F (ηt) = (Check, qt, ct, dt, γt,Pt,mt)

7→ (Pushr, ct+1, γt,Pt,mt, qt+1, s)

7→ (Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr t+1

↑ )

7→ (Jumpr, q
i+1, ci+1, γi+1,P i+1

,mi, ttr)

7→ (Check, qi+1, ci+1, di+1, γi+1,P i+1
,mi+1) = F (ηi+1)

Proof. For any of the following, the correctness of qi+1, ci+1 and di+1 is immedi-
ate and therefore skipped. Also be aware that both, FSG and Sσ, only introduce
transitions if ci+1 ≤ k.

Case 1 (τi = (qi, r, qi+1) ∈ δint): By construction of FSG, τi causes the existence of
the transition

F (ηi) = (Check, qi, ci, di, γi,P i,mi) 7→ (Check, qi+1, ci+1, di+1, γi,P i,m′)
!

= (Check, qi+1, ci+1, di+1, γi+1,P i+1
,mi+1) = F (ηi+1)
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3.2 Finite state game

Remains to show the equality of the last two check states. By definition of Sσ,
Ri = Ri+1. Together with F we get that γi = γi+1 and P i = P i+1. By construction
of FSG and Sσ, for any stack j,

mi+1
j = mj i+1

↑ = max{ mj i
↑,Ω(qi+1)} = max{mi

j ,Ω(qi+1)} = m′j .

Also, by construction of Sσ, the transition ηi
τi7−→ ηi+1 only exists, if own(qi) = Ana or

σ((Check, qi, ci, di, γi,P i,mi)) = (Check, qi+1, ci+1, di+1, γi,P i,m′). The transition
is compliant with σ.

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): By construction of FSG, τi causes the existence
of the transitions

F (ηi) = (Check, qi, ci, di, γi,P i,mi)

7→ (Pushr, ci+1, γi,P i,mi, qi+1, s)

7→ (Claimr, c
i+1, γi,P i,mi, qi+1, s, Pr i+1

↑ )

7→ (Check, qi+1, ci+1, di+1, γi[s/r],P i[ Pr i+1
↑ /r],m′)

!
= (Check, qi+1, ci+1, di+1, γi+1,P i+1

,mi+1) = F (ηi+1)

Remains to show the equality of the last two check states. By definition of Sσ,
Ri = Ri+1, except

• for each j 6= r, mj i+1
↑ = max{Ω(qi+1), mj i

↑},

• Ri+1
r = (s, Pr i+1

↑ ,Ω(qi+1))Rr, where

σ((Pushr, ci+1, γi,P i,mi, qi+1, s)) = (Claimr, c
i+1, γi,P i,mi, qi+1, s, Pr i+1

↑ ).

This immediatly yields γi[s/r] = γi+1 and P i[ Pr i+1
↑ /r] = P i+1.

Also, m′r = Ω(qi+1) = mr i+1
↑ and for each stack j 6= r:

m′ = max{Ω(qi+1),mi
j} = max{Ω(qi+1), mj i

↑} = mj i+1
↑ .

Since the transition ηi
τi7−→ ηi+1 exists in Sσ, by its construction,

σ((Pushr, ci+1, γi,P i,mi, qi+1, s)) = (Claimr, c
i+1, γi,P i,mi, qi+1, s, Pj i+1

↑ ).

Also, either own(qi) = Ana or

σ((Check, qi, ci, di, γi,P i,mi)) = (Pushr, ci+1, γi,P i,mi, qi+1, s).

Thus, the transitions exist in FSG and are compliant with σ.
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3 Upper bound

Case 3 (τi = (q, r, s, q′) ∈ δpop and (t, i) is a push-pop-pair): Since (t, i) is a push-
pop-pair, there is a push transition τt = (qt, r, s, qt+1).
By construction of FSG, τt causes the existence of the transitions

F (ηt) = (Check, qt, ct, dt, γt,Pt,mt)

7→ (Pushr, ct+1, γt,Pt,mt, qt+1, s)

7→ (Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr t+1

↑ )

which are compliant with σ, as discussed in the previous case. Since (t, i) is a push-
pop-pair, for any position t < p < i, |Rt+1

r | = |R
i
r| ≤ |R

p
r |. Then, by repetitive use

of Lemma 25, Pr i
↑ ⊆ P

r t+1
↑ .

Next, we show that

(Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr t+1

↑ ) 7→ (Jumpr, q
i+1, ci+1, γi+1,P i+1

,mi, ttr)

is a valid transition in FSG. Since the transition ηi
τi7−→ ηi+1 is not by condition 4, it

must be by condition 3 of Sσ. So either

• ci+1 = 2 and ∅[(qi+1, ci+1, γi+1,mi)/r] ∈ P ir or

• ci+1 6= 2 and Sσ finds a P[(qi+1, ci+1, γi+1,mi)/r] ∈ P ir such that for each stack
j 6= r, Pj ⊆ P

i
j .

By construction of FSG, there is the transition

(Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr t+1

↑ )

7→

{
(Jumpr, qi+1, ci+1, γi+1[γtr/r],P[Ptr/r],mi,mt

r) ci+1 6= 2

(Jumpr, qi+1, ci+1, γi+1[γtr/r],P
t
,mi,mt

r) ci+1 = 2

!
= (Jumpr, q

i+1, ci+1, γi+1,P i+1
,mi, ttr)

To find the last equation, we need to identify γi+1[γtr/r] = γi+1 and

• if ci+1 = 2, Pt = P i+1 or

• if ci+1 6= 2, P[Ptr/r] = P i+1.

Remember that τi = (qi, s, r, qi+1) is a popping transition with

ηi = ((qi, ci, di),Ri) τi7−→ ((qi+1, ci+1, di+1),Ri+1
) = ηi+1,

that used condition 3 of the strategy automaton conditions for a transition with the
prediction P ∈ Pr i

↑ = P ir. Since (t, i) is a push-pop-pair, for all positions t+1 ≤ p ≤ i,

|Rtr| = |R
t+1
r | − 1 = |Rir| − 1 = |Ri+1

r | < |R
p
r |.
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3.2 Finite state game

As Sσ does not change the symbol of its tuples and by repetitive use of Lemma 25,

γi+1
r = γr i+1

↑ = γr t
↑ = γtr and Ptr = Pr t

↑ = Pr t+1
↑−1 = Pr i

↑−1 = Pr i+1
↑ = P i+1

r .

Since Sσ used P for its condition 3 transition, by its construction: For all stacks
j 6= r, P i+1

j = Pj i+1
↑ = Pj . This completes the case of ci+1 6= 2.

For the case of ci+1 = 2, it remains to show that for each stack j 6= r, Ptj = P i+1
j .

Observe, that the push-pop-pair (t, i) is within one context, namely ct = ct+1 =
· · · = ci = ci+1 = 2 and dt = dt+1 = · · · = di = di+1 = r (If the symbol was pushed
in the first context, the second context would be another stack). By construction of
Sσ, during the computation ηt 7→ · · · 7→ ηi+1 in context 2, the top of stack prediction
sets for all stacks j 6= r do not change:

Ptj = Pj t
↑ = Pj t+1

↑ = · · · = Pj i
↑ = Pj i+1

↑ = P i+1
j .

By construction of FSG, the last transition also exists:

(Jumpr, q
i+1, ci+1, γi+1,P i+1

,mi, ttr) 7→ (Check, qi+1, ci+1, di+1, γi+1,P i+1
,m′)

!
= (Check, qi+1, ci+1, di+1, γi+1,P i+1

,mi+1) = F (ηi+1)

Remains to show m′ = mi+1. For any stack j 6= r, by construction of FSG and
Sσ,

mi+1
j = mj i+1

↑ = max{ mj i
↑,Ω(qi+1)} = max{mi

j ,Ω(qi+1)} = m′j .

For stack r, again since (t, i) is a push-pop-pair, for all positions t + 1 ≤ p ≤ i
holds:

|Rtr| = |R
t+1
r | − 1 = |Rir| − 1 = |Ri+1

r | < |R
p
r |.

Repetitive use of Lemma 25 leads to mr t
↑ = mr t+1

↑−1 = mr i
↑−1. Finally,

mi+1
r = max{ mr i

↑, m
r i
↑−1,Ω(qi+1)}
= max{ mr i

↑, m
r t
↑,Ω(qi+1)} = max{mi

r,m
t
r,Ω(qi+1)} = m′r.

The states

(Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr i

↑), (Jumpr, q
i+1, ci+1, γi+1,P i+1

,mi, ttr)

are both not owned by Eve. The transitions are compliant with σ.
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3 Upper bound

3.2.3 Correctness

With the strategy automaton we have the tools at hand to show the equivalence of
GP and FSG for starting positions of GP with empty stacks.

Theorem 28. Eve possesses a winning strategy from (qinit,⊥n) in GP if and only
if they possess a winning strategy from (Check, qinit, 0, 0,⊥n,∅n, 0n) in FSG.

We show this in both directions. First we assume the existence of a winning
strategy for Eve in FSG and use the strategy automaton to find a winning strategy
for Eve in GP .
Then we assume the existence of a winning strategy for Eve in GP and show how

to construct a winning strategy for Eve in FSG.

Transferring a winning strategy from FSG to GP

Let σ be a winning strategy for Eve in FSG from (Check, qinit, 0, 0,⊥n,∅n, 0n). We
use Sσ to derive a strategy ν for Eve in GP as described above (Lemma 26). Let there
be a play π compliant with ν together with its strategy automaton run η. Towards
contradiction, assume π is losing for Eve. We construct a play ρ = ρ0 . . . in FSG
compliant with σ from ρ0 = (Check, qinit, 0, 0,⊥n,∅n, 0n) that is losing for Eve.
For each position i ∈ N, let

ηi = ((qi, ci, di),Ri), F (ηi) = (Check, qi, ci, di, γi,P i,mi).

where for each stack j, Rij = ( γj i
↑, P
j i
↑, m
j i
↑)( γ

j i
↑−1, P

j i
↑−1, m

j i
↑−1) . . . ( γj i

1, P
j i

1, m
j i

1).

In the following, assume that for all i ∈ N there is no transition ηi
τi7−→ ηi+1 following

the 4th condition of Sσ for having a transition. We handle that case later.

Lemma 29. Let p ∈ N be a stair of η. There is ψ : N→ N, such that for each i ∈ N
with p ≤ i, there is a play ρi = ρi1 7→ · · · 7→ ρiψ(i) of length ψ(i) compliant with σ in
FSG from ρi1 = F (ηp) to ρiψ(i) = F (ηi) such that

max
u∈[p..i]

{Ω(qu)} = max
u∈[1..ψ(i)]

{Ω(ρu)}.

Proof. We show this by induction.

Base Case (i = p). Set ψ(p) = 1. Immediatly, F (ηp) = F (ηi) and Ω(qp) =
Ω(F (ηp)).

Inductive Case (i 7→ i + 1). Assume, that for each t ∈ [p..i], there is a play ρt

compliant with σ from F (ηp) = ρt1 to F (ηt) = ρtψ(t).
We create a play in FSG from F (ηp) to F (ηi+1) compliant with σ.
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3.2 Finite state game

Case 1 (τi ∈ δint): Set ψ(i+ 1) = ψ(i) + 1. The desired play is a continuation of ρi.
By Lemma 27, the following transition is compliant with σ.

F (ηi) = (Check, qi, ci, di, γi,P i,mi) 7→
(Check, qi+1, ci+1, di+1, γ,P,mi+1) = F (ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max{ max
u∈[p..i]

{Ω(qu)},Ω(qi+1)}

= max{ max
u∈[1..ψ(i)]

{Ω(ρiu)},Ω(ρψ(t+1))} = max
u∈[1..ψ(i+1)]

{Ω(ρi+1
u )}

Case 2 (τi = (qi, r, s, qi+1) ∈ δpush): The desired play is a continuation of ρi, which
ends in F (ηi). By Lemma 27, the following transitions are compliant with σ.

F (ηi) = (Check, qi, ci, di, γi,P i,mi)

7→ (Pushr, ci+1, γ,P,m, qi+1, s)

7→ (Claimr, c
i+1, γ,P,m, qi+1, s,P i+1

r,1 )

7→ (Check, qi+1, ci+1, di+1, γ[s/r],P[P i+1
r,1 /r],m

i+1) = F (ηi+1)

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max

{
max
t∈[p..i]

{Ω(qt)},Ω(qi+1)

}
= max

{
max

u∈[1..ψ(i)]
{Ω(ρpu, )}, 0, 0,Ω((Check, qi+1, . . . ))

}
= max

{
max

u∈[1..ψ(i)]
{Ω(ρpu, )},Ω((Pushr, . . . )),Ω((Claimr, . . . )),

Ω((Check, qi+1, . . . ))

}
= max
u∈[1..ψ(i+1)]

{Ω(ρpu)}

Case 3 (τi = (qi, s, r, qi+1) ∈ δpop): Since p is a stair, position i is in a push-pop-pair
(t, i) such that p ≤ t < i. Set ψ(i+ 1) = ψ(t) + 4. The desired play is a continuation
of ρt. Because ηi

τi7−→ ηi+1 is not by condition 4 of Sσ’s transition conditions, by
Lemma 27, the following transitions are compliant with σ.

F (ηt) = (Check, qt, ct, dt, γt,Pt,mt)

7→ (Pushr, ct+1, γt,Pt,mt, qt+1, s)

7→ (Claimr, c
t+1, γt,Pt,mt, qt+1, s, Pr t+1

↑ )

7→ (Jumpr, q
i+1, ci+1, γi+1,P i+1

,mi,mt
r)

7→ (Check, qi+1, ci+1, di+1, γi+1,P i+1
,mi+1) = F (ηi+1)
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3 Upper bound

Since (t, i) is push-pop-pair, lupηr(i) = t. By Lemma 26,

mi
r = max

u∈[lupηr (i)..i]
{Ω(qu)} = max

u∈[t..i]
{Ω(qu)}.

By induction,

max
u∈[p..i+1]

{Ω(qu)} = max

{
max
u∈[p..t]

{Ω(qu)}, max
u∈[t..i]

{Ω(qu)},Ω(qi+1)

}
= max

{
max

u∈[1..ψ(t)]
{Ω(ρtu)},mi

r,Ω(ρtψ(i+1))

}
= max

u∈[1..ψ(i+1)]
{Ω(ρi+1

u )}

Since (Nn,≤n) is a well-quasi ordering, η contains an infinite set of stairs ST η =
{p1, p2, . . . } ⊆ N with p1 < p2 < . . . . Towards contradiction, we can now construct
a play ρ = ρ0 7→ ρ1 7→ . . . in FSG that is winning for Ana and is compliant with
σ. We need a function φ : ST → N, such that for any p ∈ ST , F (ηp) = ρφ(p).
Furthermore, we want for each pi, pi+1 ∈ ST that

max
u∈[pi..pi+1]

{Ω(πu)} = max
u∈[φ(pi)..φ(pi+1)]

{Ω(ρu)},

which leads to

max
u∈N

inf{Ω(πu)} = max
i∈N

inf{Ω(πpi), max
pi<u<pl+1

Ω(πu)} =

max
i∈N

inf{Ω(ρφ(pi)), max
φ(pi)<u<φ(pi+1)

Ω(ρu)} = max
u∈N

inf{Ω(ρu)}.

And thus ρ is a play compliant with σ, that is won by Ana, contradicting σ being
a winning strategy for Eve.

Base Case (p1). Initial position of the play is ρ0 = (Check, qinit, 0, 0,⊥n,∅n, 0n) =
F (η0), which is a stair. Thus, p1 = 0.

Inductive Case (pi → pi+1). Assume, we constructed ρ and the function φ, such
that

ρ0 = F (η0) 7→ · · · 7→ ρφ(p1) = F (η1) 7→ · · · 7→ ρφ(p2) = F (η2) 7→ . . .

· · · 7→ ρφ(pi) = F (ηpi)

and for all o ∈ [1..i− 1],

max
u∈[po..po+1]

{Ω(πu)} = max
u∈[φ(po)..φ(po+1)]

{Ω(ρu)}.
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3.2 Finite state game

Since ηpi is a stair and F (ηpi) = ρφ(pi), by Lemma 29, we can find a position for
φ(pi+1) and continue ρ by some transitions

F (ηpi) = ρφ(pi) 7→ · · · 7→ ρφ(pi+1) = F (ηpi+1),

such that
max

u∈[pi..pi+1]
{Ω(πu)} = max

u∈[φ(pi)..φ(pi+1)]
{Ω(ρu)}.

Now we handle the case where one of the transitions in η is due to condition 4 of
the strategy automaton. Let there is a minimal position i ∈ N, such that ηi

τi7−→ ηi+1

is due to condition 4 of Sσ’s transition conditions. Be aware, that the induction in
Lemma 29 still works up to position i. Thus, there is a play ρ compliant with σ from
(Check, qinit, 0, 0,⊥n,∅n, 0n), which is a stair, to ψ(ηi). Since Sσ had a transition
for τi, either own(ψ(ηi)) = Ana or σ chose the transition introduced to FSG caused
by τi. In either case, the following transition is compliant with σ:

ψ(ηi) = (Check, qi, ci, di, γi,P i,mi) 7→ Anawin.

Because τi used condition 4, we know that there is no prediction P ∈ P ir, with
Pr = (qi+1, ci+1, γi+1,mi) such that for each stack j 6= r,

• c′ 6= 2 and Pj ⊆ Pj ↑ or

• c′ = 2 and Pj = ∅.

Thus the above transition is indeed a continuation of ρ, compliant with σ, that is
won by Ana, contradicting σ being a winning strategy for Eve.

Transferring a winning strategy from GP to FSG

We handle a lot of play prefixes in this section. Let us introduce the notation
π..i = π0π1 . . . πi for play prefixes of π.
Let ν be a winning strategy for Eve in GP . We construct a strategy σ for Eve in

FSG. For this, we need to maintain a play prefix of GP . During a play ρ in FSG, we
build up and continue this prefix and use it to determine the moves to be taken by
σ in ρ.

Definition 30. Given a strategy ν for Eve in GP , a play prefix π..l = π0
τ07−→ . . .

τl−17−−→
πl compliant with ν and an unmatched pushing position p ∈ [0..l−1] with τp = (q, r,
s, q′) ∈ δpush, we define a game prediction set Pπ..l,ν,p ⊆ Pr recursivly:
For every play π..l′ that is a continuation of π..l, i.e. l < l′, and compliant with ν,
if p is matched in π..l′ , i.e. (p, t) is a push-pop-pair in π..l, we add an element P to
Pπ..l,ν,p:
Let c be the context of π..l′ at position t+ 1, q′′ be the state and γ be the top of

stack symbols at πt+1. For each stack j ∈ [1..n], let tj = lupjπ..t(t). Let m be such
that

mj =

{
maxu∈[tj+1..t]{Ω(πu)} tj 6= ⊥
maxu∈[0..t]{Ω(πu)} tj = ⊥
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We add P to Pπ..l,ν,p, where Pr = (q′′, c, γ,m) and for each stack j 6= r,

Pj =

{
∅ tj = ⊥ or c = 2

Pπ..t+1,ν,tj tj 6= ⊥ and c 6= 2

Be aware, that this construction is finite and the result is an actual prediction: The
sets Pπ..t+1,ν,tj contain predictions with context greater than c by construction (there
is no play continuation of π..t+1, where a pop can occur in context c for any stack
other than r). Furthermore, this construction is finite as Pi is finite.

For a play prefix π..l and its continuation π..l′ , i.e. l < l′, it is immediate that
Pπ..l′ ,ν,p ⊆ Pπ..l,ν,p. This is because the set of play continuations for π..l′ is a subset
of the play continuations for π..l.
For a play ρ in FSG compliant with σ, we maintain the play prefix of GP . In order

to keep the construction short, we define the strategy and an invariant (Lemma 31)
between the two plays at the same time. For this, define the set Checksρ ⊆ N of all
indecies where ρ is in a Check-state. We can order these positions by their occurence
in ρ so we get Checksρ = {p1, p2, . . . } with p1 < p2 < . . . . We define a function
ψ : Checksρ → N that maps play indecies of Check-states in ρ to positions in π.

Lemma 31. Let ρ be a play compliant with σ and π the corresponding play created.

• π is compliant with ν

• For any position p ∈ Checksρ, if ρp = (Check, q, c, d, γ,P,m), then πψ(p) is
in state q, in context c of stack d and the top of stack symbols are γ. Let
tj = lup

π..ψ(p)

j (ψ(p)). For every stack j with tj 6= ⊥, Pπ..ψ(p),ν,tj ⊆ Pj.

• for pi, pi+1 ∈ Checksρ,

max
u∈[pi..pi+1]

{Ω(ρu)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}

Proof. and Construction by induction.

Base Case (i = 1). This is only the initial position. π0 = (qinit,⊥n), ρ0 = (Check,
qinit, 0, 0,⊥n,∅n,Ω(qinit)

n). ψ(p1) = ψ(0) = 0.

Inductive Case (i → i + 1). We first show how σ continues ρ and π..ψ(pi) before
focussing on the invariant stated in Lemma 31.
If own(ρpi) = Eve, we need to construct σ for ρpi = (Check, q, c, d, γ,P,m). In that

case, let πψ(pi)
τ7−→ ν(πψ(pi)) be the transition used by ν in GP . If own(ρpi) = Ana,

Ana takes some transition in FSG that was introduced by some transition τ enabled
in πψ(pi).
Let πψ(pi) = (q,S), where by indcution, the top of stack symbols form γ.
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Case 1 (τ = (q, r, q′) ∈ δint): ρ continues with the transition introduced in FSG:

ρpi = (Check, q, c, d, γ,P,m)
τ7−→ (Check, q′, c′, i, γ,P,m′) = ρpi+1

Further, we set ψ(pi+1) = ψ(pi) + 1 and continue π by

πψ(pi) = (q,S)
τ7−→ (q′,S) = πψ(pi+1).

to arrive at π..ψpi+1
.

To the invariant:

• This is compliant with ν.

• State, context and stack conditions are fulfilled by construction, as well as the
top of stack condition. The prediction sets did not change, thus

Pπ..ψ(pi+1)
,ν,tj ⊆ Pπ..ψ(pi)

,ν,tj ⊆ Pj .

• for the parity condition, we get, that

max
u∈[pi..pi+1]

{Ω(ρu)} = max{Ω(ρpi),Ω(ρpi+1)} =

max{Ω(πψ(pi)),Ω(πψ(pi+1))} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2 (τ = (q, r, s, q′) ∈ δpush): ρ continues with the transition introduced in FSG:

ρpi = (Check, q, c, d, γ,P,m) 7→ (Pushr, c′, γ,P,m, q′, s)

First, we continue π..ψ(pi) by π..ψ(pi)+1 = π..ψ(pi)
τ7−→ πψ(pi)+1 which is compliant with

ν.
Then, Eve has to make a claim in FSG. To define their strategy, we use the game

prediction from above.

(Pushr, c′, γ,P,m, q′, s) 7→ (Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)+1,ν,ψ(pi))

Case 2.1 (Ana continues to (Check, q′, c′, r, γ[s/r],P[Pπ..ψ(pi)+1,ν,ψ(pi)/r],m′)): The
transitions in FSG up to pi+1 are

ρpi = (Check, q, c, d, γ,P,m)

7→ (Pushr, c′, γ,P,m, q′, s)

7→ (Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)+1,ν,ψ(pi))

7→ (Check, q′, c′, r, γ[s/r],P[Pπ..ψ(pi)+1,ν,ψ(pi)/r],m′) = ρpi+1

Thus, pi+1 = pi + 3. Set ψ(pi+1) = ψ(pi) + 1. Then, π..ψ(pi+1) = π..ψ(pi)+1.
To the invariant:
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• State, context and stack conditions are fulfilled by construction, as well as the
top of stack condition. The prediction sets for all stacks j 6= r did not change
and tj = lup

π..ψ(pi)

j (ψ(pi)) = lup
π..ψ(pi+1)

j (ψ(pi+1)), thus

Pπ..ψ(pi+1)
,ν,tj ⊆ Pπ..ψ(pi)

,ν,tj ⊆ Pj = P[Pπ..ψ(pi)
,ν,ψ(pi)/r]j .

For stack r, we have lup
π..ψ(pi+1)

j (ψ(pi+1)) = ψ(pi). Adequately,

Pπ..ψ(pi+1)
,ν,ψ(pi) = P[Pπ..ψ(pi)

,ν,ψ(pi)/r]r.

• for the parity condition, we have

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , (Pushr, . . . ), (Claimr, . . . ), ρpi+1} =

max{ρpi , ρpi+1} = max{πψ(pi), πψ(pi+1)} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2.2 (Ana continues to (Jumpr, q′′, c′′, γ′[γr/r],P
′
[Pr/r],m′,mr), where c′′ 6= 2):

The transitions in FSG up to pi+1 are

ρpi = (Check, q, c, d, γ,P,m)

7→ (Pushr, c′, γ,P,m, q′, s)

7→ (Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)

,ν,ψ(pi))

7→ (Jumpr, q
′′, c′′, γ′[γr/r],P

′
[Pr/r],m′,mr)

7→ (Check, q′′, c′′, r, γ′[γr/r],P
′
[Pr/r],m′′) = ρpi+1

We set pi+1 = pi + 4. Since c′′ 6= 2 it must be that P ′ ∈ Pπ..ψ(pi)
,ν,ψ(pi) in order for

(Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)

,ν,ψ(pi)) 7→ (Jumpr, q
′′, c′′, γ′[γr/r],P

′
[Pr/r],m′,mr)

to exist, where P ′r = (q′′, c′′, γ′,m′). By construction of Pπ..ψ(pi)
,ν,ψ(pi), there is a play

continuation π..l of π..ψ(pi) compliant with ν, such that ψ(pi) is in a push-pop-pair
(ψ(pi), t) with ψ(pi) < t < l.
Finally, we continue π..ψ(pi) to π..t+1 and set ψ(pi+1) = t+ 1.
To the invariant:

• By construction of Pπ..ψ(pi)
,ν,ψ(pi), this is compliant with ν.

• By construction of Pπ..ψ(pi)
,ν,ψ(pi), πt+1 is in state q′′ in context c′′ of stack r

with the top of stack symbols being γ′[γr/r].

Furthermore, for each stack j 6= r, since P ′ ∈ Pπ..ψ(pi)
,ν,ψ(pi), with tj =

lupπ..tj (t),

P ′[Pr/r]j = P ′j =

{
Pπ..t,ν,tj tj 6= ⊥
∅ tj = ⊥

.
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For stack r, we know that since (ψ(pi), t) is a push-pop-pair, that

tr = lup
π..ψ(pi)
r (ψ(pi)) = lupπ..t+1

r (t+ 1) = lup
π..ψ(pi+1)

r (ψ(pi+1)).

Due to π..ψ(pi+1) being a continuation of π..ψ(pi), we arrive at

Pπ..ψ(pi+1)
,ν,tr ⊆ Pπ..ψ(pi)

,ν,tr ⊆ Pr = P ′[Pr/r]j .

• For the parity condition, be aware, that by construction of Pπ..ψ(pi)
,ν,ψ(pi),

mr = max
u∈[ψ(pi)+1..t]

{Ω(πu)}.

Together, we arrive at:

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , ρpi+1 , (Pushr, . . . ), (Claimr, . . . ),

(Jumpr, q
′′, c′′, γ′[γr/r],P

′
[Pr/r],m′,mr)}

= max{ρpi , ρpi+1 ,mr} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 2.3 (Ana continues to (Jumpr, q′′, c′′, γ′[γr/r],P,m′,mr), where c′′ = 2): The
transitions in FSG up to pi+1 are

ρpi = (Check, q, c, d, γ,P,m)

7→ (Pushr, c′, γ,P,m, q′, s)

7→ (Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)

,ν,ψ(pi))

7→ (Jumpr, q
′′, c′′, γ′[γr/r],P,m′,mr)

7→ (Check, q′′, c′′, r, γ′[γr/r],P,m′′) = ρpi+1

We get, that pi+1 = pi + 4. Since c′′ = 2 it must be that P ′ ∈ Pπ..ψ(pi)
,ν,ψ(pi) in order

for

(Claimr, c
′, γ,P,m, q′, s,Pπ..ψ(pi)

,ν,ψ(pi)) 7→ (Jumpr, q
′′, c′′, γ′[γr/r],P,m′,mr)

to exist, where P ′r = (q′′, c′′, γ′,m′) and for each other stack j 6= r, P ′j = ∅. Thus, by
construction of Pπ..ψ(pi)

,ν,ψ(pi), there is a play continuation π..l of π..ψ(pi) compliant
with ν, such that ψ(pi) is in a push-pop-pair (ψ(pi), t) with ψ(pi) < t < l. Be
aware, that this play continuation does not change the context of the play, since a
pop-transition in context 2 can only occur after a push transition on the active stack,
which means, it was also pushed in context 2.
Finally, we continue π..ψ(pi) to π..t+1. Set ψ(pi+1) = t+ 1.
To the invariant:

• By construction of Pπ..ψ(pi)
,ν,ψ(pi), this is compliant with ν.
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• By construction of Pπ..ψ(pi)
,ν,ψ(pi), πt+1 is in state q′′ in context c′′ = 2 of stack

r with the top of stack symbols being γ′[γr/r].

Furthermore, by the fact that the context has not switched since πψ(pi) and that
(ψ(pi), t) is push-pop-pair, for each stack j ∈ [1..n], tj = lup

π..ψ(pi)

j (ψ(pi)) =

lup
π..ψ(pi+1)

j (ψ(pi+1)) and thus

Pπ..ψ(pi+1)
,ν,tj ⊆ Pπ..ψ(pi)

,ν,tj ⊆ Pj .

• For the parity condition, be aware, that by construction of Pπ..ψ(pi)
,ν,ψ(pi),

mr = max
u∈[ψ(pi)+1..t]

{Ω(πu)}.

Together, we arrive at:

max
u∈[pi..pi+1]

{Ω(ρu)} = max{ρpi , ρpi+1 , (Pushr, . . . ), (Claimr, . . . ),

(Jumpr, q
′′, c′′, γ′[γr/r],P,m′,mr)}

= max{ρpi , ρpi+1 ,mr} = max
u∈[ψ(pi)..ψ(pi+1)]

{Ω(πu)}.

Case 3 (τ = (q, s, r, q′) ∈ δpop): ρ continues with the transition introduced for τ .
This is either

ρpi = (Check, q, c, d, γ,P,m) 7→ Evewin or

ρpi = (Check, q, c, d, γ,P,m) 7→ Anawin.

We show, that the second case is impossible. Since τ is enabled in πψ(pi), we can
continue π..ψ(pi) by πψ(pi)

τ7−→ πψ(pi)+1. Due to the enabledness of a pop-transition,
there is tr = lup

π..ψ(pi)
r (ψ(pi)) and by definition of Pπ..ψ(pi)

,ν,tr , there is a prediction
P ′ ∈ Pπ..ψ(pi)

,ν,tr ⊆ Pr, such that:

P ′ = ∅[(q′, c′, γ,m)/i] if c′ = k or c′ = 2

P ′j = Pπ..ψ(pi)+1,ν,tj ⊆ Pj
for all j 6= i, if 2 6= c′ < k

P ′i = (q′, c′, γ,m)

Now we can show, that ρ is winning for Eve:

Case 1 (ρ contains Evewin): This play is winning for Eve.

Case 2 (ρ contains Anawin): By Lemma 31, this cannot happen.
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Case 3 (ρ contains infinitly many Check states): In this case, Checksρ is infinite and

max
u∈N
{Ω(ρu)} = max

i∈N

{
max

u∈[pi..pi+1]
{Ω(ρu)}

}
= max

i∈N

{
max

u∈[ψ(pi)..ψ(pi+1)]
{Ω(πu)}

}
= max

u∈N
{Ω(πu)},

which is winning for Eve, since π is compliant with ν, which is a winning strategy.
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4 Lower bound

This chapter is dedicated to proving a lower bound on the complexity of reachability
multi-pushdon games. As reachability games can easily be formulated as parity
games, it is sufficient to show the lower bound for reachability multi-pushdown games.
In fact, we will transform a Turing machine into a state reachability multi-pushdown
game.

Theorem 32. (k+2)-context bounded multi-pushdown games are k-EXPTIME hard.
k-phase bounded multi-pushdown games are k-EXPTIME hard.

The task of this chapter is to transform a k-EXPTIME Turing machine and an
input word into a multi-pushdown game such that Eve possesses a winning strategy
from a certain position if and only if the input word would be accepted by the Turing
machine.
Let us draw a rough outline of the steps taken in order to accomplish the above.

The first aspect is turning the Turing machine into a game. Due to the alternating
space – deterministic time theorem about Turing machines, we reduce from an alter-
nating Turing machine with (k−1)-EXP space bound. Alternating Turing machines
are easily transformed into a game on the Turing machines configuration graph, as
seen in the next section (4.1.1) about Turing machines. Intuitivly, the successors
of configurations in existential branching state are chosen by Eve and successors of
configurations in universal branching state by Ana. A winning strategy for Eve then
results in the fact that each branch from a configuration in universal branching state
yields a computation accepted by the Turing machine (And a winning strategy for
Ana finds a branch violating the acceptance).
The next step is to construct a multi-pushdown game that simulates the above

alternating Turing machine game. There are three core ideas involved in the con-
struction.
The first idea is storing a branch of the computation on one stack. This stack

will contain a computation branch prefix of the alternating Turing machine, which
represents a play in the alternating Turing machine game. Whenever Eve (Ana)
would choose to make a move to the next successing configuration, they instead
push the desired configuration onto the stack holding the current prefix.
The second and third idea are used to keep the state space of the multi-pushdown

game small. The configurations we are handling are sized (k − 1)-EXP in the input
of the Turing machine. But for a PTIME reduction, we need the resulting multi-
pushdown game to be adequatly small. In particular, we can not simply use the
state space to ensure that each player is indeed pushing (successing) configurations.
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Instead, we find a solution in the second idea that is called Guess & Check: Since
we are only interested in winning strategies for each player, we use Eve as an oracle
to guess something and Ana as a checker, either disbelieving and entering a checking
routine to invalidate the Guess or believing and continuing the play. The checking
routine is a part of the game that will determine the winner of any play entering it.
It should hold that when Eve guessed correctly they will possess a winning strategy
within this routine. Vice versa, if they guessed incorrectly, Ana should possess a
winning strategy in this routine. A winning strategy for Eve now always guesses
correctly as guessing incorrectly contradicts the strategy to be winning.
For our use case of Guess & Check, we give Eve a transition enabled in the topmost

configuration of the stack holding the computation prefix. Eve makes a Guess by
pushing any sequence onto this stack. They guess correctly, if they push precisely
the successing configuration reached by taking the stated Turing machine transition
from the previous top of stack configuration. For the Check part, the multi-pushdown
game needs to check whether the pushed sequence by Eve was indeed the desired
successing configuration. Finding a routine with this property is the trickiest part
in the construction and involves the third idea.
The third core idea is a layered indexing system. Each letter of the configura-

tions will be succeded by an index containing the position of the letter within the
configuration. The intuitive idea behind this is that when the configuration has size
(k − 1)-EXP in the input, then each index has only length (k − 2)-EXP. Using this
indexing system in a layered fashion, which means that each of the indecies is indexed
itself, results in the smallest indecies being of polynomial length. So for the smallest
indecies we can construct gadgets in our multi-pushdown game to check properties
like equality of the indecies. We then use induction to create gadgets that check the
same properties on higher level indexed words. In fact, the mechanism is powerful
enough to check for two indexed words on a stack and any first order relation (defined
in section 4.2) whether the words are in relation or not. The successor relation of a
Turing machine is a first order relation. This completes the checking routine.

4.1 Turing machines

Turing machines are a generic model for computation used for the definition of com-
plexity classes. Since we plan to build a reduction from the acceptance problem
for alternating Turing machines with (k − 1)-EXP space bound, we need to settle
notation for Turing machines and their computations.

Definition 33. An alternating Turing machine is a tuple M = (Q,Σ,Γ,∆, qinit),
where Q is a set of states, Γ is the tape alphabet containing #, the empty cell symbol,
Σ ⊆ Γ \ {#} is the input alphabet, qinit ∈ Q is the initial state and Γ ⊆ Q × Γ ×
Q×Γ×{N,L,R} is the transition relation. The set of states is partitioned into the
existential and universal branching states by a branching assignment br : Q→ {∃,∀}.
A Turing machine may have a space bound sb : N→ N.
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4.1 Turing machines

For the definition of configurations, we introduce a copy of the original tape alpha-
bet Γ = Γ ∪ (Γ× {†}). We represent tape cells by symbols from Γ. A symbol (s, †)
corresponds to a cell with content s with the head of the Turing machine is at this
position and s to a cell with content s and the head of the Turing machine is absent at
this position. A configuration ofM on input w of length n = |w| is of the form (q, c),
where c ∈ Γ

sb(n) and only one symbol in c is from (Γ×{†}). The set of configurations
then is CM = Q× {c ∈ Γ

sb(n) | c contains precisely one letter (s, †), s ∈ Γ}.

Definition 34. Let (q, c), (q′, c′) ∈ CM be configurations and let p ∈ [0..sb(n) − 1]
be the position of the head in (q, c), i.e. cp = (s, †) for some s ∈ Γ.
The configurations are in the successor relation 7→ ⊆ CM × ∆ × CM , denoted by
(q, c)

δ7−→ (q′, c′), if one of the following is true

• δ = (q, s, q′, s′, N) and c′p = (s′, †)

• δ = (q, s, q′, s′, L) and p > 0 and c′p = s′ and c′p−1 = (s′′, †) where s′′ = cp−1

• δ = (q, s, q′, s′, R) and p < sb(n) − 1 and c′p = s′ and c′p+1 = (s′′, †) where
s′′ = cp+1

and for all other positions u, c′u = cu.
We may omit δ in the notation, if it is not of importance.

We define a set of leaf configurations Leaf(�) for each branching type � ∈ {∃, ∀},
which do not offer any successing configuration:

Leaf(�) = {(q, c) ∈ CM | br(q) = � and ¬∃(q′, c′) ∈ CM .(q, c) 7→ (q′c′)}.

These form the acceptance condition for a computation.
A computation begins with the input word on the tape and the head of the Turing

machine on the right most symbol. The Turing machine may only use space according
to its space bound to the left of the input word. Any other conventions would perform
as well. They are only needed to identify a unique starting configuration.

Definition 35. A computation tree of M on input w of length n is a prefix closed,
nonempty set T ⊂ Nω with a labelling l : T → CM such that

• l(ε) = (qinit, cinit), where cinit = #sb(n)−nw0 . . . wn−2(wn−1, †),

• if l(t) = (q, c) with br(q) = ∃ and (q, c) 6∈ Leaf(∃), then t.0 ∈ T is the only
child of t with some labelling l(t.0) such that l(t) 7→ l(t.0).
If (q, c) ∈ Leaf(∃), t is a leaf.

• if l(t) = (q, c), with br(q) = ∀, let {(q0, c0), . . . , (qx, cx)} = {(q′, c′) ∈ CM |
l(t) 7→ (q′, c′)}. Then, t.0, . . . , t.x − 1 ∈ T are the only childs of t such that
l(t.y) = (qy, cy).
If (q, c) ∈ Leaf(∀), this construction results in t being a leaf.
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A computation tree T is called accepting, if it is finite and all leaves t of T have
a labelling l(t) ∈ Leaf(∀). An input word w is called accepting, if there is an
accepting computation tree on input w. The language of M is L(M) = {w ∈ Σ∗ |
w is accepted by M}. M is called decider if all computation trees are finite for all
inputs.

4.1.1 A game equivalent to an alternating Turing machine

We can resemble the acceptance problem of an alternating Turing machine by the
means of a game. The key principle is that each player chooses a successing config-
uration for configurations that are in their respective branching state.
Let M = (Q,Σ,Γ,Γ, qinit) be an alternating decider with space bound sb : N→ N

and branching assignment br : Q→ {∃, ∀}. The game GM = (CM , 7→,Leaf(∀)) with
ownership assignment

own((q, c)) =

{
Eve if br(q) = ∃
Ana if br(q) = ∀

is equivalent to the Turing machine in the following sense.

Theorem 36. w ∈ L(M) if and only if Eve possesses a winning strategy in GM
from (qinit, cinit).

Be aware that M is a decider. Any computation tree of it is finite. In particular,
any play in GM visits some position that does not offer a next move. As discussed
in the section for games, the owner of such position looses the play. The reachability
set Leaf(∀) for Eve is precisely the set of positions where Ana cannot make another
move.

Proof. Assume Eve possesses a winning strategy σEve from (qinit, cinit). We want
to create a computation tree T dependent on σEve with the following property. For
each node t = t0 . . . tm ∈ T the play prefix l(t0)l(t0t1) . . . l(t0 . . . tm) is compliant
with strategy σEve.
We construct the tree inductivly as follows. It is immediate that it is a computation

tree of M on input w.

• Initially, set T = {ε} with l(ε) = (qinit, cinit). This is the prefix of every play
starting in (qinit, cinit).

• If t ∈ T is currently a leaf and l(t) = (q, c) with br(q) = ∃, then add t.0 to T
with labelling l(t.0) = σEve(l(t)). This exists, since σEve is a winning strategy.
By induction, because t ∈ T , the play prefix l(t0)l(t0t1) . . . l(t) is compliant
with strategy σEve. The play prefix l(t0)l(t0t1) . . . l(t)l(t.0) is also compliant
with strategy σEve.
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• If t ∈ T is currently a leaf and l(t) = (q, c) with br(q) = ∀, add the nodes
t.0, . . . , t.x to T , where {(q0, c0), . . . , (qx, cx)} = {(q′, c′) ∈ CM | l(t) 7→ (q′, c′)}.
Label them by l(t.y) = (qy, cy). Since t ∈ T , the play prefix l(t0)l(t0t1) . . . l(t)
is compliant with strategy σEve. Any play prefix l(t0)l(t0t1) . . . l(t)l(t.y), by
own(l(t)) 6= Eve, is also compliant with strategy σEve.

This computation tree’s leaves are labelled by configurations from Leaf(∀). Towards
contradiction, assume that there is a leaf t with l(t) = Leaf(∃). By the construction
of the tree, t.0 is being added to T with labelling l(t.0) = σEve(l(t)). This contradicts
t being a leaf. As discussed earlier, each play in GM is finite, and so is T . Therefore,
T is accepting and w ∈ L(M).
Now assume that Ana possesses a winning strategy σAna from (qinit, cinit). Towards

contradiction, assume there is an accepting computation tree T of M on input w
such that all leafs t have a label l(t) ∈ Leaf(∀). We construct a play π = π0π1 . . .
compliant with strategy σAna inductivly with the following property. For every play
prefix π0 . . . πm, there is t0 . . . tm−1 = t ∈ T with π0 . . . πm = l(ε)l(t0)l(t0t1) . . . l(t).

• π0 = l(ε) = (qinit, cinit).

• π0 . . . πm = l(ε)l(t0)l(t0t1) . . . l(t) for some t0 . . . tm−1 = t ∈ T . Continue the
play to πm+1 where

Case 1 (own(πm) = ∃): πm+1 = l(t.0)

Case 2 (own(πm) = ∀): πm+1 = σAna(l(t)). Since T is a computation tree and
l(t) 7→ σAna(l(t)), there is y, s.t. σAna(l(t)) = l(t.y).

It is immediate that π is compliant with σAna. Since T is accepting, the play ends in
some leaf t ∈ T with l(t) ∈ Leaf(∀) which would be loosing for Ana. This contradicts
σAna being a winning strategy. Therefore, no accepting computation tree exists and
w 6∈ L(M).

4.2 First order relations

First order relations are defined by the use of a first order formula. The formula is
evaluated over a structure of two words of same length. Given two words of same
length and a first order formula, the corresponding first order relation puts those
words in relation if they satisfy the formula.
The syntax of a first order formula consists of terms and formulas.

Definition 37. Let Σ be an alphabet and y1, y2 be variables and let s ∈ Σ be
symbol.
A term is defined by

t ::= s | s1(y) | s2(y).

51



4 Lower bound

Let t1, t2 be terms.
A first order formula is defined by

ϕ ::= y1 ≤ y2 | t1 = t2 | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ∃y.ϕ | ∀y.ϕ.

A formula ϕ is closed, if it contains no free variables, i.e. each variable is bound by
a quantor.

To evaluate a formula under a structure of two words, we need a valuation binding
the open variables of the formula. The domain for variables is the set of word
positions. This way, each variable points to a position within the two words. The
semantics of the formula are defined by structural induction. Terms represent single
symbols. They are either a constant symbol or a symbol from within one of the two
words at the position of a given variable. Formulas compare terms and variables.
They are closed under boolean combination and first order quantification.

Definition 38. A first order formula ϕ is evaluated under a structure of two words
v1, v2 ∈ Σ∗ of same length |v1| = |v2| = n and a valuation val : Var→ [0..n− 1].
We define the semantics of formulas and terms under such a structure.

Jt1 = t2Kval
v1,v2

:= Jt1Kval
v1,v2 = Jt2Kval

v1,v2 JsKval
v1,v2

:= s

Jy1 ≤ y2Kval
v1,v2

:= val(y1) ≤ val(y2) Js1(y)Kval
v1,v2

:= v1val(y)

Jϕ1 ∧ ϕ2Kval
v1,v2

:= Jϕ1Kval
v1,v2 ∧ Jϕ2Kval

v1,v2 Js2(y)Kval
v1,v2

:= v2val(y)

Jϕ1 ∨ ϕ2Kval
v1,v2

:= Jϕ1Kval
v1,v2 ∨ Jϕ2Kval

v1,v2

J¬ϕ1Kval
v1,v2

:= ¬Jϕ1Kval
v1,v2

J∃y.ϕ1Kval
v1,v2

:= ∃p.Jϕ1Kval[p/y]
v1,v2

J∀y.ϕ1Kval
v1,v2

:= ∀p.Jϕ1Kval[p/y]
v1,v2

A closed formula ϕ is satisfied by v1, v2, denoted by v1, v2 � ϕ, if JϕK∅v1,v2 = true.

Now, we can use first order formulas to define relations between words of the same
length.

Definition 39. A first order relation ∼ is a relation ∼ ⊆
⋃
i∈N(Σi × Σi) with a

formula ϕ such that for all words v1, v2, v1 ∼ v2 if and only if v1, v2 � ϕ.
We call a first order relation simple if s2 is not occuring in the formula. Note, that
simple first order relations are unary relations and can be evaluated on a structure
of a single word.

Example 40. The relations =, <, (+1) over the most significant bit first encoding
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of numbers in N are first order relations with the following formulas.

=: ∀y. s1(y) = s2(y)

<: ∃y1∀y2. (y2 < y1)⇒ s1(y2) = s2(y2)

∧ (y1 = y2)⇒ s1(y2) = 0 ∧ s2(y2) = 1

(+1) : ∃y1∀y2. (y2 < y1)⇒ s1(y2) = s2(y2)

∧ (y1 = y2)⇒ s1(y2) = 0 ∧ s2(y2) = 1

∧ (y1 < y2)⇒ s1(y2) = 1 ∧ s2(y2) = 0

To transform a first order formula into a game in the next section, we want the
first order formula to be in normal form.

Definition 41. A first order formula is in normal form, if it is of the form

Q1y1 . . . Qmym.ϕ,

where ϕ does not contain any quantifiers.
For each first order formula there is an equivalent first order formula in normal form.

4.2.1 A game equivalent to a first order formula

In this section, we transform a closed first order formula in normal form ϕ into a
game. We want a winning strategy for Eve if the formula is satisfied. More formal,
given a closed first order formula Q1y1 . . . Qmym.ϕ in normal form and a structure
v1, v2, we create a game such that Eve possesses a winning strategy from a starting
position if and only if v1, v2 � Q1y1 . . . Qmym.ϕ.
The general idea is that each player takes the role of chosing a valuation for the

variables preceeded by their respective quantors. They begin with the outermost
quantors and build up a valuation val along the play. The winner of a play is then
determined by JϕKval

v1,v2 .
Let Q1y1 . . . Qmym.ϕ be a closed first order formala in normal form, i.e. ϕ does

not contain quantors. Let v1, v2 be words from Σn.
We construct the following game with positions of the form (Quant, i, val). Such

a position means, that the players have already chosen a valuation for the first i− 1
quantors. The choices are stored in val, which is a partial valuation for the first
i− 1 variables. The next position will determine the valuation for variable yi. Thus,
(Quant, i, val) should have its owner depend on Qi.
The starting position is (Quant, 1,⊥{y1,...,ym}).

We set the ownership by own((Quant, i, val)) = Eve if Qi = ∃ and own((Quant,
i, val)) = Ana if Qi = ∀. Also, own((Quant,m + 1, val)) = Eve. The game consists
of the following moves:

((Quant, i, val), (Quant, i+ 1, val[p/yi])) p ∈ [0..n− 1], 1 ≤ i ≤ m
((Quant,m+ 1, val),Evewin) JϕKval

v1,v2 = true

((Quant,m+ 1, val),Anawin) JϕKval
v1,v2 = false
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Together, the above defines a game Gv1,v2,∼ = (Vv1,v2,∼, Ev1,v2,∼, {Evewin}) where ∼
is the first order relation for Q1y1 . . . Qmym.ϕ.

Lemma 42. Eve possesses a winning strategy in Gv1,v2,∼ from the position (Quant,
1,⊥{y1,...,ym}) if and only if v1 ∼ v2, i.e. v1, v2 � Q1y1 . . . Qmym.ϕ.

Proof. We will prove a stronger statement by induction:
Given a partial valuation val : {y1, . . . , yi} → [0..n − 1] on the first i variables, Eve
possesses a winning strategy from position (Quant, i+ 1, val) if and only if

JQi+1yi+1 . . . Qmym.ϕKval
v1,v2 = true.

Base Case (i = m). Let val : {y1, . . . , ym} → [0..n − 1]. By construction, Eve
possesses a winning strategy from position (Quant,m+1, val) if and only if JϕKval

v1,v2 =
true.

Inductive Case (i < m). By induction: Given any valuation val : {y1, . . . , yi+1} →
[0..n− 1], Eve possesses a winning strategy from (Quant, i+ 2, val) if and only if

JQi+2yi+2 . . . Qmym.ϕKval
v1,v2 = true.

Let val : {y1, . . . , yi} → [0..n− 1] be some valuation on the first i variables.
Assume JQi+1yi+1 . . . Qmym.ϕKval

v1,v2 = true.

Case 1 (Qi+1 = ∃): There is u ∈ [0..n − 1] s.t. JQi+2yi+2 . . . Qmym.ϕKval[u/yi+1]
v1,v2 =

true. By induction, there is a winning strategy σ from (Quant, i + 2, val[u/yi+1])
for Eve. If we set σ((Quant, i + 1, val)) = (Quant, i + 2, val[u/yi+1]), we arrive at a
winning strategy for Eve from (Quant, i+ 1, val).

Case 2 (Qi+1 = ∀): For all positions u ∈ [0..n−1], JQi+2yi+2 . . . Qmym.ϕKval[u/yi+1]
v1,v2 =

true. By induction, there is a winning strategy σ from (Quant, i+ 2, val[u/yi+1]) for
Eve. Thus, σ is winning for Eve from (Quant, i+ 1, val).

Now assume JQi+1yi+1 . . . Qmym.ϕKval
v1,v2 = false.

Case 1 (Qi+1 = ∃): For all positions u ∈ [0..n−1], JQi+2yi+2 . . . Qmym.ϕKval[u/yi+1]
v1,v2 =

false. By induction, there is a winning strategy σ from (Quant, i + 2, val[u/yi+1])
for Ana. Thus, σ is winning for Ana from (Quant, i+ 1, val).

Case 2 (Qi+1 = ∀): There is u ∈ [0..n − 1], s.t. JQi+2yi+2 . . . Qmym.ϕKval[u/yi+1]
v1,v2 =

false. By induction, there is a winning strategy σ from (Quant, i + 2, val[u/yi+1])
for Ana. If we set σ((Quant, i+ 1, val)) = (Quant, i+ 2, val[u/yi+1]), we arrive at a
winning strategy for Ana from (Quant, i+ 1, val).
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4.3 Layered indexing

We use a layered indexing system similar to the one used in [6]. We havily rely
on its structure for the check part of the final multi-pushdown game. The goal of
the indexing system is to transform k-EXP sized configurations of Turing machines
into indexed configurations with small indices that can be compared using only an
polynomial amount of states in the input length of the Turing machine.
Intuitivly, an indexed word is the same word, but each letter is succeded by an

index. An index contains the position of the letter in form of a most significant bit
first encoding. Each index is shorter than the original indexed word by one exponent.
In most cases, this will still be non-polynomial in the input length, which leads to
indexing each index itself, resulting in a recursive indexing system.

Definition 43. We define the k-EXP function expk

exp0(n) = n expk+1(n) = 2expk(n).

Configurations (q, c) of the Turing machine will be of the size sb(n) = expk(n
c) in

the input length n for some c ∈ N. We introduce maxk = expk(n
c)− 1 for a shorter

notation: c = c0c1 . . . cmaxk .

To not confuse the different layers of indecies, we introduce index alphabets for
each layer of indecies.

Σk = {0k, 1k} Σ<k =
⋃

1≤i<k
Σk Σ≤k = Σ<k ∪ Σk

Definition 44. msbf is the function assigning a number its most significant bit
encoding over a given binary alphabet Σk. For n ∈ N, msbf(n) = n0 . . . nm, such
that n =

∑m
i=0 ni2

m−i.

Definition 45. A k-indexing Indk(v) of a word v = v0 . . . vmaxk is inductivly defined
as

Ind0(v) = v

Indk+1(v) = v0x0 . . . vmaxk+1
xmaxk+1

where xi = Indk(msbf(i)) with msbf(i) ∈ Σmaxk+1
k+1 .

Be aware, that we require each most significant bit encoding for msbf(i) to have
the same length maxk + 1.

4.4 Comparing indexed words with mpdg

We construct three different gadgets for the check part of the multi-pushdown system:
k-Equality(Σ), k-ValidIndexing(Σ) and k-∼-Check(Σ,Υ). Each is a multi-pushdown
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game with two stacks, that contains a winning strategy for Eve if its top of stack
contents fulfill certain conditions.
The k-Equality(Σ) gadget expects both stacks to have a k-indexing at the top.

Eve possesses a winning strategy, if they index the same word.
The k-ValidIndexing(Σ) gadget contains a winning strategy for Eve if there is a

k-indexing at the top of stack 1.
The k-∼-Check(Σ,Υ) gadget expects two k-indexings on stack 1 which are marked

by symbols from Υ. Eve possesses a winning strategy, if the two indexed words are
in relation by ∼ which is a first order relation.
To define these conditions more formally, let Λ be the alphabet of all stack content

symbols of the mpdg instantiating one of the following gadgets. Informally, this is
the alphabet of all possibly occuring stack symbols. Let γ1, γ2, γ3 ∈ Λ∗.

• k-Equality(Σ): Let v, v′ ∈ Σmaxk+1 and w1 = Indk(v), w2 = Indk(v
′). Let

σ1, σ2 ∈ Λ \ (Σ≤k ∪ Σ). From a configuration (start , w1σ1γ1, w2σ2γ2), Eve
possesses a winning strategy for k-Equality(Σ) if and only if v = v′.

• k-ValidIndexing(Σ): Let w ∈ (Σ ∪ Σ≤k)
∗ and σ ∈ Λ \ (Σ ∪ Σ≤k). From a

configuration (start , wσγ1, γ2), Eve possesses a winning strategy for the gadget
k-ValidIndexing(Σ) if and only if w is a k-indexing w = Indk(v) for some
v ∈ Σmaxk+1.

• k-∼-Check(Σ,Υ): Let v, v′ ∈ Σmaxk+1 and w1 = Indk(v), w2 = Indk(v
′). Let

σ ∈ Υ and ∼ a first order relation. Let γ1 ∈ (Λ \Υ)∗. From a configuration
(start , w1σ1γ1σw2σ2γ2, γ3) or (start , w1σw2σ2γ2, γ3), Eve possesses a winning
strategy for k-∼-Check(Σ,Υ) if and only if v ∼ v′.

We construct these by induction. We start with the gadget for 0-indexings and
then show how to construct them for k-indexings given the k − 1 gadgets already
exist.
The k-ValidIndexing(Σ) and k-∼-Check(Σ,Υ) gadget’s inductive (k) construction

depend on each other’s k − 1 gadgets. We split the construction parts for under-
standibility. Be aware, that by induction we can use both k − 1 gadgets in the
construction of each gadget.
We use the term “instantiate gadgetName on starting state stateName”. This

means that we disjointly add the states of the named gadget whilest adding the
transition rules available for start to the state stateName. If the same gadget was
instantiated with the same parameters on the same stack previously in the desired
mpdg, we do not add new states, but only add the transition rules available for start
to the state stateName.
Since we introduced the indexing idea in order to keep the amount of states in

the final construction small, we are interested in the amount of states used by each
gadget. We will only count the states of directly that gadget. Not the states of
other gadgets instantiated by it. We will later add up all states possibly occuring by
ranging over all possible instances for gadgets.
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During the construction, there will be positions that do not offer a move. This is
intentional in order to reduce the amount of transition rules. Let � ∈ {Eve,Ana}
and � their opponent. For each position owned by � in some state q, each gadget
also contains the transition rules (q, r,�win) for every stack r. This way, there are
no positions that do not offer a move and positions that would not offer one by
construction are loosing for their owner.

4.4.1 k-Equality(Σ)

Given a k-indexing at the top of both stacks, this checking gadget’s purpose is to
give Eve a winning strategy if the indexed words on both stacks are the same.

Theorem 46. Let v, v′ ∈ Σmaxk+1 and w1 = Indk(v), w2 = Indk(v
′). Eve possesses

a strategy from (start, w1σ1γ1, w2σ1γ1) if and only if v = v′.
The maximal number of contexts or phases of any play is at most k+ 2. If the previ-
ous context or phase was on stack 1, it only takes at most k + 1 additional contexts
or phases.
The number of states of this gadget (not counting the states of additionally instanti-
ated gadgets) is polynomially in the size of Σ and max0.

Base Case (k = 0). The starting configuration is (start , w1σ1γ1, w2σ1γ1), where
w1 = Ind0(v) = v and w2 = Ind0(v′) = v′. We need to check v = v′ and give Eve a
winning strategy if that is the case.
The basic principle is to let Ana choose a violating position 0 ≤ p < max 0 in the

words, where they claim vp 6= v′p. We store vp in the state space and deterministically
check the same position of the other word. If Ana cannot find a violating position,
Eve wins the play. If there is no violating position, Eve possesses a winning strategy.
All the states belong to Ana. For all s, s′ ∈ Σ and 0 ≤ p′ < p ≤ max 0, introduce

the following transition rules.

((pos, p), s, 1, (pos, p+ 1)) p < max 0

(start , 1, (pos, 0))

((pos, p), s, 1, (find, p, s, 0))

((find, p, s, p′), s′, 2, (find, p, s, p′ + 1))

((find, p, s, p), s, 2,Evewin)

((find, p, s, p), s′, 2,Anawin) s 6= s′

Number of contexts/phases: The first context (phase) is on stack 1, visiting the
second context (phase) on stack 2 with the popping transition ((find, p, s, p′), s′, 2,
(find, p, s, p′+ 1)). No further contexts are visited. If the previous context was stack
1, the number of additional contexts is one.
Number of states: The number of states is limited by max 0 and Σ. It is polynomial

in both.

Lemma 47. Eve possesses a winning strategy from (start, vσ1γ1, v
′σ2γ2), if and only

if v = v′.
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Proof. Assume Eve possesses a winning strategy σEve from (start , vσ1γ1, v
′σ2γ2).

We show that v = v′ by taking a look at the plays compliant with σEve. By con-
struction, Ana chooses the transition ((pos, p), vp, 1, (find, p, vp, 0)) for some p and
stores the symbol vp in the state. From this position, the play deterministically con-
tinues through the states (find, p, vp, 0), . . . , (find, p, vp, p) and removes the symbols
v′0 . . . v

′
p−1 from stack 2, leaving v′p as its topmost stack symbol. Then, since σEve is a

winning strategy, the next transition has to be ((find, p, vp, p), vp, 2,Evewin), which
proves vp = v′p. As this play is compliant with the strategy for any of Ana’s choice
of p, we arrive at v = v′.
Assume Ana possesses a winning strategy. Let there be a play compliant with

that strategy. Analogously to the above, it contains a position in state (find, p, vp, p).
Since the strategy is winning for Ana, the play’s next transition has to be ((find,
p, vp, p), v

′
p, 2,Anawin), where vp 6= v′p, proving v 6= v′.

Inductive Case (k > 0). The starting configuration is (start , w1σ1γ1, w2σ2γ2),
where w1 = Indk(v) and w2 = Indk(v

′) for some v, v′ ∈ Σmaxk . They are of the form

w1 = v0x0 . . . vmaxkxmaxk , w2 = v′0x0 . . . v
′
maxkxmaxk .

We repeat the principle of the base case, but instead of remembering the violating
position p in the state space, we use the indexings.
We start by letting Ana remove a sequence in (ΣΣ∗≤k)

∗ from stack 1. This corre-
sponds to choosing a violating position, as it leaves vpxp on top of stack 1 for some p.
We then store the symbol vp in the state. The next part is to find the same position
in stack 2. For this, we use Guess & Check: Eve has to pop a sequence of (ΣΣ∗≤k)

∗

from stack 2, leaving v′p′xp′ on top of stack 2. After storing v′p′ in the state, Ana
may now choose to

1. Believe Eve’s choice to be p′ = p. Then, according to vp and v′p′ we proceed
as in the base case. I.e. if vp = v′p′ , Eve wins and vice versa.

2. Disbelieve Eve’s choice and claim that the two top of stack indexings don’t con-
tain the same position. I.e. xp = Indk−1(msbf(p)) and xp′ = Indk−1(msbf(p′))
and p 6= p′. To check this, we use (k − 1)-Equality(Σk), as the indices are
(k − 1)-indexings themselves.

Instantiate (k−1)-Equality(Σk) on stack 2 with starting state disbelievePos. Cre-
ate the following transition rules for all s, s′ ∈ Σ. The states owned by Eve are
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(reproducePos, s). All other states belong to Ana.

(start , (ΣΣ∗≤k)
∗, 1, violatingPos)

(violatingPos, s, 1, (reproducePos, s))
((reproducePos, s), (ΣΣ∗≤k)

∗s′, 2, (claimPos, s, s′))

((claimPos, s, s′), 2, (believe, s, s′))
((claimPos, s, s′), 2, disbelievePos)
((believe, s, s), 2,Evewin)

((believe, s, s′), 2,Evewin) s 6= s′

Number of contexts/phases: Any play starts in the first context (phase) on stack 1.
The second context (phase) is introduced by the popping transition ((reproducePos,
s), (ΣΣ∗≤k)

∗, 2, (claimPos, s)) on stack 2. Then, either the play ends within this
context (phase) or it continues in (k− 1)-ValidIndexing(Σk) instanciated on stack 2.
By induction (Theorem 46) and since the play’s context (phase) is already on stack
2, this takes up to an additional k contexts (phases). Together this gadget takes up
to k + 2 contexts (phases). If the context (phase) was already on stack 1, it only
introduces up to k + 1 additional contexts (phases).
Number of states: Remember that we only count states belonging to this gadget,

not its subgadgets. These are limited by the size of Σ polynomially. Note that
they are constant in max 0. The transitions with regular expressions also add only a
constant amount of transitions for each transition rule, because the underlying NFA
has a constant amount of states.

Lemma 48. Let v, v′ ∈ Σmaxk+1 and w1 = Indk(v), w2 = Indk(v
′). Eve possesses a

winning strategy from (start, w1σ1γ1, w2σ2γ2) if and only if v = v′.

Proof. Let Eve possess a winning strategy. As in the base case, let us look at
the possible plays compliant with that strategy. By construction, Ana removed a
sequence of (ΣΣ∗≤k)

∗ from w1. If they removed w1 completly or they did not remove
one of the indexings xp completly, they would end in a position without moves and
the play would enter Evewin. Look at a play where that is not the case. Remember
that w1 = v0x0 . . . vmaxkxmaxk . Thus, the remaining content of stack 1 in state
(reproducePos, vp) is xp . . . vmaxkxmaxkσ1γ1. Then, according to their strategy, Eve
removes a sequence of (ΣΣ∗≤k)

∗s′ from w2. By induction, and because the top of stack
1 is xp, Eve possesses a winning strategy from state disbelievePos if and only if the
top of stack content of stack 2 is xp. Since Eve’s strategy is winning, they removed
a sequence, such that the resulting position fulfills that condition. Since w2 is a k-
indexing, there is only one such position: ((claimPos, vp, v′p), xp . . . vmaxkxmaxkσ1γ1,
xp . . . v

′
maxkxmaxkσ2γ2). The play’s next position can be in state disbelievePos or

(believe, vp, v′p). Look at the play continuing to (believe, vp, v′p). It must be in state
Evewin, since Eve’s strategy is winning. This states vp = v′p. This play is compliant
with Eve’s strategy for any p. It follows that v = v′.
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Assume Ana possesses a winning strategy. We construct a play compliant with
that strategy. The play visits position ((reproducePos, vp), xp . . . vmaxkxmaxkσ1γ1,
w2σ2γ2). Since the strategy is winning for Ana, it has neither removed w1 com-
pletly nor is there a remainder of some indexing xp on top of stack 1 (in both
cases, Ana would loose in the result of no possible moves). Then, Eve removes
any sequence of (ΣΣ∗≤k)

∗s′ from w2. Look at the play, where the resulting po-
sition ((claimPos, vp, v′p), xp . . . vmaxkxmaxkσ1γ1, xp . . . v

′
0x0σ2γ2). If the next move

would be ((claimPos, vp, v′p), 2, disbelievePos), the resulting position is losing for
Ana by induction (both stacks have the same top of stack (k − 1)-indexing xp =
Indk−1(msbf(p))). Thus, the only possible winning move can be ((claimPos, vp, v′p), 2,
(believe, vp, v′p)). Since the strategy is winning, the next move must be ((believe,
vp, v

′
p), 2,Anawin), which proves vp 6= v′p and v 6= v′.

4.4.2 k-ValidIndexing(Σ)

Given a sequence from (Σ ∪ Σ≤k)
∗ on top of stack 1, this checking gadget gives Eve

a winning strategy if the sequence is actually a k-indexing for any word v.

Theorem 49. Let w be a sequence from (Σ ∪ Σ≤k)
∗.

Eve possesses a winning strategy from (start, wσγ1, γ2) if and only if w is a k-indexing
Indk(v) for some v ∈ Σmaxk+1.
Any play has at most k + 2 many contexts. If the previous context was already on
stack 1, it takes at most k + 1 additional contexts.
Any play has at most k+ 1 many phases. If the previous phase was already on stack
1, it takes at most k additional phases.
The number of states of this gadget (not counting states of subgadgets) is polynomial
in max0.

Base Case (k = 0). A valid 0-indexing Ind0(v) is just a sequence v ∈ Σmax0+1. All
states belong to Eve. Note, that Eve looses due to not having a move, if w is not
actually a 0-indexing.

(start ,Σmax0+1(Λ \ Σ), 1,Evewin)

Number of contexts/phases: This takes up to one context or phase. If the previous
context or phase was on stack 1, this takes no additional context or phase.
Number of states: The gadget needs max 0 states in the transition, because the

regular expression contains max 0. In particular, this is polinomial in max 0.

Inductive Case (k > 0). Assume the starting configuration (start , wσγ1, γ2) with
w ∈ (Σ ∪ Σ≤k)

∗. Then, w is a valid k-indexing, if

• w = v0x0 . . . vmxm ∈ (ΣΣ∗≤k)
+

• Each xp is a valid (k − 1)-indexing.

• x0 satisfies the first order formula ∀y, s1(y) = 0k, i.e. it indexes msbf(0).
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• xm satisfies the first order formula ∀y, s1(y) = 1k, i.e. it indexes msbf(maxk).

• For each 0 ≤ p < maxk, if xp = Indk−1(msbf(i)) and xp+1 = Indk−1(msbf(i′)),
then i′ = i + 1. I.e. (msbf(i),msbf(i′)) ∈ (+1), where (+1) is the first order
relation from Example 40.

The general idea is to let Ana choose, which of the conditions is violated. State
start is owned by Ana. The following transition rules embody Ana’s choice.

(start , 1, sequenceCheck)

(start ,Σ(Σ∗≤kΣ)∗, 1, smallerIndexCheck)

(start ,Σ, 1,minCheck)

(start , 1,maxCheck)

(start ,Σ(Σ∗≤kΣ)∗, 1, successorCheck)

In the first case, Eve has to prove that w is from (ΣΣ∗≤k)
+. State sequenceCheck

belongs to Eve and there is the transition rule

(sequenceCheck, (ΣΣ∗≤k)
+(Λ \ (Σ ∪ Σ≤k)), 1,Evewin).

Be aware that σ is the first symbol from Λ \ (Σ ∪ Σ≤k) on stack 1. If w is not a
sequence of the desired form, Eve gets stuck and the play is won by Ana.
In the second case, Ana also finds a violating position p by removing a sequence

from Σ(Σ∗≤kΣ)∗. Then, we use (k − 1)-ValidIndexing(Σk) to check whether xp is a
(k − 1)-indexing: Instantiate the gadget (k − 1)-ValidIndexing(Σk) on stack 1 with
starting state smallerIndexCheck.
For the third case, we remove v0 and check the first indexing for whether it satisfies
∀y, s1(y) = 0k. Instantiate (k − 1)-(0)-Check(Σk) on stack 1 with starting state
minCheck, where (0) is the simple first order relation for above formula.

For the fourth case, we let Eve find the indexing xmaxk . We do so by another use
of Guess & Check: Eve removes a sequence of Σ(Σ∗≤kΣ)∗. Then, Ana may believe
them or check whether the next indexing is indeed the last one before finding the
delimiter symbol σ on stack 1. If they believe, we use (k − 1)-(1)-Check(Σk) on
xmaxk analogue to the second case. Instantiate (k − 1)-(1)-Check(Σk) on stack 1
with starting state actualMaxCheck, where (1) is the simple first order relation for
the formula ∀y, s1(y) = 1k. The owner of maxCheck is Eve. All other states belong
to Ana.

(maxCheck,Σ(Σ∗≤kΣ)∗, 1, found)

(found, 1, actualMaxCheck)

(found, 1, disbelieve)
(disbelieve,Σ∗≤k(Λ \ (Σ ∪ Σ≤k)), 1,Evewin)

(disbelieve,Σ∗≤kΣ, 1,Anawin)
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In the fifth case, Ana also finds a violating position p by removing a sequence
from Σ(Σ∗≤kΣ)∗. To check, whether the indecies are successing, we use (k− 1)-(+1)-
Check(Σk). Instantiate (k − 1)-(+1)-Check(Σk) on stack 1 in state successorCheck.
Number of contexts: All transition rules above are on stack 1, which provide the

first context of any play. Any play can continue to

• (k−1)-ValidIndexing(Σk) instantiated on stack 1. Since the context of the play
is already on stack 1, by induction (Theorem 49) the play needs up to (k−1)+
1 = k additional contexts. Together, k + 1 contexts. If the previous context
was on stack 1, the transitions before entering (k − 1)-ValidIndexing(Σk) do
not introduce a new context and the play introduces only up to k additional
contexts.

• At multiple occasions, the play can enter either (k−1)-(0)-Check(Σk), (k−1)-
(1)-Check(Σk) or (k − 1)-(+1)-Check(Σk), each instantiated on stack 1. By
induction (Theorem 51) the play then takes up to (k−1)+2 = k+1 additional
contexts, adding up to k + 2 contexts. If the previous context was on stack
1, the transitions before entering (k− 1)-∼-Check(Σk) do not introduce a new
context and the play introduces only up to k + 1 additional contexts.

In total, this is k+ 1 additional contexts, if the previous context was on stack 1 and
k + 2 contexts otherwise.
Number of phases: The transitions above also contain pop transitions for stack 1

before entering (k − 1)-ValidIndexing(Σk) or (k − 1)-1-Check(Σk). Thus there are
plays, where the above transitions introduce a first phase on stack 1. Afterwards,
the play can continue to

• (k − 1)-ValidIndexing(Σk) instantiated on stack 1. Since the play is already
in a phase for stack 1, by induction (Theorem 49) the play needs up to k − 1
additional phases. Together, k many phases. If the previous phase was on
stack 1, this reduces to k − 1 many phases.

• At multiple occasions, the play can enter either (k−1)-(0)-Check(Σk), (k−1)-
(1)-Check(Σk) or (k − 1)-(+1)-Check(Σk), each instantiated on stack 1. By
induction (Theorem 51) the play then takes up to k − 1 additional phases,
adding up to k phases. If the previous phase was on stack 1, this reduces to
k − 1 many phases.

In the inductive case thus, the play is takes actually less phases than the lemma
suggests. However, since the base case does comply with the phases as given by the
theorem and this gadget is not the limiting factor of the construction, we stay with
those values even in the inductive case.
Number of states: This gadget has a constant number of states. Remember that

we do not count states from subgadgets.

Lemma 50. Let w be a sequence from (ΣΣ≤k)
∗. Eve possesses a winning strategy

from ((start, wσγ1), γ2, i)f and only if w is a valid k-indexing Indk(v) for some v ∈
Σmaxk+1.
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Proof. Assume w = Indk(v) = v0x0 . . . vmaxkxmaxk is a k-indexing. The following
strategy σEve is winning for Eve.

σEve((maxCheck, wσγ1, γ2)) = (found, xmaxkσγ1, γ2)

σEve((sequenceCheck, wσγ1, γ2)) = (Evewin, γ1, γ2))

These are compliant with the transition rules. Since w is a k-indexing, it is a sequence
from (ΣΣ∗≤k)

+.
Let there be a play beginning in (start , wσγ1, γ2) compliant with σEve.

Case 1 (the next position is in state sequenceCheck): The position is (sequenceCheck,
wσγ1, γ2) By σEve, the next position is in state Evewin. The play is winning for Eve.

Case 2 (the next position is in state smallerIndexCheck): The successing position
is of the form (smallerIndexCheck, xpvp+1xp+1 . . . vmaxkxmaxkσγ1, γ2). Since w is a
k-indexing, xp = Indk−1(msbf(p)). The play continues in (k−1)-ValidIndexing(Σk).
By induction, Eve possesses a winning strategy there, because the top of stack se-
quence is xp ∈ (Σk ∪ Σ≤(k−1)), a valid (k − 1)-indexing.

Case 3 (the next position is in state minCheck): The successing position is of the
form (minCheck, x0 . . . vmaxkxmaxkσγ1, γ2). Since w = x0 . . . vmaxkxmaxk is a k-
indexing, x0 = Indk−1(msbf(0)). The play continues in (k − 1)-(0)-Check(Σk). By
induction, Eve possesses a winning strategy there, because the top of stack 1 is x0,
a (k − 1)-indexing of msbf(0).

Case 4 (the next position is in state maxCheck): The successing position is of the
form (maxCheck, v0x0 . . . vmaxkxmaxkσγ1, γ2). By strategy σEve, it further continues
to (found, xmaxkσγ1, γ2). The next position is either (disbelieve, xmaxkσγ1, γ2), which
continues to state Evewin, since the other transition rule is not enabled. Or the next
position is (actualMinCheck, xmaxkσγ1, γ2) and continues in (k − 1)-(1)-Check(Σk).
By induction, Eve has winning strategy from there, because the top of stack 1 is
xmaxk−1

, a (k − 1)-indexing of msbf(maxk−1).

Case 5 (the next position is in state successorCheck): The successing position is
of the form (maxCheck, xpvp+1xp+1 . . . vmaxkxmaxkσγ1, γ2). Since w is a k-indexing,
xp = Indk−1(msbf(p)) and xp+1 = Indk−1(msbf(p+1)). The play continues in (k−1)-
(+1)-Check(Σk). By induction, Eve possesses a winning strategy from there, because
xp = Indk−1(msbf(p)) and xp+1 = Indk−1(msbf(p + 1)) and they are delimited by
vp+1 ∈ Σk.

Assume w ∈ (Σ ∪ Σ≤k)
∗ is not a k-indexing. Then, it violates one of the above

conditions.

Case 1 (w 6∈ (ΣΣ∗≤k)
+): The following strategy σAna is winning for Ana.

σAna((start , wσγ1, γ2)) = (sequenceCheck, wσγ1, γ2)

A play compliant with this strategy visits (sequenceCheck, wσγ1, γ2). This position
is owned by Eve, who has no transition available, since w 6∈ (ΣΣ∗≤k)

+. Thus, the
play is winning for Ana.
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For the other cases, assume w = v0x0 . . . vmxm is a sequence from (ΣΣ∗≤k)
m that

is still not a k-indexing. Be aware that even though the notation is close to the
above, the parts x0, . . . , xm are not neccessarily (k − 1)-indexings. They are merely
sequences from Σ∗≤k.

Case 2 (there is an index p, s.t. xp is not a (k−1)-indexing): The following strategy
σAna is winning for Ana.

σAna((start , wσγ1, γ2)) = (smallerIndexCheck, xpvp+1xp+1 . . . vmxmσγ1, γ2)

The play visits (smallerIndexCheck, xpwp+1xp+1 . . . wmxmσγ1, γ2) immediatly and
continues in (k − 1)-ValidIndexing(Σk). By induction, Ana possesses a winning
strategy from there, because the top of stack sequence of stack 1 is xp, wich is not a
(k − 1)-indexing.

Case 3 (x0 6= Indk−1(0
maxk−1

k )): The following strategy σAna is winning for Ana.

σAna((start , wσγ1, γ2)) = (maxCheck, x0v1x1 . . . vmxmσγ1, γ2)

A play compliant with this strategy visits (maxCheck, x0v1x1 . . . vmxmσγ1, γ2) im-
mediatly and continues in (k − 1)-(0)-Check(Σk), By induction, Ana possesses a
winning strategy from there, because the top of stack sequence is x0, which is a
(k − 1)-indexing of another word than msbf(0).

Case 4 (xm 6= Indk−1(1
maxk−1

k )): The following strategy σAna is winning for Ana.

σAna((start , wσγ1, γ2)) = (maxCheck, wσγ1, γ2)

σAna((found, w′σγ1, γ2)) =

{
((actualMinCheck, w′σγ1), γ2, )if w′ = xm

(disbelieve, w′σγ1, γ2) if w′ 6= xm

Let there be a play compliant with this strategy. After (maxCheck, wσγ1, γ2), it
visits a position (found, w′σγ1, γ2), where w′ = xpvp+1xp+1 . . . vmxm for some p.
Case 4.1 (p 6= m): Then, w′ 6= xm. The play continues to (disbelieve, w′σγ1, γ2) and
the only transition available is (disbelieve,Σ∗≤kΣ, 1,Anawin), since vp+1 ∈ Σ.
Case 4.2 (p 6= m): Then, w′ = xm. The play continues in (k − 1)-1-Check(Σk). By
induction, Ana possesses a winning strategy from there, because the top of stack
sequence is xm, which is a (k − 1)-indexing of another word than msbf(maxk).

Case 5 (there is an p, s.t. xp = Indk−1(msbf(i)) and xp+1 = Indk−1(msbf(i′)), but
i+ 1 6= i′): The following strategy σAna is winning for Ana.

σ∀((start , wσγ1, γ2)) = (successorCheck, xpvp+1xp+1 . . . vmxmσγ1, γ2)

A play compliant with this strategy visits (successorCheck, xpvp+1xp+1 . . . vmxmσγ1,
γ2) immediatly and continues in (k − 1)-(+1)-Check(Σk). By induction, Ana pos-
sesses a winning strategy from there, because xp = Indk−1(msbf(i)) and xp+1 =
Indk−1(msbf(i′)) are (k−1)-indexings and they are delimited by vp+1 ∈ Σk, however
i′ 6= i+ 1, i.e. (msbf(i),msbf(i′)) 6∈ (+1).
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4.4.3 k-∼-Check(Σ,Υ)

This gadget is build for a first order relation ∼. Its purpose is to check for two
indexed words v, v′, if v ∼ v′ holds. Eve gains a winning strategy in the gadget if
that is the case. In the starting configuration, the indexings are stored on stack 1.
The first is on top of the stack and the other is marked by a delimiter symbol from
Υ.

Theorem 51. Let v, v′ ∈ Σmaxk and w1 = Indk(v), w2 = Indk(v
′). Let σ ∈ Υ and

∼ a first order relation. Let γ1 ∈ (Λ \Υ)∗.
Eve possesses a winning strategy from (start, w1σ1γ1σw2σ2γ2, γ3) if and only if v ∼
v′.
Any play takes at most k+2 contexts. If the previous context was on stack 2, it takes
up to k + 1 additional contexts.
Any play takes at most k + 1 phases. If the previous phase was on stack 1, it takes
up to k additional phases.
The number of states of this gadget (not counting the states of subgadgets) is poly-
nomial in the size of Σ and max0.

Let ∼ be a first order relation with first order formula Q1y1 . . . Qmym.ϕ in normal
form.
The general idea is to simulate the game Gv,v′,∼ from section 4.2.1. In that game,

each player took the role of choosing a valuation for each variable yl, where Ql was
their respective quantor. We stored the valuation for that variable in the position
and continued with the next quantor.
Positions of mpdg consist of the state and the stack contents. In the base case,

the set of positions is small enough to store the valuation in the state space. In the
inductive case, we will use stack 2 to store the chosen valuation for each variable.
Actually, we will let the respective player choose single digits of the most significant
bit encoding of the desired position, while Eve is responsible for indexing each digit
with a correct (k − 2)-indexing. The result will be a (k − 1)-indexing of the most
significant bit encoding of the chosen valuation for the current variable.
In order to evaluate the formula under the complete valuation, we need to identify

the semantics of the terms s1(y) and s2(y) for any occuring variable. In order to
keep the number of contexts and phases small, we use another instance of Guess &
Check to find these. Eve will guess the letters from v, v′ at the chosen valuation for
each variable y. Ana will either believe them, or enter a checking routine that is
similar to what the gadget k-Equality(Σ) does in its inductive case. In the inductive
case, we also need to address that the valuation is not stored in the state space. We
instead create a variable ordering in the state space.

Base Case (k = 0). The starting configuration is (start , w1σ1γ1σw2σ2γ2, γ3), where
w1 = Ind0(v) = v and w2 = Ind0(v′) = v′. We want to simulate the game
Gv,v′,∼ from section 4.2.1. Similar to Gv,v′,∼, we maintain a partial valuation val :
{y1, . . . , ym} → [1..max 0] of the variables in the state space. After the valuation is
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complete, Eve guesses s1, s2 : {y1, . . . , ym} → Σ, the letters of the words at the vari-
able positions as chosen by the valuation. These are used to evaluate the formula’s
terms s1(y), s2(y) instead of using the whole structure v, v′.

Definition 52. For functions s1, s2 : {y1, . . . , ym} → Σ we define new semantics
JϕKval

s1,s2 . They are the same as the previous semantics except for

Js1(y)Kval
s1,s2

:= s1(y), Js2(y)Kval
s1,s2

:= s2(y).

For a valuation val and a word v, we define the function sval,v : {y1, . . . , ym} → Σ by
sval,v(y) = vval(y).
Expectedly, JϕKval

sval,v ,sval,v′
= JϕKval

v,v′ .

After Eve chose s1 and s2, Ana has the option to disbelieve that s1(y) = sval,v(y)
or s2(y) = sval,v′(y) for any variable.
For all p ∈ [0..max 0], j, l ∈ [1..m] and s1, s2 : {y1, . . . , ym} → Σ and s ∈ Σ, create

the following transitions rules.

(start , 1, (Quant, 1,⊥{y1,...,ym}))
((Quant, l, val), 1, (Quant, l + 1, val[p/yl]))

((Quant,m+ 1, val), 1, (val, s1, s2))

((val, s1, s2), 1, (bel, val, s1, s2))

((val, s1, s2), 1, (dis, 1, yj , val, s1))

((val, s1, s2), 1, (dis, 2, yj , val, s2))

((bel, val, s1, s2), 1,Evewin) if JϕKval
s1,s2 = true

((bel, val, s1, s2), 1,Anawin) if JϕKval
s1,s2 = false

For disbelieving s1 or s2, we get the following transitions.

((dis, 1, yj , val, s1),Σval(yj), 1,Evewin) s1(yj) = s

((dis, 1, yj , val, s1),Σval(yj), 1,Anawin) s1(yj) 6= s

((dis, 2, yj , val, s2), (Λ \Υ)∗ΥΣval(yj)s, 1,Evewin) s2(yj) = s

((dis, 2, yj , val, s2), (Λ \Υ)∗ΥΣval(yj)s, 1,Anawin) s2(yj) 6= s

The above transition rules define the game G0,∼ = (V0,∼, E0,∼, {(Evewin)}).
Number of contexts/phases: Since all transitions are for stack 1, the plays can have

at most one context or phase.
Number of states: The number of states in this gadget is determined by the number

of possible valuations, and the number of functions s1, s2. The number of possible
valuations is (max 0 + 1)m. The number of functions for s1, s2 is |Σ|m. In total,
the number of states is polynomial in max 0 and the size of Σ, since the number of
quantors m is a constant for each first order relation.
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Lemma 53. Eve possesses a winning strategy from (start, vσ1γ1σv
′σ2γ2, γ3) (and

from (start, vσv′σ2γ2, γ3)) if and only if v ∼ v′.

Proof. In the following, we omit the stack contents of game positions, if they are not
of interest.
We will prove this by showing that the game G0,∼ from (start , vσ1γ1σv

′σ2γ2, γ3) is
a simulation of the gameGv,v′,∼ from section 4.2.1 via the mapping f : Vv,v′,∼ → V0,∼:

f((Quant, l, val)) = ((Quant, l, val), vσ1γ1σ2v
′σ3γ2, γ3)

f(�win) = (�win, vσ1γ1σ2v
′σ3γ2, γ3)

Remember the conditions neccessary for a reachability game to be simulated (Section
2.2.1). Condition 1 (the ownership condition) and condition 2 (the winning area
condition) for this simulation are clearly fulfilled. Be aware, that the reachability set
in G0,∼ is {Evewin} × (Λ∗)∗. Any play visiting state Evewin never returns to any
other state. Condition 4 and 5 for simulation (a play visiting a successor may not visit
the reachability set) are fulfilled trivially. Condition 3 (the strategy requirements) is
trivially fulfilled for the positions (Quant, l, val) where l < m+ 1, since the moves in
G0,∼ and Gv,v′,∼ for these positions are isomorph.
We need to show that each player possesses a strategy from ((Quant,m+ 1, val),

vσv′σ2γ2, γ3) to

Anawin, if JϕKval
v,v′ = false

Evewin, if JϕKval
v,v′ = true

Since the outgoing transitions from (bel, val, s1, s2) represent exactly that behaviour,
it is sufficient to show that each player possesses a strategy from (Quant,m+1, val))
to (bel, val, sval,v, sval,v′), knowing that JϕKval

v,v′ = JϕKval
sval,v ,sval,v′

.

For Eve, this strategy is

σEve(((Quant,m+ 1, val), vσ1γ1σ2v
′σ3γ2, γ3)) = (val, sval,v, sval,v′)

Any play compliant with that strategy is either winning for Eve or visits a po-
sition in state (bel, val, sval,v, sval,v′). If Ana would choose to use the transition
((val, sval,v, sval,v′), 1, (dis, 1, yl, val, sval,v)), the next transition determines the win-
ner in ((dis, 1, yl, val, sval,v),Σval(yl)vval(yl), 1,Evewin), where only v0 . . . vval(yl)−1 can
be chosen for Σval(yl). Be aware that this leads indeed to state Evewin, since
sval,v(yl) = vval(yl). We can apply the same arguments, if Ana uses transition
((val, sval,v, sval,v′), 1, (dis, 2, yl, val, sval,v′)). The only remaining transition from state
(val, sval,v, sval,v′) is to the desired position ((bel, val, sval,v, sval,v′), vσv′σ2γ2, γ3).
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For Ana, the strategy is

σAna(((val, s1, s2), w1σ1γ1σ2w2σ3γ2, γ3)) =
(dis, 1, yl, val, s1) if s1(val(yl)) 6= vval(yl)

(dis, 2, yl, val, s2) if s2(val(yl)) 6= v′val(yl)

(bel, val, s1, s2) if s1 = sval,v and
s2 = sval,v′

For analouge arguments to those for Eve, this strategy is either winning for Ana or
visits (bel, val, sval,v, sval,v′).

Inductive Case (k > 0). The inductive case stores the valuation for the variables
not in the state space. To determine the semantics JϕKval

v,v′ requires us to evaluate
formulas of the form y ≤ y′. We want to store sufficient information in the state
space to evaluate these parts of the formula.
We solve this problem by storing variable orders in the state space.

Definition 54. A variable order Ψ is a sequence yl1 θ1 yl2 θ2 . . . θm−1 ylm where
the variables are ordered by θ1, . . . , θm−1 ∈ {=, <}.
We call Ψ induced by a valuation val, if for all variables y, y′ with val(y) ≤ val(y′),
if there are indecies lj < lj′ with y = ylj and y′ = ylj′ . I.e. Ψ contains a sequence
y θj . . . θj′−1 y

′, transitivly implying y ≤ y′.

We introduce semantics to first order formulas under variable orders and the letter
functions from the base case.

Definition 55. Let s1, s2 be functions s1, s2 : {y1, . . . , ym} → [0..maxk]. We define
semantics JϕKΨ

s1,s2 for quantor free formulas. The boolean and constant semantics
are identical to the previous semantics. For the other terms and formulas,

Js1(y)KΨ
s1,s2

:= s1(y)

Js2(y)KΨ
s1,s2

:= s2(y)

Jt1 = t2KΨ
s1,s2

:= Jt1KΨ
s1,s2 = Jt2KΨ

s1,s2

Jy ≤ y′KΨ
s1,s2

:=

{
true y ≤ y′ by Ψ

false y > y′ by Ψ
.

Expectedly, given a valuation val and a variable order Ψ induced by val, JϕKval
v,v′ =

JϕKΨ
sval,v ,sval,v′

.

The starting configuration is (start , w1σ1γ1σw2σ2γ2, γ3) where w1 = Indk(v) and
w2 = Indk(v

′). They are of the form

w1 = v0x0 . . . vmaxkxmaxk , w2 = v′0x0 . . . v
′
maxkxmaxk .
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4.4 Comparing indexed words with mpdg

Again we want to simulate the game Gv,v′,∼. We repeat the base case whilest
storing the valuation on stack 2 instead of using the state space.
To create the valuation for a variable yl, the players shall push a (k− 1)-indexing

of position a position pl ∈ [0..maxk] on stack 2. Like in the base case, Ql determines
the player responsible for choosing the position pl.

The sequence to push is Indk−1(msbf(pl)) = pl0z0 . . . plmaxk−1
zmaxk−1

. The player
responsible for choosing the position pl pushes the symbols pl0, . . . , plmaxk−1

∈ Σk. In
between, Eve is responsible for pushing the correct (k−2)-indexings z0, . . . , zmaxk−1

.
At the end of pushing the valuation for a single variable, Ana may choose to either
disbelieve the validity of the final sequence via (k−1)-ValidIndexing(Σk) or continue
the play with the valuation of the next variable.
Afterwards, the whole valuation is stored on stack 2. To find the correct variable

order, we use another instance of Guess & Check. Eve simply suggests a variable
order and puts it in the state. Ana may disbelieve the variable order and enter a
checking routine. If Ana believes the variable order, we enter Evewin or Anawin
dependening on the evaluation of the formula under Ψ and the s1, s2 functions.
We construct this gadget by iterativly giving parts of the transition rules. Each

time follows a lemma stating existing strategies within these parts. At the end follows
a lemma stating the actual correctness of the whole gadget.
Instantiate the gadget (k − 1)-ValidIndexing(Σk) on stack 2 with starting state

disbelieveValidity.
The states (pushDigit, l, s1, s2), (pushLastDigit, l, s1, s2) belong to Eve, if Ql = ∃.

Respectivly, they are owned by Ana, if Ql = ∀. The states (believeValidity, l, s1, s2),
(pushIndexing, l, s1, s2) belong to Eve and all other states belong to Ana. For all
1 ≤ l < m, create the following transisiton rules:

(start, 2, (Quant, 1,⊥{y1,...,ym},⊥{y1,...,ym}))
((Quant, l, s1, s2), 2, (pushIndexing, l, s1, s2))

((pushIndexing, l, s1, s2), 2,Σ∗<k, (pushDigit, l, s1, s2))

((pushIndexing, l, s1, s2), 2,Σ∗<k, (pushLastDigit, l, s1, s2))

((pushDigit, l, s1, s2), 2,Σk, (pushIndexing, l, s1, s2))

((pushLastDigit, l, s1, s2), 2,Σk, (Pushed, l, s1, s2))

((Pushed, l, s1, s2), 2, disbelieveValidity)

((Pushed, l, s1, s2), 2, (believeValidity, l, s1, s2))

Lemma 56. Let xpl be a (k − 1)-indexing of msbf(pl) = pl0 . . . plmaxk−1
∈ Σ∗k.

Let � = own((Quant, l, s1, s2)) and � their opponent. For readability, let λ1 =
w1σ1γ1σw2σ2γ2 and λ2 = yl−1xpl−1

. . . y1xp1γ3.
For every pl ∈ [0..maxk], � possesses a strategy from

((pushIndexing, l, s1, s2), λ1, λ2)

to ((believeValidity, l, s1, s2), λ1, xplλ2)
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Player � possesses a strategy from

((pushIndexing, l, s1, s2), λ1, λ2)

to {((believeValidity, l, s1, s2), λ1, xplλ2) | pl ∈ [0..maxk]}

Proof. We provide the strategies σEve, σAna for each player. The strategy for Eve
contains

σEve(((pushIndexing, l, s1, s2), λ1, λ2)) = ((pushDigit, l, s1, s2), λ1, zmaxk−1
λ2)

where zmaxk−1
= Indk−2(msbf(maxk−1). Also,

σEve(((pushIndexing, l, s1, s2), λ1, plu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)) ={
((pushDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1

zmaxk−1
λ2) if u 6= 0

((pushLastDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2) if u = 0

where zu = Indk−2(msbf(u)) (msbf(u) ∈ Σ∗k−1).
The strategy for � contains

σ�(((pushDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)) =
((pushIndexing, l, s1, s2), λ1, pluzuplu+1zu+1 . . . plmaxk−1

zmaxk−1
λ2) if 0 ≤ u

((pushIndexing, l, s1, s2), λ1, szuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2) if u < 0

for s ∈ Σk

σ�(((pushLastDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)) =

((Pushed, l, s1, s2), λ1, pluzuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)

The strategy for Ana contains

σAna(((Pushed, l, s1, s2), λ1, xλ2)) ={
(disbelieveValidity, λ1, xλ2) if x is not a k − 1-indexing
((believeValidity, l, s1, s2), λ1, xλ2) otherwise

To the first point of the lemma, let pl ∈ [0..maxk]. Let there be a play compliant
with σ�.

Case 1 (� = Eve): By σEve, the play first visits ((pushDigit, l, s1, s2), λ1, zmaxk−1
λ2).

From there, whenever a position

((pushIndexing, l, s1, s2), λ1, plu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)

is visited, strategy σEve pushes zu = Indk−2(msbf(u)). Also, from

((pushDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2),
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4.4 Comparing indexed words with mpdg

σEve pushes plu. This continues up until u = 0, where the play continues to

((pushLastDigit, l, s1, s2), λ1, z0pl1z1 . . . plmaxk−1
zmaxk−1

λ2)

and then to ((Pushed, l, s1, s2), λ1, pl0z0pl1z1 . . . plmaxk−1
zmaxk−1

λ2).
The stack content of stack 2 is now pl0z0pl1z1 . . . plmaxk−1

zmaxk−1
where each zu =

Indk−2(msbf(u)). This meets the definition of a (k − 1)-indexing. Thus,

pl0z0pl1z1 . . . plmaxk−1
zmaxk−1

= xpl .

If Ana continues the play to (disbelieveValidity, λ1, xplλ2), the starting state of
(k − 1)-ValidIndexing(Σk), Eve possesses a winning strategy from there by induc-
tion (Theorem 49). Otherwise, the play continues to ((believeValidity, l, s1, s2), λ1,
xplλ2).

Case 2 (� = Ana): By construction, the play first visits

((pushDigit, l, s1, s2), λ1, zmaxk−1
λ2)

for some zmaxk−1
∈ Σ∗<k. By strategy σAna, each time the play visits

((pushDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2),

it pushes plu, leading back to

((pushIndexing, l, s1, s2), λ1, pluzuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2),

which by construction either again visits state (pushDigit, l, s1, s2) or (pushLastDigit,
l, s1, s2). If the play never visits a position in state (pushLastDigit, l, s1, s2), it is
winning for Ana due to the reachability winning condition. If the play visits

((pushLastDigit, l, s1, s2), λ1, zuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2)

for some u, strategy σAna pushes plu and visits

((Pushed, l, s1, s2), λ1, pluzuplu+1zu+1 . . . plmaxk−1
zmaxk−1

λ2).

Be aware, that Eve could have continued this to u 6= 0. In this case or if one of the
other conditions for a (k − 1)-indexing is violated, then

x = pluzuplu+1zu+1 . . . plmaxk−1
zmaxk−1

∈ Σ∗≤k

is not a (k − 1)-indexing. Then σAna continues the play to (disbelieveValidity, λ1,
xλ2) and Ana possesses a winning strategy from there by induction (Theorem 49).
Otherwise, x must be a (k − 1)-indexing, i.e. x = Indk−1(msbf(pl)) = xpl and the
play continues to ((believeValidity, l, s1, s2), λ1, xplλ2).
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The proof for the second part of the lemma is analouge to the first. The strategies
only differ in that � is not choosing the symbols pl0, . . . , plmaxk−1

. By construction
however, the symbols are from Σk. A (k−1)-indexing of a word in Σmaxk+1

k ensures,
that it indexes msbf(pl) = pl0 . . . plmaxk−1

for some pl ∈ [0..maxk].

By the above lemma, each player possesses a strategy forcing the play to visit
a position in state (believeValidity, l, s1, s2), where the top of stack 2 is xpl =
Indk−1(msbf(pl)), an (k − 1)-indexing of the chosen position for val(yl).
From there, Eve suggests values for s1(yl) and s2(yl) (just like the base case, but

for reasons about the number of phases, we need this suggestion after each single
variable). Ana may disbelieve these values. If they don’t, the play continues with
the next variable yl+1.
States (suggest, l, s1, s2) belong to Ana.

((believeValidity, l, s1, s2), 2, (suggest, l, s1[s/yl], s2[s′/yl])) s, s′ ∈ Σ

((suggest, l, s1, s2), 2, (disVal, l, I, sI)) I ∈ {1, 2}
((suggest, l, s1, s2), 2, yl, (Quant, l + 1, s1, s2)) l < m

If Ana chooses to believe the suggested symbols for s1(yl) and s2(yl), they put the
symbol yl on top of the indexing as a marker and continue with the next quantor.
If Ana chooses to disbelieve one ot the values, Eve pops symbols from stack 1 until

they claim to have found the position pl in w1 or w2 respectivly. Ana believe the
position. and the top of stack symbol is compared to s1(yl) or s2(yl) respectivly. If
Ana disbelieves the position, the play continues to (k− 1)-Equality(Σk) to verify it.
Instantiate (k−1)-ValidIndexing(Σk) on stack 1 with starting state disbelievePos.
States (disVal, l, I, sI), (believe, l, I, sI) and state disbelieve belong to Eve. All

other states belong to Ana. introduce the following transition rules for I ∈ {1, 2}.

((disVal, l, 1, s1), (ΣΣ∗≤k)
∗, 1, (checkVal, l, 1, s1))

((disVal, l, 2, s2), (Λ \Υ)∗Υ(ΣΣ∗≤k)
∗, 1, (checkVal, l, 2, s2))

((checkVal, l, I, sI), 1, (believe, l, I, sI))
((checkVal, l, I, sI), 1, disbelieve)
((believe, l, I, sI), sI(yl), 1,Evewin)

((believe, l, I, sI), s, 1,Anawin) s ∈ Σ, s 6= sI(yl)

(disbelieve, 1, disbelievePos)

Lemma 57. Let I be 1 or 2 and let xpl = Indk−1(msbf(pl)) for some position
pl ∈ [0..maxk].
Eve possesses a winning strategy from

((disVal, l, I, sI), w1σ1γ1σw2σ2γ2, xpl . . . y1xp1γ3)

(or ((disVal, l, I, sI), w1σw2σ2γ2, xpl . . . y1xp1γ3)) if and only if s1(yl) = vpl , if I = 1,
or s2(yl) = v′pl , if I = 2.
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4.4 Comparing indexed words with mpdg

Proof. W.l.o.g. I = 1. Assume Eve possesses a winning strategy σEve. Let us look
at a play compliant with σEve. The first move from (disVal, l, 1, s1) is to

σEve(((disVal, l, 1, s1), w1σ1γ1σw2σ2γ2, xpl . . . y1xp1γ3)) =

((checkVal, l, 1, s1), vuxu . . . vmaxkxmaxkσ1γ1σw2σ2γ2, xpl . . . y1xp1γ3)

for some u of the strategy’s choice. If the strategy would remove all symbols of w1,
or leave a part of some xu on top of the stack, Eve has no moves if Ana transitions
to (believe, l, 1, s1), because the top of stack symbol is not from Σ. In contradiction,
σEve would not be winning.

Case 1 (u = pl): Look at the play continuing to (believe, l, 1, s1). Now, since σEve
is winning for Eve, the next transition must be ((believe, l, 1, s1), s1(yl), 1,Evewin)
Thus, s1(yl) = vpl .

Case 2 (u 6= pl): In this case, xpl = Indk−1(msbf(pl)) 6= Indk−1(msbf(u)) =
xu. Look at the play continuing to disbelieve. I further continues to the posi-
tion (disbelievePos, xuvu+1xu+1 . . . vmaxkxmaxkσ1σw2σ2γ2, xpl . . . y1xp1γ3), where it
enters gadget (k − 1)-Equality(Σk). By Theorem 46, when xu 6= xpl , Ana possesses
a winning strategy from there, because xpl and xu index different words. This con-
tradicts σEve being a winning strategy and this case does not occur.

Assume Ana possesses a winning strategy σAna. Again, look at a play compliant
with that strategy. In this play, Eve removes a sequence such that the resulting
position is

((checkVal, l, 1, s1), vplxpl . . . vmaxkxmaxkσ1γ1σw2σ2γ2, xpl . . . y1xp1γ3).

Be aware, that in this play, Eve removed a sequence

Case 1 (σAna moves to state (believe, l, 1, s1)): Since the strategy is winning for Ana,
the next transition must be ((believe, l, 1, s1), s, 1,Anawin), where s 6= s1(yl), proving
vpl 6= s1(yl).

Case 2 (σAna moves to state disbelieve): Analogue to the above Case 2, this case
cannot occur.

Together, Eve possesses a winning strategy from ((disVal, l, I, sI), w1σ1γ1σw2σ2γ2,
xpl . . . y1xp1γ3) if and only if sI(yl) = vIpl .

The above transitions give each player a strategy enforcing the creation of a valu-
ation on stack 2. At the same time, they create s1 and s2 in the state. For these, we
know by Lemma 57, that s1(yl) = vpl and s2(yl) = v′pl , where stack 2 contains the
valuation for yl in the form of a sequence ylxpl with xpl = Indk−1(msbf(pl)).
When Eve suggests the symbols for the last variable’s valuation, the play enters a

position
((suggest,m, s1, s2), w1σ1γ1σw2σ2γ2, ymxpm . . . y1xp1γ3).
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Again, Ana could disbelieve as covered by Lemma 57.
Otherwise, we start by creating the variable order to evaluate the formula. Again,

we do so by Guess & Check. Eve suggests a variable order Ψ and Ana may choose
to check for correctness of the variable order by disbelieving a single ylθyl′ of Ψ.
States (guessOrder, s1, s2) are owned by Eve. All other states belong to Ana.

Create the following transition rules for all s1, s2 : {y1, . . . , ym} → Σ and all variable
orders Ψ of y1, . . . , ym.

((suggest,m, s1, s2), 2, (guessOrder, s1, s2))

((guessOrder, s1, s2), 2, (Order,Ψ, s1, s2))

((Order,Ψ, s1, s2), 2, (disbelieve, ylθyl′)) where ylθyl′ is part of Ψ

((Order,Ψ, s1, s2), 2, (Ψ, s1, s2))

((Ψ, s1, s2), 2,Evewin) if JϕKΨ
s1,s2 = true

((Ψ, s1, s2), 2,Anawin) if JϕKΨ
s1,s2 = false

For disbelieving Ψ, instantiate (k − 1)-θ-Check(Σk) on state (θcheck, yl) for every
l ∈ [1..m] and θ ∈ {<,>,=} and add the following transition rules. The states
belong to Ana.

((disbelieve, yl θ yl′), (Λ \ {yl})∗yl, 2, (θcheck, yl′)) if l > l′

((disbelieve, yl = yl′), (Λ \ {yl′})∗yl′ , 2, (=check, yl′)) if l < l′

((disbelieve, yl < yl′), (Λ \ {yl′})∗yl′ , 2, (>check, yl′)) if l < l′

Lemma 58. Let xpm = Indk−1(msbf(pm)), . . . , xp1 = Indk−1(msbf(p1)), θ ∈ {<,=}
and l 6= l′ ∈ [1..m]. For readability, let λ = w1σ1γ1σw2σ2γ2.
Eve possesses a winning strategy from ((disbelieve, ylθyl′), λ, ymxpm . . . y1xp1γ3) if
and only if pl θ pl′.

Proof.

Case 1 (l > l′): Any play continues to ((θcheck, yl′), λ, xpl . . . y1xp1γ3), from which
by induction (Theorem 51), Eve possesses a winning strategy, if and only if pl θ pl′ .

Case 2 (l < l′): Any play continues to ((θ′check, yl), λ, xpl′ . . . y1xp1γ3), where

θ′ =

{
= if θ is =

> if θ is <

Again by induction, Eve possesses a winning strategy if and only if pl′ θ′ pl, i.e.
pl θ pl′ .
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All the above transition rules define a game Gk,∼ = (Vk,∼, Ek,∼, {Evewin}).
Number of contexts/phases: Any play can only take one of the following routes:

• push a part of the valuation on stack 2 but Ana decides to disbelieve one of
the indexings with (k − 1)-ValidIndexing(Σk) instantiated on stack 2 (by the
use of transition ((Pushed, l, s1, s2), 2, disbelieveValidity)).

• push a part of the valuation on stack 2 but Ana decides to disbelieve s1 or
s2 (by taking a transition ((suggest, l, s1, s2), 2, (disVal, l, I, sI)) for I ∈ {1, 2}).
Eve pops symbols from stack 1 to find the corresponding position. The play
either continues to Evewin or Anawin, or Ana disbelieves the position and
continues to (k − 1)-Equality(Σk) instantiated on stack 1.

• push and complete the valuation on stack 2, but Ana decides to disbelieve
the suggested variable order. (by taking a transition ((Order,Ψ, s1, s2), 2,
(disbelieve, ylθyl′))). The play removes symbols stack 2 to find the first variable
and then continues in (k − 1)-θ-Check(Σk).

In any case, pushing symbols on stack 2 introduces the first context on stack 2.
In the first case, (k − 1)-ValidIndexing(Σk) takes at most (k − 1) + 1 additional

contexts by induction (Theorem 49), adding up to k + 1 contexts.
In the second case, removing symbols from stack 1 introduces the second context.

If the play then visits a winning state, the context does not change anymore. If the
play continues to (k − 1)-Equality(Σk), it takes at most an additional k contexts
(Theorem 46). This adds up to k + 2 contexts.

In the third case, (k − 1)-θ-Check(Σk, {y1, . . . , ym}) takes up to an additional
(k − 1) + 1 = k contexts by induction (Theorem 51), since the context was on stack
2. This case adds up to k + 1 contexts.
Overall, the most contexts that can occur are k+2. In every case, the first context

is introduced on stack 2, If the previous context was on stack 2, this adds only up
to k + 1 contexts.
For the phases, this differs a little.
In the first case, no pop transitions are occuring in the play until we transition

to (k − 1)-ValidIndexing(Σk), which by induction (Theorem 49) takes up to k − 1
additional phases, if the previous phase phase was on stack 2 and up to k otherwise.
In the second case, the pop transitions on stack 1 introduce a new phase on stack

one. Then, (k − 1)-Equality(Σk) takes up to (k − 1) + 1 = k additional phases
(Theorem 46). In total, if the previous phase was on stack 1, this takes at most k
additional phases and k + 1 otherwise.
In the third case, the pop transitions on stack 2 introduce a phase. Then, by

induction (Theorem 51), (k−1)-θ-Check(Σk, {y1, . . . , ym}) adds up to k−1 additional
phases, since the phase is on stack 2 already. If the previous phase was on stack 2,
this takes at most k − 1 additional contexts. Otherwise, it takes up to k phases.
In total, plays of this gadget take at most k+ 1 phases. If the previous phase was

on stack 1, this reduces to k additional phases.
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Number of states: The number of states is dependend on the number quantors
m, the number of functions s1, s2 and the number of possible variable orders Ψ.
Remember that we don’t count the states of subgadgets. The number of functions
s1, s2 is |Σ|m. The number of possible variable orders is m! ·2m. In total, the number
of states is polynomial in the size of Σ, since the number of quantors m is constant
for each first order relation.

Lemma 59. Let v, v′ ∈ Σmaxk and w1 = Indk(v), w2 = Indk(v
′). Let σ ∈ Υ,

σ1, σ2 ∈ Λ \ (Υ ∪ Σ ∪ Σ≤k) and ∼ a first order relation. Let γ1 ∈ (Λ \Υ)∗ and
γ2, γ3 ∈ Λ∗.
Eve possesses a winning strategy from (start, w1σ1γ1σw2σ2γ2, γ3) if and only if v ∼
v′.

Proof. We show that Gk,∼ simulates G∼,v,v′ via the mapping f : V∼,v,v′ → Vk,∼.

f(Quantl, val) = ((Quant, l, s1, s2), w1σ1γ1σ2w2σ3γ2, ylxpl . . . y1xp1γ3)

f(Quant(m+ 1), val) = ((guessOrder, s1, s2), w1σ1γ1σ2w2σ3γ2, ymxpm . . . y1xp1γ3)

f(�win) = �win

where def(val) = {y1, . . . , yl}, xpl = Indk−1(val(yl)) and s1 = sval,v, s2 = sval,v′

restricted to def(val).
For human readability, we shorten the stack contents in the following way:

λ1 = w1σ1γ1σw2σ3γ2, λ2 = ylxpl . . . y1xp1γ3

Be aware, that these contain the indexings w1 and w2 as well as the indexings

xpl = Indk−1(msbf(pl)), . . . , xp1 = Indk−1(msbf(p1)).

The strategies can act depending on this knowledge.
We need to show that

• for every position pl ∈ [0..maxk] and valuation val : {y1, . . . , yl−1} → [0..maxk],
the respective player for quantor Ql possesses a strategy from

f((Quant, l, val)) = ((Quant, l, s1, s2), λ1, λ2)

to

f((Quant, l, val[pl/yl])) = ((Quant, l, s1[vpl/yl], s2[v′pl/yl]), λ1, ylxplλ2),

where xpl = Indk−1(msbf(pl)).

• for every valuation val : {y1, . . . , yl−1} → [0..maxk] the opponent of player Ql
possesses a strategy from f((Quant, l, val)) = ((Quant, l, s1, s2), λ1, λ2) to

f({(Quant, l, val[pl/yl]) | pl ∈ [0..maxk]}) =

{((Quant, l, s1[vpl/yl], s2[v′pl/yl]), λ1, ylxplλ2) |
xpl = Indk−1(msbf(pl)) for some pl ∈ [1..maxk]}
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• for every valuation val : {y1, . . . , ym} → [0..maxk], each player possesses a
strategy from

f((Quant,m+ 1, val)) = ((guessOrder, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3)

to

f(Evewin) = Evewin if JϕKval
v,v′ = true

f(Anawin) = Anawin if JϕKval
v,v′ = false

To the first two points, let f((Quant, l, val)) = ((Quant, l, s1, s2), λ1, λ2) and pl ∈
[0..maxk]. We define strategies σEve, σAna for each player. Let � = Eve, if Ql = ∃,
and � = Ana, if Ql = ∀. Let � be their opponent.
Let xpl = Indk−1(msbf(pl)). By Lemma 56, � possesses a strategy from

((Quant, l, s1, s2), λ1, λ2)

to ((believeValidity, l, s1, s2), λ1, xplλ2).

for each pl ∈ [0..maxk]. Also, player � possesses a strategy from

((Quant, l, s1, s2), λ1, λ2)

to {((believeValidity, l, s1, s2), λ1, xplλ2) | pl ∈ [0..maxk]}.

The strategy for Eve also contains

σEve(((believeValidity, l, s1, s2), λ1, xplλ2)) =

((suggest, l, s1[vpl/yl], s2[v′pl/yl]), λ1, xplλ2)

The strategy for Ana also contains

σAna(((suggest, l, s1, s2), λ1, xplλ2)) =
((disVal, l, 1, s1), λ1, xplλ2) if s1(yl) 6= vpl
((disVal, l, 2, s2), λ1, xplλ2) if s2(yl) 6= v′pl
((Quant, l, s1, s2), λ1, ylxplλ2) otherwise

To the first point, let there be a play compliant with σ� starting in ((Quant,
l, s1, s2), λ1, λ2). By construction, the next position then is ((pushIndexing, l, s1, s2),
λ1, λ2). By Lemma 56, the play is either winning for � or it visits the configuration
((believeValidity, l, s1, s2), λ1, xplλ2).

Case 1 (� = Eve): The next position is ((suggest, l, s1[vpl/yl]s2[v′pl/yl]), λ1, xplλ2)
by strategy σEve. Then, the play may either continue to ((disVal, l, 1, s1[vpl/yl]), λ1,
xplλ2) or ((disVal, l, 2, s2[v′pl/yl]), λ1, xplλ2), both winning for player � = Eve by
Lemma 57, since s1(yl) = vpl and s2(yl) = v′pl . Or the play continues to

f((Quant, l, val[pl/yl])) = ((Quant, l, s1[vpl/yl], s2[v′pl/yl])), λ1, ylxplλ2).
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Case 2 (� = ∀): The play continues to ((suggest, l, s1[s/yl], s2[s′/yl]), λ1, xplλ2)
for some s, s′ ∈ Σ. If s 6= vpl or s′ 6= v′pl , σAna continues the play to ((disVal,
l, 1, s1[s/yl]), λ1, xplλ2) or ((disVal, l, 2, s2[s′/yl]), λ1, xplλ2) respectivly. Both posi-
tions are winning for player � = ∀ by Lemma 57, since s1[s/yl](yl) = s 6= vpl or
s2[s′/yl](yl) = s′ 6= v′pl respectivly. Otherwise, the play continues to

f((Quant, l, val[pl/yl])) = ((Quant, l, s1[vpl/yl], s2[v′pl/yl]), λ1, ylxplλ2).

To the second point, let there be a play compliant with strategy σ� starting
in ((Quant, l, s1, s2), λ1, λ2). By construction, the next position is ((pushIndexing,
l, s1, s2), λ1, λ2). By Lemma 56, the play is either winning for player � or it visits
the configuration ((believeValidity, l, s1, s2), λ1, xplλ2) for some pl ∈ [0..maxk].
Analogue to Case 1 and Case 2 above, the play is either winning for player � or

continues to

f((Quant, l, val[pl/yl])) = ((Quant, l, s1[vpl/yl], s2[v′pl/yl]), λ1, ylxplλ2).

To the third point, look at the outgoing transition rules of state (Ψ, sval,v, sval,v′).
We know that JϕKval

v,v′ = JϕKΨ
sval,v ,sval,v′

, when Ψ is induced by val. It is then sufficient
to show that each player possesses a strategy from

f((Quant,m+ 1, val)) = ((guessOrder, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3)

to state (Ψ, sval,v, sval,v′), where Ψ is a variable order induced by val.
For Eve, this strategy is

σEve(((guessOrder, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3)) =

((Order,Ψ, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3)

where Ψ is a variable order induced by val. Be aware that val is part of the previous
configuration, encoded into the indexings xp1 , . . . , xpm on stack 2. Let there be
a play from ((guessOrder, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3)) compliant with σEve.
The next position is in state (Order,Ψ, sval,v, sval,v′). From there, the play continues
either to state (disbelieve, ylθyl′) where yl θ yl′ is part of Ψ. Since Ψ is induced by
val, for each yl θ yl′ in it, pl = val(yl) θ val(yl′) = pl′ . This is a winning position for
Eve by Lemma 58. Otherwise, the play continues to state (Ψ, sval,v, sval,v′), where Ψ
is the variable order induced by val.
For Ana, this strategy is

σAna(((Order,Ψ, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3) =
((disbelieve, ylθyl′), λ1, ymxpm . . . y1xp1γ3) if yl θ yl′ in Ψ where

pl θ pl′ does not hold
((Ψ, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3) otherwise
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Let there be a play from ((guessOrder, s1, s2), λ1, ymxpm . . . y1xp1γ3) compliant with
σAna. The next position is in state (Order,Ψ, sval,v, sval,v′) for some variable order Ψ.
If Ψ contains a ylθyl′ , such that not plθpl′ , i.e. Ψ is not induced by val, then the next
position by σAna is (disbelieve, ylθyl′)), which is winning by Lemma 58. Otherwise,
the play continues to ((Ψ, sval,v, sval,v′), λ1, ymxpm . . . y1xp1γ3), where Ψ is induced
by val.

4.5 Simulating a Turing machine with an mpdg

Now we have all tools at hand to construct the multi-pushdown game simulating a
Turing machine for the proof of the lower bound (Theorem 32).
Making use of the deterministic time – alternating space theorem for turing ma-

chines, we transform an alternating turing machine with k − 1-EXP space bound
with input w into a multi-pushdown game. Any play in the constructed game will
not exceed the (k + 2)’th context or the k’th phase.

The game shall simulate the game from section 4.1.1 which was equivalent to an
alternating Turing machine. By simulating that game, Eve will possess a winning
strategy if the Turing machine accepts the input. The simulation idea is to store the
configurations on a stack. Each player chooses the next transition of configurations
in their respective branching state.
The mpdg needs to ensure that actual successing configurations are pushed onto

the stack. Due to the immense size of the configurations, we use the gadgets from
the previous sections and index the configurations. Given a chosen transition and a
top of stack indexing of the current configuration, we use a Guess & Check approach
to create the indexing containing the successing configuration on top of it.
Let M = (Q,Σ,Γ,∆, qinit) be an alternating decider with its space bound sb ∈

expk−1(nO(1)) and branching assignment br : Q → {∃,∀}. Let w ∈ Σ∗ be an input
word for M .
We construct a reachability multi-pushdown game (P, {Evewin}) with two stacks

that fulfills the following property, which completes the proof for Theorem 32.

Theorem 60. Eve possesses a winning strategy from (start, ε, ε) in (P, {Evewin}) if
and only if w ∈ L(M).
P has polynomial size in n = |w|.
Any play from (start, ε, ε) has at most k + 2 contexts and at most k phases.

We want (P, {Evewin}) to simulate GM from section 4.1.1. The initial position
of GM is the initial Turing machine configuration (qinit, cinit). We need to put an
indexing of the initial configuration on stack 1, before we can start simulating GM .
This is achieved by using Guess & Check: Eve shall push the (k − 1)-level indexing
of the initial configuration word cinit followed by the state qinit on stack 1. Then,
Ana may check the pushed sequence or believe it and start the simulation.
The following transition rules are introduced. Instantiate (k−1)-ValidIndexing(Γ)

on stack 1 with starting state checkIndexing. Eve owns state start , Ana owns state
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initialConfPushed.

(start , 1, (_Σ∗≤k)
∗w0Σ∗≤k . . . wn−2Σ∗≤k(wn−1, †)Σ∗≤k#, initialConfPushed)

(initialConfPushed, 1, checkIndexing)

(initialConfPushed, 1, qinit, (state, qinit))

Lemma 61. Let xinit = Indk−1(_sb(n)−nw0 . . . wn−2(wn−1, †)).
Each player possesses a strategy from (start, ε, ε) to ((state, qinit), qinitxinit#, ε)).

Proof. The strategy σEve for Eve is

σEve((start , ε, ε)) = (initialConfPushed, xinit#, ε).

Let there be any play compliant with σEve. It first visits position (initialConfPushed,
qinitxinit#, ε). The next position is either in state checkIndexing, which is winning
for Eve by Theorem 49, since xinit is a valid k-indexing. Or the play continues to
((state, qinit), qinitxinit#, ε).
The strategy σAna for Ana is

σAna((initialConfPushed, x#, ε) ={
(checkIndexing, x#, ε) if x is not a k-indexing
((state, qinit), qinitx#, ε) if x is a k-indexing

Let there be a play according to σAna. The play first visits (initialConfPushed,
qinitx#, ε). If x is not a k-indexing, the strategy proceeds to (checkIndexing, x#,
ε). By Theorem 49, Ana possesses a winning strategy from there. Otherwise x is a
(k − 1)-indexing:

x = Indk−1(_sb(n)−nw0 . . . wn−2(wn−1, †)) = Indk−1(cinit) = xinit

by construction and the play continues to ((state, qinit), qinitxinit#, ε).

With the initial configuration on stack 1, the actual simulation begins. The play
shall create successing configurations of M on stack 1, where Eve chooses the transi-
tions to use from configurations in existential branching states and vice versa for Ana.
It is essential that the successor relation 7→ is a first order relation in the following
sense. For each δ ∈ ∆, there is a first order formula in normal form ϕδ, that tests for
two configuration words, if they are successors by the transition δ = (q,−, q′,−,−).
That is, c1, c2 � ϕδ if and only if (q, c2)

δ7−→ (q′, c1).
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4.5 Simulating a Turing machine with an mpdg

The following formulas ϕδ test two configuration words for being successing by δ.

ϕ(q,s,q′,s′,N) = ∃y.∀y′.
(
s1(y) = (s′, †) ∧ s2(y) = (s, †)

∧ [y 6= y′ ⇒ s1(y′) = s2(y′)]
)

ϕ(q,s,q′,s′,L) = ∃y1.∃y2.
(
[y2 < y1 ∧ ¬∃y′′.(y2 < y′′ ∧ y′′ < y1)]

⇒ [s2(y1) = (s, †) ∧ s1(y1) = s′∧∨
s∈Γ

s2(y2) = s ∧ s1(y2) = (s, †)]

∧ ∀y′. [(y′ 6= y1 ∧ y′ 6= y2)⇒ s1(y′) = s2(y′)]
)

ϕ(q,s,q′,s′,R) = ∃y1.∃y2.
(
[y1 < y2 ∧ ¬∃y′′.(y1 < y′′ ∧ y′′ < y2)]

⇒ [s2(y1) = (s, †) ∧ s1(y1) = s′∧∨
s∈Γ

s2(y2) = s ∧ s1(y2) = (s, †)]

∧ ∀y′. [(y′ 6= y1 ∧ y′ 6= y2)⇒ s1(y′) = s2(y′)]
)

Furthermore, it is neccessary to check whether a given transition δ is enabled.
The following simple first order formulas ϕ?

δ test a configuration word for whether
δ = (q,−, q′,−,−) can not be used from that configuration. That means, c � ϕ?

δ if
and only if there is no configuration word c′ such that (q, c)

δ7−→ (q′, c′).

ϕ?
(q,s,q′,s′,N) = ¬∃y. s1(y) = (s, †)

ϕ?
(q,s,q′,s′,L) = ¬∃y1.∃y2. y2 < y1 ∧ s1(y1) = (s, †)

ϕ?
(q,s,q′,s′,R) = ¬∃y1.∃y2. y1 < y2 ∧ s1(y1) = (s, †)

Then, from a state (state, q) and stack 1 containing the previous configuration
word on top, the respective player for q’s branching state chooses a transition δ. If
br(q) = ∀, i.e. Ana choses the transition, Eve may disbelieve that the transition is
enabled by using k − 1-ϕ?

δ-Check(Γ, Q). If they don’t, or br(q) = ∃, Eve pushes a
sequence on stack 1. This should be a (k − 1)-indexing of successing configuration
word by taking transition δ. Ana may disbelieve this in various ways. They may
check for

• the pushed sequence being a (k − 1)-indexing

• the pushed (k − 1)-indexing to contain a configuration word

• the pushed (k − 1)-indexing to contain the successing configuration word by
the chosen transition δ.

Checking for the sequence being a (k − 1)-indexing can be done by the gadget
(k − 1)-ValidIndexing(Γ). For checking whether a word is a configuration word, it
is sufficient to check for precisely one letter from Γ. The length is already given by
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the indexing. The following simple first order formula ϕCon checks a word for being
a configuration word, i.e. c � ϕCon if and only if c is a configuration word.

ϕCon = ∃y1.∀y2.
[ ∨
s∈Γ

s1(y1) = (s, †) ∧ (y1 6= y2)⇒
∨
s∈Γ

s1(y2) = s
]

Instantiate the following gadgets.

• (k − 1)-ϕ?
δ-Check(Γ, Q) on stack 1 with starting state (checkEnabled, δ).

• (k − 1)-ValidIndexing(Γ) on stack 1 with starting state checkIndexing.

• (k − 1)-Con-Check(Γ, Q) on stack 1 with starting state checkConfiguration.

• (k − 1)-ϕδ-Check(Γ, Q) on stack 1 with starting state (checkSuccessor, δ).

For each q ∈ Q and δ = (q,−, q′,−,−) ∈ ∆ introduce the following transition
rules. The states (state, q) belong to Eve, if br(q) = ∃, and to Ana, if br(q) = ∀.
Furthermore, own((transition, δ)) = Eve and own((pushedConf, δ)) = Ana.

((state, q), 1, (transition, δ))
((transition, δ), q, 1, (checkEnabled, δ)) only, if br(q) = ∀
((transition, δ), 1, (ΓΣ∗≤k)

∗#, (pushedConf, δ))

((pushedConf, δ), 1, checkIndexing)

((pushedConf, δ), 1, checkConfiguration)

((pushedConf, δ), 1, (checkSuccessor, δ))
((pushedConf, δ), 1, q′, (state, q′))

These transition rules, together with the ones for pushing the initial configuration,
define the mpdg (P, {Evewin}).
Number of contexts/phases: First, symbols are pushed on stack 1, initiating a first

context. Pushing symbols does not introduce a phase. The phase has no specific stack
yet, but the transitions already belong to the first phase. Then the play continues
to

• (k− 1)-ValidIndexing(Γ), which by theorem 49 has at most (k− 1) + 2 = k+ 1
additional contexts or k − 1 additional phases, or

• state (state, qinit) without changing phase or context.

Whenever a position in state (state, q) is visited, only internal and push transitions
of stack 1 have been used. So the play is still in the first context on stack 1 or the
first phase without a chosen stack yet. From there, the play can either use transitions
until another state (state, q′) is reached, not changing context or phase. Or it can
enter

• (k − 1)-ϕ?
δ-Check(Γ, Q) which adds up to (k − 1) + 2 = k + 1 contexts and up

to k − 1 phases by Theorem 51, or

82



4.5 Simulating a Turing machine with an mpdg

• (k− 1)-ValidIndexing(Γ) which adds up to (k− 1) + 2 = k+ 1 contexts and up
to k − 1 phases by Theorem 49, or

• (k − 1)-Con-Check(Γ, Q) which adds up to (k − 1) + 2 = k + 1 contexts and
up to k − 1 phases by Theorem 51, or

• (k − 1)-ϕδ-Check(Γ, Q) which adds up to (k − 1) + 2 = k + 1 contexts and up
to k − 1 phases by Theorem 51.

Together with the first context or phase, this adds up to k+ 2 contexts and k phases
in total.
Number of states: The above states are capped by the number of transitions |∆|

and the number of states |Q|. Now we need to count the number of states introduced
by all the gadgets and their subgadgets. Be aware that instantiating the same gadget
twice with the same parameters on the same stack did not create duplicate states,
but only new transitions into the existing gadget. Thus we can find the number of
states by counting the number of gadgets instantiated.

• The equality gadget is not instantiated above. But the other create instances
internally. The gadget is only instantiated in the forms (k−2)-Equality(Σk−1),
. . . , 0-Equality(Σ1). By Theorem 46, the size of a single such gadget is polyno-
mial in the size of Σk−2, . . . ,Σ0, which are all 2, and max 0 which is polynomial
in the length of the input n. This number doubles, since each of these gadget
may occur for each stack. In total, the number of states is 2 · (k− 1) · poly(n),
which is still polynomial in n.

• The valid indexing gadget is instantiated above and exists as subgadget. It is in-
stantiated above twice with the same parameters on the same stack. Internally,
its only instances are (k − 2)-ValidIndexing(Σk−1), . . . , 0-ValidIndexing(Σ1).
By Theorem 49, the size of each of these gadgets is polynomial in n. The
number of states again doubles due to having two stacks on which they could
be instantiated. We arrive at a total of 2 · (k − 1) · poly(n) states which again
is polynomial in n.

• The ∼-check gadget is instantiated above and exists as subgadget. First
count the number of instances above. For each transition δ ∈ ∆, (k − 1)-
ϕ?
δ-Check(Γ, Q) and (k − 1)-ϕδ-Check(Γ, Q) are created. Also, (k − 1)-Con-

Check(Γ, Q) is instantiated once.

Internally, the gadget is created by the valid indexing gadget for the relations
(0), (1), (+1). Here it only exists in the form (k−2)-∼-Check(Σk−1,Λ\Σ≤k−1),
. . . , 0-∼-Check(Σ1,Λ \ Σ≤1) where ∼ is one of (0), (1), (+1).

It is created by the ∼-check gadget for the relations (<), (>), (=). The gadget
exists as subgadget only in the form (k−2)-∼-Check(Σk−1, {y}), . . . , (k−2)-∼-
Check(Σk−1, {y}) where ∼ is one of (<), (>), (=) and y is one of the variables
occuring in the respective formulas for the relations (<), (>), (=) or from the
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formulas ϕδ, ϕ?
δ, ϕCon. Be aware that the formulas are of constant size and

thus the number of different variables #vars is of constant size. The number
of relations is six. The total number of subgadgets is then 2 ·6 ·#vars · (k−1),
again counting double for instances on each stack.

By Theorem 51, each ∼-check gadget has an amount of states polynomial in
the size of Γ and Σk−1, . . . ,Σ1 and max 0. All alphabets are of constant size
and max 0 is polynomial in the input length n. The total amount of states by
the ∼-check gadget is

([|∆| · 2 + 1] + [2 · 3 · (k − 1)] + [2 · 6 ·#vars · (k − 1)]) · poly(n)

where the first block counts the gadgets instanciated above, the second counts
the gadgets instanciated by the valid indexing gadgets and the third counts the
gadgets instanciated by the ∼-check gadget. In total, since the Turing machine
is a constant, the number of transitions is constant. The whole prefactor then
is a constant and the number of states is polynomial in the input length n.

Lemma 62. Eve possesses a winning strategy in (P, {Evewin}) from (start, ε, ε) if
and only if x is accepting by M .

Proof. To show this, we show that (P, {Evewin}) simulates GM via

f((q, c)) = ((state, q), qx#γ, ε).

Let own((state, q)) = � and their opponent �. Let (q, c), (q′, c′) be configurations
and x = Indk−1(c), x′ = Indk−1(c′).
We need to show that

• If (q, c)
δ7−→ (q′, c′), � possesses a strategy from ((state, q), qx#γ, ε) to ((state,

q′), q′x′#qx#γ, ε).

• Player � possesses a strategy from ((state, q), qx#γ, ε) to the set of positions
{((state, q′), q′x′#qx#γ, ε) | (q, c) 7→ (q′, c′)}.

For (q,−, q′,−,−) = δ ∈ ∆, define the following strategies.

σ�(((state, q), qx#γ, ε)) = ((transition, δ), qx#γ, ε)

σEve(((transition, δ), x#γ, ε)) =
((pushedConf, δ), x′#qx#γ, ε) x′ = Indk−1(c′), if c′

exists with (q, c)
δ7−→ (q′, c′)

((checkEnabled, δ), x#γ, ε) otherwise
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σAna(((pushedConf, δ), x′#qx#γ, ε)) =

(checkIndexing, x′#qx#γ, ε) if x′ is not a k-indexing
(checkConfiguration, x′#qx#γ, ε) if x′ = Indk−1(c′) but

c′ is not a configuration word
((checkSuccessor, δ), x′#qx#γ, ε) if x′ = Indk−1(c′) for a configuration

word c′ but not (q, c)
δ7−→ (q′, c′)

((state, q′), q′x′#qx#γ, ε) otherwise

Let (q, c)
δ7−→ (q′, c′). We show that σ� is either winning for � or visits ((state, q′),

q′x′#qx#γ, ε) where x′ = Indk−1(c′).
Let there be a play compliant with σ�. By strategy σ�, the first visited position

is ((transition, δ), qx#γ, ε).

Case 1 (� = Eve): By σEve = σ�, the play visits ((pushedConf, δ), x′#qx#γ, ε)

where x′ = Indk−1(c′). This exists, since we assumed that (q, c)
δ7−→ (q′, c′). Then,

if the play continues to (checkIndexing, x′#qx#γ, ε), � possesses a winning strat-
egy from there by Theorem 49, since x′ is a k-indexing. If the play continues to
(checkConfiguration, x′#qx#γ, ε), � possesses a winning strategy from there by The-
orem 51, since c′ is a configuration word. If the play continues to ((checkSuccessor,
δ), x′#qx#γ, ε), � possesses a winning strategy from there by Theorem 51, since
(q, c)

δ7−→ (q′, c′). Otherwise, the play continues to ((state, q′), q′x′#qx#γ, ε).

Case 2 (� = Ana): By construction, the play either continues to ((checkEnabled,
δ), x#γ, ε) from where Ana possesses a winning strategy by Theorem 51, because
the transisiton is enabled by (q, c)

δ7−→ (q′, c′). Otherwise, the play continues to
((pushedConf, δ), q′x′#qx#γ, ε) where x′ ∈ (ΓΣ∗≤k)

∗. If x′ is not a k-indexing, then
σ� = σAna continues to (checkIndexing, x′#qx#γ, ε). From there, Ana possesses
a winning strategy by Theorem 49, since x′ is not a (k − 1)-indexing. If x′ =
Indk−1(c′) but c′ is not configuration word, the play continues to (checkConfiguration,
x′#qx#γ, ε). From there, Ana possesses a winning strategy by Theorem 51, since
c′ is not a configuration word. If x′ = Indk−1(c′) and c′ is a configuration word, but
not (q, c)

δ7−→ (q′, c′), the play continues to ((checkSuccessor, δ), x′#qx#γ, ε). Ana
possesses a winning strategy from there by Theorem 51, since x′ does not index the
successing configuration word for δ, else (q, c)

δ7−→ (q′, c′) would hold. Otherwise, the
play continues to ((state, q′), q′x′#qx#γ, ε), with x′ = Indk−1(c′) and (q, c)

δ7−→ (q′, c′).

Let there be a play compliant with strategy σ�. By contstruction, it first visits
((transition, δ), qx#γ, ε) for some δ ∈ ∆. From there, the argumentation is analogue
to the above. In particular, σ� is winning, if there is no δ ∈ ∆ enabled in (q, c).
Moreover, it visits a position in state �win in that case.
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We have presented a lower bound of k-EXPTIME on the complexity of k+2 bounded
context switching and k bounded phase multi-pushdown reachability games. We
further showed how to convert a k + 2 bounded context switching multi-pushdown
parity game into a finite state game of size k-EXP. It is to be noted that similar to
Walukiewicz’s construction for single pushdown games [16], the finite state game can
only decide the winner for starting positions with empty stack contents.
It is noteworthy that there is a mismatch between the complexity for bounded

phase and bounded context switching of exactly two exponents. Initially, it was
surprising that the complexity of bounded context switching is quite close to the
complexity of bounded phase. By intuition, bounded phase allows for arbitrary long
words to be moved between stacks, which seems like a very powerful operation when
comparing this to bounded context switching. One insight lies in the fact that moving
a word from one stack to another is not a very powerful operation on its own. It
needs to be equipped with a mechanism to reference positions within the word in
order to obtain computability.
During the work, a property was found that gives a suggestion on the complexity

of the multi-pushdown game model and also answers the question about the com-
plexity mismatch between the two models treated. It is derived by analyzing the
computations possible within the model across all games under this model.
Let us first give an intuition about the property on an example of bounded phase

and bounded context switching multi-pushdown games. Imagine a computation π
of an mpds with contexts or phases bounded to 3. Let us highlight the contexts by
splitting the computation.

Stack 1

Stack 2

Start of π . . .

Now we add push-pop-pairs to the computation for bounded phase and bounded
context switching. A push-pop-pair is marked by an arrow.
Bounded context switching:

Stack 1

Stack 2
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Bounded phase:

Stack 1

Stack 2

Note that the push-pop-pairs in bounded context switching are well nested, while
in bounded phase, the push-pop-pairs overlap. The push-pop-pairs of the bounded
phase example create an overlapping chain: the first push-pop-pair overlaps with
another push-pop-pair which itself overlaps with the third push-pop-pair. Identify
that as a push-pop-chain of depth 3. Actually, with only 3 contexts, no overlaps
can happen in any computation and all computations only allow push-pop-chains of
depth 1. More general, k + 2 bounded context switching allows for push-pop-chains
with depth k, while already k bounded phase allow for a depth of k.
It seems that the possible length of push-pop-chains across all computations of

the model are connected to the complexity of the model in the sense that push-
pop-chains of depth k create the complexity of k-EXPTIME to solve a game on the
model. This seems very reasonable with respect to the gadgets created in the lower
bound construction. Plays that can grow push-pop-chains up depth k seem to be
able to handle a k−1 layered indexing system, which gives the connection about the
maximal length of words such that reasonable computation on them is still possible.
However, the plays of those gadgets can produce multiple push-pop-chains of depth

k so further criteria might be neccessary to conclude an actual rule.
This property is also an indication that games on ordered multi-pushdown sys-

tems have complexity of k-EXPTIME and it might a criterium for fixed schedule
computations.
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Aufgabe der Masterarbeit von S. van
der Wall

Das Forschungsgebiet der Programmsynthese entwickelt Algorithmen, die Programm-
skizzen automatisiert in vollständige Programme überführen. Der Un- terschied zwis-
chen Programmskizzen und vollständigen Programmen besteht im Abstraktionsgrad.
Während Programme gezwungen sind, das Verhalten des Rechners exakt zu steuern,
formulieren Skizzen allein die Logik der Berechnung. Dieses höhere Maß an Abstrak-
tion erleichtert die Programmierung, mit dem un- mittelbaren Ziel, die Produktivität
der Software-Entwicklung zu erhöhen, und dem langfristigen Ziel, Programmierung
auch Laien zugänglich zu machen.
Synthesealgorithmen unterscheiden sich anhand der Klasse an Skizzen, die als

Eingabe erwartet werden. Schon Skizzen rekursiver Berechnungen führen zu einem
unendlichen Zustandsraum, und die Programmsynthese gelingt nur durch Algorith-
men, die eine endliche Faktorisierung vornehmen. Für rekursi- ve Berechnungen,
die in parallelen Threads ausgeführt werden sollen, ist be- kannt, dass Synthesealgo-
rithmen nicht existieren. Präziser formuliert existieren keine Synthesealgorithmen,
die exakt sind insofern, als sie möglichst effiziente Programme erzeugen. Wohl aber
existieren approximative Synthesealgorithmen, die Programme mit eingeschränktem
Verhalten liefern. In der Literatur haben zwei Approximationen besondere Beach-
tung erfahren. Die Bounded-Context- Einschränkung fordert, dass die Threads den
Prozessor nur k-Mal wechseln. Die Bounded-Phase-Einschränkung ist liberaler und
erlaubt k-Synchronisationen zwischen den Threads, bis schließlich ein Masterthread
die Berechnung leitet.
Die Komplexität der soeben definierten approximativen Syntheseprobleme ist ein

ungelöstes Problem. Atig et al. haben gezeigt, dass der Einfluss des Pa- rameters k
auf die Effizienz der Synthese dramatisch ist. Seth hat einen Syn- thesealgorithmus
vorgelegt, der für jedes k aus Skizzen Programme erzeugt. Die genaue Abhängigkeit
der Komplexität vom Parameter k ist unbekannt. Diesem Problem soll sich die
Masterarbeit von Sören van der Wall widmen.
Das erste Ziel der Masterarbeit ist es, abhängig von k obere Schranken für die

Effizienz des (hochgradig nicht-trivialen) Verfahrens von Seth nachzuweisen. Ist
dieses Ziel zu hoch gesteckt, sind Einschränkungen auf die Gestalt der Skizzen zu
formulieren, unter denen sich das Resultat zeigen lässt. Zu beachten ist, dass kein
Algorithmenentwurf stattfinden soll.
vDas zweite Ziel der Masterarbeit ist, die von Atig et al. angegebenen unteren

Schranken für festes k zu präzisieren — idealerweise so, dass sie den erzielten oberen
Schranken entsprechen.
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