
TU Kaiserslautern

Computing boundaries of tropical varieties

Master thesis in mathematics

Author Supervisor

Sebastian Muskalla Thomas Markwig

April 27, 2015

Contents 2

Contents

I. Introduction 4

1. Abstract 4

2. Structure 5

II. The Grassmanian 6

3. The Grassmanian 6

III. Introduction to tropicalizations 20

4. Tropicalizations using the tropical semiring 20

5. Tropicalizations using initial forms 23

6. Tropicalizations using Puiseux series 30

7. Structural results about tropical varieties 32

IV. Computing the boundary 44

8. Computing the boundary via elimination 44

9. Computing the boundary via projection 50

10. The correspondence between elimination and projection 58

Contents 3

V. Appendix: SINGULAR code 70

A. grassmanian.lib 70

B. tropicalboundaries.lib 88

C. test_tropicalboundaries.c 102

D. Examples 106

Bibliography 121

Declaration of academic honesty 122

1 Abstract 4

Part I.

Introduction

1. Abstract

Tropical geometry is a new field of geometry, which associates algebraic varieties with

their tropicalization. The tropicalization of a variety is a degeneration into a semi-linear

object, which can be studied using methods from polyhedral theory and combinatorics,

but surprisingly preserves some fundamental properties of the variety.

One basic restriction is that we implicitly intersect varieties with the torus before tropical-

izing them, i.e. we exclude the boundary where some coordinates are zero. The goal of

this thesis is to study how this restriction can be eased. Algorithms to compute the part

of the tropicalization in the boundary are presented and applied to the Grassmanian as

main example.

The appendix contains implementations of the algorithms for the computer algebra sys-

tem SINGULAR [Sing].

2 Structure 5

2. Structure

The initial goal of my research was to study methods how one can compute the boundary

of the tropicalization of the Grassmanian and to compare the results of those methods

applied to the Grassmanian G(3, 6). Therefore, before introducing tropical varieties, we

will start in the second part by defining the Grassmanian. Furthermore, we will study

several algorithms to get a finite set of generators for its defining ideal.

In the third part, we introduce tropical varieties, the main objects of tropical geometry. We

provide three different definitions: one which gives the best intuitive understanding, one

which is best for computational purposes and a purely algebraic variant, which shows

why we need the restriction to the torus mentioned in the abstract. In the last section

of this part, we state the fundamental theorem, which shows that those three ways are

equivalent. We will introduce some concepts from polyhedral theory and cite the struc-

ture theorem, which specifies the polyhedral structure of tropical varieties.

The main results of this thesis are contained in the fourth part. We define the boundary

via elimination by tropicalizing the part of a variety living inside the hyperplane where

some component is zero. On the computational side, this is done by adding a generator

to the ideal and intersecting it with a subring, so we will briefly touch on the topic of

variable elimination.

A second way to compute the boundary purely relies on projecting certain parts of the

polyhedral complex given by the tropical variety. We show that - as in traditional algebraic

geometry - there is a correspondence between elimination and projection and conclude

that both ways to define the boundary yield the same result if we start with a saturated

ideal.

The appendix contains two libraries and other code for the computer algebra system

SINGULAR : grassmanian.lib consists of algorithms to compute the Pluecker ideal

defining the Grassmanian respectively a Groebner basis for it. The two methods to

compute the boundaries are implemented in tropicalboundaries.lib. Furthermore,

procedures to study whether the results of those two methods are equal are provided

in test_tropicalboundaries.c. Lastly, several examples also mentioned during the

thesis are attached.

3 The Grassmanian 6

Part II.

The Grassmanian

3. The Grassmanian

Varieties which parametrize other varieties are objects of interest in algebraic geometry.

An easy but very important example is the Grassmanian G(r , m). The points of this vari-

ety correspond to linear subspaces of dimension r of a vector space K m. In this chapter,

we will study the Grassmanian and algorithms to compute generators of its defining ideal.

In later parts of the thesis, the Grassmanian respectively its tropicalization will be used

as the main example for the algorithms to compute the boundaries of tropical varieties.

We will always assume that K is some fixed field of characteristic 0 in the following.

3.1 Remark

As usual, we define the affine space An
K = K n to be the space of points with n com-

ponents with entries in K (without any vector-space structure). We define the projective

space Pn−1
K to be the space we get by identifying scalar multiples in An

K :

Pn−1
K = {V | V is a one-dimensional subspace of K n} = {〈v〉 | v ∈ K n, v 6= 0} .

3.2 Remark

Any r -dimensional subspace of K m can be represented as the row space of a matrix

A ∈ K r xm of rank r by writing a set of basis vectors of the subspace into the rows of the

matrix. Unfortunately, this representation is not unique: the row spaces of two matrices

A and B are equal if and only if A can be obtained from B by applying row operations,

i.e.

A = G ∗ B

for some G ∈ Glr (K).

To get a unique representation, we map A to vectors containing the minors of size r x r .

Any r x r minor AI of A ∈ K r xm is uniquely determined by the choice of column indices

I ⊆ {1, ..., n} corresponding to the columns which should be kept in the submatrix. We

may write

AI = det(A ∗ SI)

where SI ∈ K r xm is the matrix selecting the columns of A with indices in I. Its j th column

is 1 at some position i ∈ I and zero otherwise.

3 The Grassmanian 7

By the determinant multiplication theorem,

AI = det(A ∗ SI) = det(G ∗ B ∗ SI) = det(G) ∗ det(B ∗ SI) = det(G) ∗ BI

follows. In particular, the minors differ only by a scalar multiple, which is independent

from the minor. If we look at the vectors v (A), v (B) of all minors, we have

v (A) = det(G) ∗ v (B)

and they define the same point in projective space.

Since any minor of size r x r of a matrix of size r xm corresponds to a choice of columns,

we will study how to compute such subsets before we will define the Grassmanian for-

mally.

3.3 Definition

Let r ∈ N and M be a finite set with r ≤ |M|. We define the set of subsets of size r :

Λ (r , M) = {α ⊆ M, |α| = r}.

By abuse of notation, we write Λ (r , m) for Λ
(
r , {1, ..., m}

)
for m ∈ N, m ≥ r .

3.4 Remark

In the following, we will identify subsets of {1, ..., m} of size r with ordered lists, tuples in

{1, ..., m}r such that their components are in strictly ascending order. This gives a fixed

ordering on the elements of α ∈ Λ (r , m).

Furthermore, we order Λ (r , m) itself by looking at the smallest element contained only

in one of two sets. For α,β ∈ Λ (r , m), we define

α < β⇔ min
(
(α ∪ β)\(α ∩ β)

)
∈ α.

If we represent elements of Λ (r , m) as ordered lists as described above, this yields a

lexicographic ordering on the tuples.

3 The Grassmanian 8

The following recursive algorithm computes Λ (r , M).

3.5 Algorithm

Input:

r ∈ N,

M finite set with r ≤ |M|
Output:

Λ (r , M)

1 if r = 0 then

2 return {∅}
3 end

4 if M = ∅ then

5 return {}
6 end

7 Choose e ∈ M

8 M ′ := M\{e}
9 return {{e} ∪ α | α ∈ Λ (r − 1, M ′)} ∪Λ (r , M ′)

Proof of termination:

The size of M decreases with each recursive call. Since |M| is always a natural number

and the recursion base catches |M| = 0, this process has to stop.

Proof of soundness:

We prove soundness using induction over the cardinality of M. M = ∅ has only itself

as subset of size 0 and no subsets of any other size. This coincides with the value

returned by the algorithm. For any set M of size larger than 0, we may fix an arbitrary

element e ∈ M. Any subset α′ of size r is either a subset not containing e, and thus an

element of Λ
(
r , M\{e}

)
, or it is a subset containing e. In the latter case, we may write

it as α′ = {e} ∪ α where α ∈ Λ
(
r − 1, M\{e}

)
. This coincides with the value returned

by the algorithm, if we assume that the recursive calls return the correct result using

induction.

3.6 Remark

If we implement the algorithm above using ordered lists to represent sets, we can get the

ordering on Λ (r , m) mentioned in remark 3.4 by always choosing the smallest element

of M as e in the algorithm.

3 The Grassmanian 9

3.7 Example

We compute the subsets of size 2 of {1, 2, 3, 4} as in the algorithm:
Λ (2, 4) = Λ

(
2, {1, 2, 3, 4}

)
= {{1, a} | a ∈ {2, 3, 4}} ∪Λ

(
2, {2, 3, 4}

)
= {{1, a} | a ∈ {2, 3, 4}} ∪ {{2a} | a ∈ {3, 4}} ∪Λ

(
2, {3, 4}

)
= {{1, a} | a ∈ {2, 3, 4}} ∪ {{2, a} | a ∈ {3, 4}} ∪ {3, 4} ∪Λ

(
2, {4}

)
= {{1, a} | a ∈ {2, 3, 4}} ∪ {{2, a} | a ∈ {3, 4}} ∪ {3, 4} ∪ {} ∪ {}
= {{1, 2} , {1, 3} , {1, 4} , {2, 3} , {2, 4} , {3, 4}} .

Note that the sets in the last line are ordered with respect to the order on Λ (2, 4) in-

troduced in remark 3.4.

3.8 Lemma

Let r , M be as above. Then

|Λ (r , M) | =
(
|M|
r

)
.

Proof:

If r = 0, then Λ (r , M) = {∅} and |Λ (r , M) | = 1 =
(|M|

0

)
.

If r > 0 and M = ∅, then Λ (r , M) = {} and |Λ (r , M) | = 0 =
(0

r

)
.

If r > 0 and M is non-empty, we may fix some element and write - using the same

notation as in algorithm 3.5

Λ (r , M) =
{
{e} ∪ α | α ∈ Λ

(
r − 1, M ′

)}
∪Λ

(
r , M ′

)
.

Since all unions in this formula are disjoint, we get

|Λ (r , M) | = |Λ
(
r − 1, M ′

)
| + |Λ

(
r , M ′

)
|.

By induction on |M|, we obtain

|Λ (r , M) | =
(
|M| − 1
r − 1

)
+
(
|M| − 1

r

)
=
(
|M|
r

)
,

where the last equality follows by applying a well-known formula for binomial coefficients

shifted by one.

We now have defined the prerequisites to define the Grassmanian using minors of ma-

trices as briefly mentioned in remark 3.2.

3.9 Definition

Given a matrix A ∈ K r xm of rank r ≤ m and I ∈ Λ (r , m), we may write AI for the minor of

the r x r -submatrix we get by deleting all columns but those with indices in I.

3 The Grassmanian 10

We define v (A) to be the vector of minors in K (m
r) with v (A)I = AI (where we use the

order on Λ (r , m) from remark 3.4 to identify each subset I with a natural number in{
1, ...,

(r
m

)}
). Note that v (A) 6= 0 since A has rank r .

The Grassmanian G(r , m) is the projective variety in P(m
r)−1

K formed by the vectors v (A):

G(r , m) = {〈v (A)〉 | A ∈ K r xm, rank(A) = r} .

Unfortunately, this set description is not very useful for computational purposes. We will

now construct an ideal such that G(r , m) is its vanishing set, and we start by defining the

ring it lives in.

3.10 Definition

The Pluecker coordinate ring for r , m ∈ N, r ≤ m is the polynomial ring

K [p] = K [pI | I ∈ Λ (r , m)].

We call the variables pI Pluecker coordinates.

3.11 Example

For r = 2, m = 4, we have

K [p] = K [p{1,2}, p{1,3}, p{1,4}, p{2,3}, p{2,4}, p{3,4}]

as computed in example 3.7.

3.12 Definition

We call a polynomial f ∈ K [p] a relation among the r x r -minors of r xm-matrices, if

f (v (A)) = 0 for all A ∈ K r xm of rank r . We define the Pluecker ideal Ir ,m to be the ideal of

all such relations:

Ir ,m =
{

f ∈ K [p] | f is a relation among the r x r -minors of r xm-matrices
}

.

Using the insertion homomorphism, it is easy to see that Ir ,m is indeed an ideal and one

can show that it is prime and the Grassmanian is its vanishing set.

This still does not provide us with a finite description, since in general, there are infinitely

many of these relations and it is not clear how to find them. In the following, we will study

a combinatorial way to get a finite set of generators for Ir ,m.

3 The Grassmanian 11

3.13 Definition

Let I ∈ Λ (r − 1, m) and J ∈ Λ (r + 1, m) be subsets for r , m as above.

We define the Pluecker relation PI,J to be the following quadric polynomial in K [p]:

PI,J =
∑
j∈J

sgn(j , I, J) pI+j pJ−j ,

where

• sgn(j , I, J) = (−1)k with k = |{j ′ ∈ J, j < j ′}| + |{i ′ ∈ I, i ′ < j }|,

• pJ−j = pJ\{j},

• pI+j =

{
0 , j ∈ I,

pI∪{j} , else.

3.14 Remark

Note that if we represent subsets as ordered lists as described in remark 3.4, then

sgn(j , I, J) = (−1)(r+1−posJ)+(posI−1) = (−1)r−posJ +posI

where posJ is the index of the component of J which stores j and posI is the index of the

component of I ∪ {j} where we inserted j . Since we know the index of j in J and we may

modify our procedure for insertion to also return the position, this can be used to avoid

computing the sign explicitly in an algorithm to compute PI,J .

3.15 Example

We compute two relations for r = 2, m = 4:

a) Let I = {2} , J = {1, 3, 4}. Then we get the Pluecker relation

PI,J = sgn(1 , I, J) p{1,2}p{3,4}

+ sgn(3 , I, J) p{2,3}p{1,4}

+ sgn(4 , I, J) p{2,4}p{1,3}

= (−1)2−1+1 p{1,2}p{3,4}

+ (−1)2−2+2 p{2,3}p{1,4}

+ (−1)2−3+2 p{2,4}p{1,3}

= p{1,2}p{3,4} + p{2,3}p{1,4} − p{2,4}p{1,3}

= p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4}.

3 The Grassmanian 12

b) Let I = {2} , J = {1, 2, 4}. Then we get the Pluecker relation

PI,J = sgn(1 , I, J) p{1,2}p{2,4}

+ sgn(3 , I, J) p{2}+2p{1,4}

+ sgn(4 , I, J) p{2,4}p{1,2}

= (−1)2−1+1 p{1,2}p{2,4}

+ 0

+ (−1)2−3+2 p{2,4}p{1,2}

= p{1,2}p{2,4} − p{2,4}p{1,2}

= 0.

3.16 Theorem

The Pluecker ideal is the ideal generated by the Pluecker relations:

Ir ,m = 〈 PI,J | I ∈ Λ (r − 1, m) , J ∈ Λ (r + 1, m) 〉.

Proof:

See [MS05, p. 277] for a proof.

3.17 Corollary

The Pluecker ideal Ir ,m is homogeneous.

Proof:

The set of all PI,J as above is a set of homogeneous generators, since all non-zero

elements have degree 2.

3.18 Example

Let r = 2, m = 4. In example 3.15, we have computed

f = P{2},{1,3,4} = p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4}.

If we compute all relations, we notice that we have PI,J ∈ {0, f ,−f} for all suitable I

and J. We conclude by theorem 3.16 that the Pluecker ideal defining the Grassmanian

G(2, 4) is the principal ideal

I2,4 = 〈 p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4} 〉.

By theorem 3.16, it should be obvious how to derive pseudo-code to compute gener-

ators for Ir ,m from the definitions and you can find an implementation of the algorithms

under the names plueckerRelation respectively grassmanianGenerators for the

computer algebra system SINGULAR in the appendix of this thesis in grassmanian.lib.

One should note that the set of Pluecker relations is in general not a Groebner basis for

Ir ,m. Since most algorithms in computer algebra require ideals to be given via a Groeb-

ner basis, we will study another algorithm to compute generators for Ir ,m that do form a

3 The Grassmanian 13

Groebner basis with respect to a special order. It may be faster to use this second al-

gorithm instead of first calling grassmanianGenerators and then applying a Groebner

basis computation to its result.

3.19 Definition

Let r , m be as above. We define the map [.] as follows

[.] : {1, ..., m}r → K [p]

v 7→ [v] =

{
0 , v contains duplicate entries,

sgn(σv) ∗ pset(v) , else,

where set(v) ∈ Λ (r , m) is the set containing the components of v and σv is the unique

permutation which sorts the components of v in ascending order.

We omit brackets and commas when using this map. For example, we may write [1 3 2]

instead of [(1, 3, 2)].

3.20 Remark

The definition above is justified by the following intuition: Given a matrix A ∈ K r xm, any

vector v ∈ {1, ..., m}r defines a matrix Av ∈ K r xr which has the v th
i column of A as its i th

column for all i ∈ {1, ..., r}. If this vector has duplicate entries, the columns are linearly

dependent and the determinant of Av is zero. Only if the components of v are sorted in

ascending order, Av is actually a submatrix of A, but since the determinant is alternating,

we can always find a submatrix A′ with det(A′) = ± det(Av) by swapping columns, where

the sign is the sign of the permutation used to sort the column indices as above.

3.21 Definition

Let t , s ∈ N, s ≤ t . Given τ ∈ Λ (s, t), we write τ for its complement, the unique subset

in Λ (t − s, t) which contains exactly the elements of {1, ..., t} missing in τ.

We write sgn(τ, τ) for the sign of the permutation σ ∈ St with

σi =

{
τi , i ≤ s,

τi−s , else.

3.22 Definition

Let r , m be as above, s ∈ {1, ..., r} and let α ∈ Λ (s − 1, m), β ∈ Λ (r + 1, m), γ ∈ Λ (r − s, m)

be subsets. The van der Waerden syzygy [[αβ̇γ]] is a quadric polynomial in K [p] defined as

[[αβ̇γ]] =
∑

τ∈Λ(s,r+1)

sgn(τ, τ) ∗ [α1...αs−1βτ1 ...βτr+1−s] ∗ [βτ1 ...βτsγ1...γr−s].

If αs−1 < βs+1 and βs < γ1, we call [[αβ̇γ]] a straightening syzygy.

3 The Grassmanian 14

3.23 Example

We compute two van der Waerden syzygies for r = 2, m = 4.

a) Let α = {2} ,β = {1, 3, 4} ,γ = {}. This implies s = 2.

[[αβ̇γ]] = [[21̇3̇4̇]]

= sgn({1, 2} , {3}) [24] [13]

+ sgn({1, 3} , {2}) [23] [14]

+ sgn({2, 3} , {1}) [21] [34]

= (−1)0 p{2,4} p{1,3}

+ (−1)1 p{2,3} p{1,4}

− (−1)2 p{1,2} p{3,4}

= p{2,4} p{1,3} − p{2,3} p{1,4} − p{1,2} p{3,4}

= −
(
p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4}

)
.

Note that this is equal to −Pα,β as computed in example 3.15, which is no co-

incidence, because the Pluecker relations are special cases of van der Waerden

syzygies.

b) Let α = {2} ,β = {1, 2, 4} ,γ = {}. This again implies s = 2.

[[αβ̇γ]] = [[21̇2̇4̇]]

= sgn({1, 2} , {3}) [24] [12]

+ sgn({1, 3} , {2}) [22] [24]

+ sgn({2, 3} , {1}) [21] [14]

= (−1)0 p{2,4} p{1,2}

+ (−1)1 ∗ 0 ∗ p{2,4}

− (−1)2 p{1,2} p{1,4}

= p{2,4} p{1,2} − p{2,4} p{1,2}

= 0.

3.24 Definition

Let >dp be the usual degree reverse lexicographical ordering on K [p] defined by

pA >dp pB :⇔ deg(pA) > deg(pB)

or (degrees equal and rightmost non-zero entry of A− B is negative).

In the context of the Pluecker coordinate ring, >dp is called tableaux order since we

may write monomials pA as tables called tableaux of size deg(pA)x r by writing the sets I

corresponding to the variables pI occurring in pA into the rows of the tableau (as tuples

and sorted lexicographically as mentioned in remark 3.4). Then we have that pA > pB if

either the tableau A for pA has more rows than the tableau pB or the row-count is equal

and there are indices i , j such that the first i − 1 rows are equal and the entries of the i th

row coincide up to j with Ai ,j > Bi ,j .

3 The Grassmanian 15

3.25 Example

The quadric monomials

p{1,4}p{2,3}, p{1,3} p{2,4}, p{1,2} p{3,4}

in K [p] for r = 2, m = 4 corresponds to the following three tableaux of size 2x2[
1 4

2 3

]
,

[
1 3

2 4

]
,

[
1 2

3 4

]
.

By comparing the first rows, we see that the terms of the polynomial

p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4}

are ordered with respect to the tableaux order >dp.

3.26 Theorem

Let Sr ,m be the set of straightening syzygies, i.e.

Sr ,m =

 [[αβ̇γ]]

s ∈ {1, ..., r},
α ∈ Λ (s − 1, m) ,β ∈ Λ (r + 1, m) ,γ ∈ Λ (r − s, m) ,

αs−1 < βs+1,βs < γ1

and let

S∗r ,m =
{

[[αβ̇γ]] ∈ Sr ,m | αi ≤ βi for i ∈ {1, ..., s − 1}
}

.

Both Sr ,m and S∗r ,m are Groebner bases for Ir ,m with respect to the tableaux order >dp.

Proof:

See [Stu93, p. 81f].

Again, the last theorem gives an obvious way to compute a Groebner basis for Ir ,m:

Iterate through all possibilities for s,α,β and γ, check if the conditions in the definition

of Sr ,m and S∗r ,m are fulfilled and compute [[αβ̇γ]] in this case. However, this will lead to

many unnecessary computations, since only a fraction of all possibilities actually satisfy

the conditions. The next theorem shows how we can compute the subsets leading to

syzygies in S∗r ,m in a more efficient way.

3 The Grassmanian 16

3.27 Theorem

The following sets are equal:

LHS =

 (α,β,γ)

s ∈ {1, ..., r},
α ∈ Λ (s − 1, m) ,β ∈ Λ (r + 1, m) ,γ ∈ Λ (r − s, m) ,

αs−1 < βs+1,βs < γ1,αi ≤ βi for i ∈ {1, ..., s − 1}

RHS =

 (α,β,γ)

R, S ∈ Λ (r , m),

ν = ν(R, S) 6= 0,

α = R1...Rν−1,β = S1...SνRν...Rr ,γ = Sν+1...Sr

where ν(R, S) is the first index i such that Ri > Si or 0 if no such index exists.

Proof:

"LHS ⊆ RHS"

Assume s,α,β and γ as in the definition of LHS are given, We may write β = β′β′′

where β′ = β1...βs and β′′ = βs+1...βr+1.

Define R = αβ′′ and S = β′γ and note that by the conditions coming from the def-

inition of straightening syzygy, those are ordered lists and thus represent subsets

of size r .

The condition αi ≤ βi for i ∈ {1, ..., s − 1} coming from the definition of S∗r ,m guar-

antees Ri = αi ≤ βi = β′i = Si for 1 ≤ i ≤ s − 1. Since Rs = β′′1 = βs+1 and

Ss = β′s = βs and β was an ordered list, we have Rs > Ss and s = ν(S, R) is

indeed the first index where R is larger than S.

Therefore, the definition of RHS recovers our original α, β and γ for R, S as

constructed.

"LHS ⊇ RHS"

Let R, S be subsets (respectively ordered lists representing them) as in the defini-

tion of RHS. First note that for s = ν = ν(R, S) ∈ {1, ..., r}, α,β and γ are subsets

of the correct size. By the choice of ν, Sν < Rν, so β as in the definition of RHS is

an ordered list.

Since R was a subset of {1, ..., r} represented as ordered list,

αs−1 = Rν−1 < Rν = βs+1

holds. Analogously,

βs = Sν < Sν+1 = γ1,

3 The Grassmanian 17

so the van der Waerden-sygygy given by α,β and γ is indeed a straightening

syzygy. Furthermore, the choice of ν as the first index i with Ri > Si immediately

gives

αi = Ri ≤ Si = βi for 1 ≤ i ≤ s − 1.

Before we state the resulting algorithm, we note that we can further improve the running

time of the algorithm by a factor of about 1
2 since we only have to consider pairs R, S with

S > R with respect to the order introduced in remark 3.4.

3.28 Proposition

With notation as in theorem 3.26, the following set is a Groebner basis with respect to

the tableaux order for Ir ,m:

S∗∗r ,m =
{

[[αβ̇γ]] ∈ Sr ,m | αi ≤ βi for i ∈ {1, ..., s − 1} ,∃j ∈ {1, ..., s − 1} : αj < βj
}

.

Proof:

The proof of theorem 3.26 in [Stu93] relies on the construction of R, S (and subsequently

the resulting α,β and γ) as the (i − 1)th and i th row of a tableau such that there is some

position s with Rs > Ss. Since the rows of a tableau are sorted with respect to the

order introduced in remark 3.4, the case Ri = Si for all i ∈ {1, ..., s − 1} and Rs > Ss

cannot occur if R has a lower row index than S. Therefore, we can assume the restriction

defining S∗∗r ,m and the proof remains valid without any change.

3.29 Proposition

Let R, S ∈ Λ (r , m) be sets with ν(R, S) 6= 0 and let α,β and γ be the lists constructed

as in RHS in theorem 3.27. The van Der Waerden syzygy [[αβ̇γ]] is in S∗∗r ,m if and only if

S > R.

Proof:

We have already seen, that the van der Waerden syzygies defined by the S, R without

the restriction form the set S∗r ,m. Let us show that the sets with S ≥ R do not contribute

to S∗∗r ,m.

If R = S, there is no position s such that Rs > Ss. With notation as in theorem 3.27, we

get that ν(R, S) = 0 and we have shown in this theorem that we do not need those pairs

to get all van der Waerden syzygies in S∗r ,m ⊇ S∗∗r ,m.

Let us assume S < R now. By the definition of the order, the smallest element not

contained in both is contained in S. Since s = ν(R, S) is the first position such that

Rs > Ss we conclude that R, S are of the form

R = a Rsb, S = a Ssc

3 The Grassmanian 18

for suitable lists a, b, c. As in the theorem, we construct

α = a, β = a SsRsb, γ = c

and we note that αi = βi for all i ∈ {1, ..., s − 1}, so the resulting van der Waerden

syzygy [[αβ̇γ]] is not in S∗∗r ,m

Vice versa, if S > R, then the smallest position not contained in both is contained in R.

Therefore, we conclude that R, S are of the form

R = ax Rsb, S = ay Ssc

for suitable lists a, x , y , b, c where x and y are non-empty with x1 < y1. The resulting lists

are

α = ax , β = ay SsRsb, γ = c

and we note that at the position |a| + 1 < s, we have α|a|+1 = x1 < y1 = β|a|+1, so the

syzygy is in S∗∗r ,m.

We finish this chapter by stating the algorithm to compute S∗∗r ,m.

3.30 Algorithm

Input:

r ∈ N,

m ∈ N with r ≤ m

Output:

S∗∗r ,m, a Groebner basis for Ir ,m ⊆ K [p] with respect to >dp

1 G := ∅
2 foreach R ∈ Λ (r , m) do

3 foreach S ∈ Λ (r , m) , S > R do

4 s := ν(R, S)

5 if s 6= 0 then

6 α := R1...Rs−1

7 β := S1...SsRs...Rr

8 γ := Ss+1...Sr

9 G := G ∪
{

[[αβ̇γ]]
}

10 end

11 end

12 end

13 return G

where ν(R, S) is the first index i ∈ {1, ..., r} with Ri > Si and 0 if no such index exists.

3 The Grassmanian 19

Proof of termination:

The set Λ (r , m) is finite, ν(R, S) and [[αβ̇γ]] can be computed in finite time using their

definitions.

Proof of soundness:

By proposition 3.28, the set S∗∗r ,m is a Groebner basis for Ir ,m with respect to the tableaux

order >dp. We have seen in theorem 3.27 and proposition 3.29 that the set computed by

the algorithm is S∗∗r ,m.

The SINGULAR library grassmanian.lib provides a procedure implementing this algo-

rithm under the name grassmanianGB.

3.31 Example

Let r = 2, m = 4. The pair of sets R = {1, 4} , S = {2, 3} is the only pair such that S > R

and ν(R, S) 6= 0. Note that s = 2 and the resulting subsets are α = {1} ,β = {2, 3, 4},
γ = {} and the van der Waerden syzygy given by these is

[[12̇3̇4̇]] = p{1,4} ∗ p{2,3} − p{1,3} ∗ p{2,4} + p{1,2} ∗ p{3,4}

and it is the only element of S∗∗r ,m. Since we already computed this polynomial as the

generator for I2,4 in example 3.18 and any generator of a principal ideal is always a

Groebner basis with respect to any ordering, this is rather unsurprising, but for some

small numbers like r = 2, m = 5, the set of Pluecker relations is a Groebner basis

although Ir ,m is not principal.

3.32 Example

Let r = 3, m = 6. The sets R = {1, 4, 6} , S = {2, 3, 5} with S > R and ν(R, S) = 2 get

split into α = {1} ,β = {2, 3, 4, 6} ,γ = {5}. The resulting syzygy

[[αβ̇γ]] = [[12̇3̇4̇6̇5]]

= p{1,4,5} ∗ p{2,3,6} − p{1,3,5} ∗ p{2,4,6} − p{1,3,4} ∗ p{2,5,6}

+ p{1,2,5} ∗ p{3,4,6} + p{1,2,4} ∗ p{3,5,6} − p{1,2,3} ∗ p{4,5,6}

does not occur as Pluecker relation PI,J , but it is contained in a Groebner basis for Ir ,m

as the syzygy polynomial of the Pluecker relations
P{1,5},{2,3,4,6} = p{1,5,6} ∗ p{2,3,4} + p{1,4,5} ∗ p{2,3,6}

− p{1,3,5} ∗ p{2,4,6} + p{1,2,5} ∗ p{3,4,6}

and
P{5,6},{1,2,3,4} = −p{1,5,6} ∗ p{2,3,4} + p{1,3,4} ∗ p{2,5,6}

− p{1,2,4} ∗ p{3,5,6} + p{1,2,3} ∗ p{4,5,6}.

4 Tropicalizations using the tropical semiring 20

Part III.

Introduction to tropicalizations

In this part, we will define tropical varieties, the main objects of tropical geometry. The

next three chapters will show several approaches to tropicalizations, each emphasizing

different aspects and giving a different point of view. In the fourth chapter, we will cite the

fundamental theorem, which states that all given definitions are equivalent and we will

develop some polyhedral theory to understand the structure of tropical varieties.

We follow the presentation from Bernd Sturmfels’ and Diane Maclagan’s book [MS15]

with two major differences: Firstly, Maclagan and Sturmfels define everything in terms of

very affine varieties given by ideals in the Laurent polynomial ring and with arbitrary val-

uation on the ground field, while we restrict ourselves to polynomials with non-negative

exponents and we only consider the trivial valuation. Secondly, we follow the convention

used in Anders Jensen PhD thesis [Jen07] and SINGULAR , which means that compared

to [MS15], all tropical varieties are reflected across the origin.

4. Tropicalizations using the tropical semiring

The first approach to tropicalizations uses modified algebraic geometry over a set called

the tropical semiring. Unlike the two other methods, it provides a good intuition about the

structure of tropical varieties, so I chose to present it firstly.

4.1 Definition

We define the tropical semiring to be

(R ∪ {−∞},⊕,�),

where the binary operations are defined by

a⊕ b = max {a, b}
a� b = a + b

with the following rules to deal with the special element −∞:

max{−∞, b} = b

−∞ + b = b + (−∞) = −∞

for all b ∈ R ∪ {−∞}.

4.2 Remark

Obviously, for the "multiplication" � on R, the usual properties of addition hold: 0 is the

neutral element and for a ∈ R, −a is its inverse, but −∞ has no inverse.

4 Tropicalizations using the tropical semiring 21

Note that −∞ is the neutral element with respect to "addition" via ⊕, but no inverse

elements exist, hence, we use the name semiring.

4.3 Remark

In some part of the literature, the isomorphic semiring

(R ∪ {∞}, min,�)

is used and also called tropical semiring. As already mentioned in the introduction to

this part, this would lead to an inversion of the sign in the definition of tropicalization and

finally to a reflection across the origin on the geometric side.

4.4 Notation

We will write K [x] instead of K [x1, ..., xn] to denote the polynomial ring in n indeterminates

over K . If α ∈ Nn, we may use it as multi-index and write xα instead of xα1
1 ...xαn

n .

4.5 Remark

We may evaluate polynomials in the tropical semiring. This will associate a polynomial

in Q[x] of the form

f =
∑
α∈Nn

cαxα

to the following expression over the tropical semi-ring:

max
α∈Nn,cα 6=0

{cα + αT x}.

To get a consistent theory, it is better to replace the coefficients cα by their valuation.

Here, we will only consider the case of the trivial valuation, which maps each element to

zero, so we get

troppoly(f) = max
α∈Nn,cα 6=0

{αT x}.

By convention, we set

troppoly(0) = −∞

since −∞ is the neutral element with respect to taking the maximum.

One could try to apply the usual definitions from algebraic geometry to these tropical

polynomials, but the condition of "being zero" at some point is not very useful in this set-

ting. The zero with respect to addition is −∞, but as long as f 6= 0 and we only evaluate

troppoly(f) at real vectors, it will never occur as result.

Thus, we need a better criterion for points to be in the geometric object defined by a

tropical polynomial. By the definition of tropical polynomials, it is quite clear that they

define piecewise linear functions. Instead of studying their vanishing set, we can study

the set of points at which the function is non-linear.

4 Tropicalizations using the tropical semiring 22

4.6 Definition

Let f ∈ Q[x], f 6= 0 be a polynomial. We may view troppoly(f) as function

troppoly(f) : Rn → R

w 7→ max
α∈Nn ,
cα 6=0

{αT w}

by evaluating the expression from remark 4.5. As mentioned above, we get indeed

troppoly(f)(w) ∈ R for any w ∈ Rn since we restricted ourselves to rational coefficients

and plug in only real vectors.

We define the tropicalization Trop (f) of f as the subset of Rn such that the maximum in

troppoly(f) is attained in at least two terms:

Trop (f) = {w ∈ Rn | the value troppoly(f)(w) is attained at least twice} .

More explicitly

Trop (f) =

{
w ∈ Rn ∃α,β ∈ Nn : troppoly(f)(w) = αT w = βT w ,

α 6= β, cα 6= 0, cβ 6= 0

}
.

By convention, we define

Trop (0) = Rn.

Given an ideal I ⊆ Q[x], we can define its tropicalization as the intersection of the tropi-

calizations of its elements, just as in traditional algebraic geometry:

Trop (I) =
⋂
f∈I

Trop (f).

4.7 Example

Let f = x + y ∈ Q[x , y]. We get

troppoly(f) = max {x , y}

and therefore

Trop (f) =
{

(w1, w2) ∈ R2 | w1 = w2
}

=
{

(w1, w1) ∈ R2
}

.

5 Tropicalizations using initial forms 23

5. Tropicalizations using initial forms

The definitions in the last section give a good intuition of tropicalizations, but they are

not very good for computational purposes. The approach in this section provides the

foundation to actually compute tropical varieties. We restrict ourselves to polynomial

rings with Q as ground field and we only consider the trivial valuation on Q, which maps

each element to zero.

5.1 Definition

Let w ∈ Rn be a weight vector. We define the (weighted) degree with respect to w (or

w-degree) of a monomial in K [x] as

degw (xα) = wTα

and the (weighted) degree of a non-zero polynomial as usual as the maximum of the

degrees of the monomials:

degw

(∑
α∈Nn

cαxα

)
= max

α∈Nn

{
wTα | cα 6= 0

}
.

We call the sum of the terms with maximal degree the initial form of the polynomial

inw (f) = inw

(∑
α∈Nn

cαxα

)
=

∑
α∈Nn ,

degw (xα)=degw (f)

cαxα.

By convention, we set inw (0) = 0.

5.2 Example

Unlike leading terms with respect to monomial orderings, initial forms may not be mono-

mial if several terms have the same maximal degree. Let f = x + y ∈ Q[x , y] and

w = (1, 1)T , then inw (f) = x + y since both terms have weighted degree 1.

5.3 Definition

A polynomial f ∈ K [x] is called homogeneous with respect to some weight vector w ∈ Rn

(or w-homogeneous) if inw (f) = f , that is all terms of f have the same w-degree t .

An ideal I ⊆ K [x] is called w-homogeneous if there is a set G ⊆ K [x] consisting of

w-homogeneous polynomials with I = 〈G〉.
If we just write homogeneous, we mean homogeneous with respect to the weight vector

(1, 1, ..., 1) ∈ Rn. Similarly, the degree of a polynomial is as usual the weighted degree

with respect to this vector.

One could generalize most of the theory for ideals which are homogeneous with respect

to some strictly positive vector w ∈ Rn
>0. Since the Pluecker ideal Ir ,m, which is our main

5 Tropicalizations using initial forms 24

example, is homogeneous with respect to (1, ..., 1), we restrict ourselves to this less

general definition.

5.4 Definition

Let w ∈ Rn be a weight vector and I ⊆ K [x] a set of polynomials. We define the initial

ideal of I with respect to w to be the ideal

inw (I) = 〈 inw (f) | f ∈ I 〉

generated by all initial forms.

We say that a set of polynomial is monomial-free if it contains no single term, i.e. no

polynomial of the form cαxα with cα 6= 0.

This is equivalent to the condition that the set contains no monomial if the set is closed

under the multiplication with units, since K ∗ is the set of units of K [x]. In particular, an

ideal is monomial-free if it contains no monomial.

5.5 Definition

Let I ⊆ Q[x] be an ideal. Then we define its tropicalization as the set of weight vectors

such that the corresponding initial ideal contains no monomial:

Trop (I) = {w ∈ Rn | inw (I) is monomial-free} .

5.6 Example

If an ideal I ⊆ Q[x] contains the monomial xα, its initial ideal also contains it, since

inw (xα) = xα with respect to any weight vector. In particular, we have Trop (I) = ∅ in this

case.

5.7 Remark

In computer algebra systems like S INGULAR, ideals are usually given via a finite set of

generators but, as for leading ideals, the initial forms of an arbitrary set of generators do

not generate the initial ideal in general.

Note that the initial ideal consists of all linear combinations of initial forms. We will now

show that it is sufficient to check that each initial form is not a monomial.

5.8 Lemma

Let w ∈ Rn and let f , g ∈ K [x] be polynomials where f is w-homogeneous. Then

f ∗ inw (g) = inw (f ∗ g) .

Proof:

Since f is w-homogeneous, there is some t ∈ R such that all terms of f have w-degree

t . Multiplication with f will increase the w-degree of all terms in g by t . The terms of f ∗ g

with maximal w-degree are exactly the maximal terms of g multiplied with f .

5 Tropicalizations using initial forms 25

5.9 Proposition

Let I ⊆ Q[x] be an ideal and w ∈ Rn a weight vector. The initial ideal inw (I) is monomial-

free if and only if {inw (I) | f ∈ I} contains no monomial.

Proof:

The set {inw (I) | f ∈ I} is closed under the multiplication with units, since inw (uf) = u inw (f)

for any unit u and any polynomial f . Furthermore, it is clearly a subset of the initial ideal,

so one direction is trivial.

Assume some term cαxα for cα 6= 0 is contained in inw (I). Since non-zero scalar factors

are units in Q[x], we may assume that the term is normalized, so cα = 1. By the definition

of the initial ideal, we get that xα is a finite linear combination of initial forms, i.e.

xα =
∑
g∈I

cg ∗ inw (g)

for some cg ∈ Q[x]. The left hand-side has w-degree t = wTα, so we may as well

assume that all terms on the right-hand side have this w-degree, since the rest has to

cancel out. The inital forms with respect to w are w-homogeneous by definition, so we

can assume that all non-zero cg are w-homogeneous such that such that cg ∗ inw (g) has

w-degree t . By lemma 5.8, we have

xα =
∑
g∈I

inw
(
cg ∗ g

)
and since I is closed under multiplication with ring elements as ideal, we may further

simplify this to

xα =
∑
g′∈I

inw
(
g′
)

where all non-zero g′ have w-degree t . In this case, the sum commutes with taking the

initial form and we get

xα = inw

∑
g′∈I

g′

 ∈ {inw (f) | f ∈ I} ,

which is an element of the desired form.

5.10 Remark

We could also define initial forms and tropicalizations in terms of Laurent polynomials.

Note that the units in the ring of Laurent polynomials are exactly the terms cαxα with

cα 6= 0, so this would simplify the definition of Trop (I) to

Trop (I) = {w ∈ Rn | inw (I) 6= 〈1〉} .

5 Tropicalizations using initial forms 26

Furthermore, we could take the coefficient into account when defining initial forms. As

mentioned remark 4.5, this corresponds to allowing non-trivial valuations on the ground

field. See [MS15] for a more general definition of initial forms.

The proposition above also allows us to deduce easily that the two definitions for Trop (I)

we have given so far coincide.

5.11 Proposition

Let I ⊆ Q[x] be an ideal. The following two sets are equal:

a) The set Trop (I) as in definition 4.6 using geometry over the tropical semiring.

b) The set Trop (I) as in definition 5.5 using initial ideals.

Proof:

Let w ∈ Rn be some point in the intersection of all Trop (f) for f in I. For all f 6= 0, the

value troppoly(f)(w) is attained in at least two terms of f , i.e.

troppoly(f) = max
α∈Nn

{
wTα | cα 6= 0

}
= wTβ = wTγ

for some β 6= γ ∈ Nn with cβ 6= 0 6= cγ. But this means that cβxβ and cγxγ occur as terms

in the initial form of f , so it is not monomial-free. The initial form of 0 is monomial-free by

definition, so we conclude with proposition 5.9 that w is in the tropicalization Trop (I) as

defined in 5.5. Since all transformations in this proof were equivalences, both directions

hold.

5.12 Example

We continue example 4.7. Let I = 〈 f 〉 = 〈 x + y 〉 ⊆ Q[x , y]. We have already computed

Trop (f) =
{

(w1, w1) ∈ R2
}

and we want to verify Trop (f) = Trop (I).

At any point not in Trop (f), the initial form of f is either x or y , so we get Trop (I) ⊆ Trop (f).

Any polynomial g ∈ I, g 6= 0 can be written as g = g′(x + y) = g′x + g′y for some g′ 6= 0

and we get that in(w1,w1) (g) = in(w1,w1) (g′) x + in(w1,w1) (g′) y for any w1 ∈ R, i.e. the initial

form is not a single term. Since we do not consider inw (0) = 0 to be a single term for any

weight vector, we conclude Trop (I) = Trop (f).

We will now study the relation of initial forms to the classical theory of computer algebra.

Let us recall some definitions.

5.13 Definition

> is called a monomial ordering on K [x] if > is a relation on the monomials of K [x],

which fulfills the following properties:

• For monomials xα and xβ exactly one of the following statements is true:

xα > xβ, xα < xβ, xα = xβ. (In particular: > is total.)

5 Tropicalizations using initial forms 27

• > is transitive: If xα > xβ and xβ > xγ, then xα > xγ.

• > respects multiplication:

If xα > xβ, then for any monomial xγ: xα ∗ xγ = xα+γ > xβ+γ = xβ ∗ xγ.

We call > global if xi > 1 for any i ∈ {1, ..., n}.

Given a monomial ordering > and a polynomial f (respectively an ideal I), we can define

the notions of leading monomial LM>(f) and leading term LT>(f) (respectively leading

ideal L>(I)) as usual.

5.14 Definition

Let > be any monomial ordering on K [x]. Then >h defined by

xα >h xβ ⇔ deg(xα) > deg(xβ)

or (degrees equal and xα > xβ).

is a global monomial ordering on K [x], even if > is not global.

5.15 Definition

Let > be a global monomial ordering on K [x] and I ⊆ K [x] an ideal, then we may look at

the set of weight vectors w ∈ Rn such that the initial ideal and the leading ideal coincide.

We define C>(I) to be its closure in the euclidean topology, i.e.

C>(I) = {w ′ ∈ Rn | inw ′ (I) = L>(I)}.

Analogously, given a weight vector w ∈ Rn, we define

Cw (I) = {w ′ ∈ Rn | inw ′ (I) = inw (I)}.

5.16 Remark

We summarize some properties of the sets defined above. See [Jen07] for proofs of

these statements.

a) The definition only requires the ideals to be equal, it does not enforce inw ′ (f) = L>(f)

respectively inw ′ (f) = inw (f) for all f ∈ I.

b) If > is a global monomial ordering, there is a weight vector w with C>(I) = Cw (I).

c) There are only finitely many different C>(I).

d) For every point w ′ ∈ Rn
≥0 with non-negative components, there is at least one

global monomial ordering > with w ′ ∈ C>(I).

5 Tropicalizations using initial forms 28

5.17 Definition

Let > be a global monomial ordering on K [x] and I ⊆ K [x] an ideal. A reduced Groebner

basis for I is a finite set G ⊆ I such that the following properties hold:

a) L>(G) = L>(I).

b) There are no two elements f , g ∈ G, f 6= g such that LM>(f) divides LM>(g).

c) For all g ∈ G : LC>(g) = 1.

d) For all g ∈ G : No term of g − LT>(g) is in L>(G).

5.18 Theorem

Let I ⊆ Q[x] be an ideal and > a global monomial ordering on Q[x].

a) There is a unique reduced Groebner basis for I with respect to >, denoted by G>.

b) Let f ∈ Q[x]. A standard representation for f with respect to a finite set G is a sum

f =
∑
g∈G

cgg

with cg ∈ Q[x] and LM(f) ≥ LM(cgg). There is a standard representation for every

f ∈ I if and only if G is a Groebner basis for I, i.e. G is a finite subset of I which

fulfills condition a) of definition 5.17.

c) If I is w-homogeneous for some weight vector w ∈ Rn, the reduced Groebner

basis G> consists only of w-homogeneous elements.

Proof:

See [Bö].

5.19 Lemma

Suppose I ⊆ K [x] is a homogeneous ideal, > is a global monomial ordering and >h is

the ordering introduced in definition 5.14. Then the reduced Groebner bases with respect

to those orderings coincide: G> = G>h .

Proof:

By theorem 5.18, the reduced Groebner basis G> consists only of homogeneous ele-

ments. In particular, LM>(g) = LM>h(g) for any g ∈ G>. Therefore, if we use the Buch-

berger algorithm to compute Groebner bases with respect to >h starting from the set

of generators G>, it will terminate without adding any polynomial. See [Jen07, p. 19] for

more details.

5 Tropicalizations using initial forms 29

5.20 Proposition

Let > be a monomial ordering on K [x], I ⊆ K [x] an ideal and w ∈ Rn. Then

w ∈ C>(I)⇔ for all g ∈ G> : LM> (inw (g)) = LM>(g).

Proof:

See [Jen07, p. 32].

5.21 Remark

The sets C>(I) are fundamental for the computation of Trop (I) in general and proposition

5.20 allows us to use Groebner bases to decide membership. Since Groebner bases

are finite sets, the proposition provides a way to check w ∈ C>(J) via finitely many

conditions. The conditions can be expressed as linear inequalities and those can be

solved using tools from optimization. Anders Jensen’s PhD thesis [Jen07] explains in

detail how this works and implementations of his work are available in his own software

Gfan [Gfan] as well as in the computer algebra system SINGULAR [Sing].

6 Tropicalizations using Puiseux series 30

6. Tropicalizations using Puiseux series

In the introduction, we have stated the tropicalization implies a restriction to the torus,

but so far, we have not seen this explicitly. We will now show a purely algebraic approach

to tropicalizations, which explains this in more detail.

6.1 Definition

The (affine) torus T n
K over a field K is the n-dimensional affine space without the coordi-

nate hyperplanes, i.e.

T n
K = {p ∈ An

K | pi 6= 0 for all i ∈ {1, ..., n}} .

We can restrict any algebraic set to T n
K to get the vanishing set in the torus:

VT n
K
(f) = { p ∈ T n

K | f (p) = 0},
VT n

K
(I) =

⋂
f∈I

VT n
K
(f),

where f ∈ Q[x] and I ⊂ Q[x] is an ideal.

Note that this notion of vanishing set is also well-defined if we allow ideals in the ring of

Laurent polynomials. This could be used to simplify some parts of the theory as men-

tioned in remark 5.10.

6.2 Remark

Let f ∈ K [x] be some polynomial. Instead of taking the vanishing set over K - which will

lead to a subset of An
K , we may as well take the vanishing set over any extension field

L ⊇ K to get an algebraic set in An
L.

VAn
L
(f) = {w ∈ An

L | f (w) = 0}.

The same holds true for the definition of vanishing sets for ideals and we may as well

replace the affine space An
L by the torus T n

L .

6.3 Definition

Let K be a field. Then we denote by K{{t}} the field of Puiseux series over K . Its ele-

ments are formal power series of the form

c1ta1 + c2ta2 + ...

where all ci ∈ K and a1 < a2 < ... is a strictly monotonously increasing sequence of

rational numbers such that all ai share a common denominator.

6.4 Remark

K{{t}} is an algebraically closed field if K is algebraically closed and char(K) = 0. In

particular, C{{t}} is algebraically closed. See [MS15, p. 49f] for a proof.

6 Tropicalizations using Puiseux series 31

6.5 Definition

We define a valuation on K{{t}} by sending a Puiseux series to its lowest exponent:

val : K{{t}} → Q ∪ {∞}
c1ta1 + c2ta2 + ... 7→ a1.

To get a complete definition, we set

val(0) =∞

by convention. Note that no Puiseux series but 0 gets mapped to∞.

6.6 Remark

The map val defines a (multiplicative) non-archimedian valuation on K{{t}}. It is surjec-

tive, but not injective. For each f ∈ K{{t}}, the following "splitting" holds:

val(tval(f)) = val(f).

We can use these definitions to give a purely algebraic definition of tropicalizations.

6.7 Definition

Let I ⊆ Q[x] be an ideal. Since C{{t}} is an extension field of Q, we can take the

vanishing set in T n
C{{t}} as explained in remark 6.2. Afterwards, we can apply the valuation

map component-wise to get the set

val(VT n
C{{t}}

(I)) ⊆ Qn.

We define the tropicalization of I as the closure in the euclidean topology on Rn of the

set above reflected across the origin:

Trop (I) = − val(VT n
C{{t}}

(I)) ⊆ Rn.

6.8 Remark

Note that we need to restrict ourselves to the torus T n
C{{t}} if we want val(VT n

C{{t}}
(I)) to be

a subset of Qn, since val(0) = −∞. We will see later that this restriction to the torus also

happens implicitly in the other two definitions of tropicalizations.

6.9 Example

Let f =
∑

n∈N tn ∈ C{{t}}. We have (f ,−f) ∈ VT 2
C{{t}}

(x + y). After applying the valuation

map component-wise, we get that −(0, 0) = (0, 0) = (val(f), val(−f)) ∈ Trop
(
〈 x + y 〉

)
,

which coincides with the results from example 5.12

7 Structural results about tropical varieties 32

7. Structural results about tropical varieties

In this section, we will cite the two most important results about tropical varieties. The

first one called fundamental theorem states that the three ways to define tropicalizations

presented in this part are equivalent.

As mentioned before, tropical varieties can be studied using methods from combina-

torics and polyhedral theory because of their polyhedral structure. Before we can state

the structure theorem which makes this precise, we will need to introduce some basic

notions from polyhedral theory. We will also be in dire need of those when we define the

boundary via projection in the last part of this thesis.

7.1 Theorem (Fundamental theorem)

Let I ⊆ Q[x] be some ideal. The following three sets are equal:

a) The set Trop (I) as in definition 4.6 using geometry over the tropical semiring.

b) The set Trop (I) as in definition 5.5 using initial ideals.

c) The set Trop (I) as in definition 6.7 using a valuation on the field of Puiseux series.

Proof:

We have shown a part of the statement in proposition 5.11. See [MS15, p. 99ff] for a full

proof in a more general setting.

7.2 Definition

We call any Trop (I) for I ⊆ Q[x] homogeneous and prime a tropical variety.

7.3 Remark

Parts of the literature define tropicalizations not in terms of ideals, but in terms of their

vanishing sets. This is justified since Trop (I) = Trop
(√

I
)

, so two ideals defining the

same vanishing set have the same tropicalization, see [JMM08, p. 8]. We will see that

the converse does not hold, i.e. two different ideals may have the same tropicalization.

As mentioned before, taking the tropicalization implies a restriction to the torus. To make

this precise, we will need an algebraic concept which corresponds to this restriction.

7.4 Definition

Let I ⊆ K [x] be an ideal and g ∈ K [x] a polynomial. We define the ideal quotient of I

with respect to g to be the ideal

I : g = {f ∈ K [x] | f g ∈ I}

and the saturation of I with respect to g to be the ideal

I : g∞ = {f ∈ K [x] | ∃n ∈ N : f gn ∈ I} .

We call I to be saturated with respect to g if I = (I : g).

7 Structural results about tropical varieties 33

7.5 Remark

Note that I : g and I : g∞ are ideals of K [x] with I ⊆ (I : g) ⊆ (I : g∞). It makes sense to

call I saturated with respect to g if I = (I : g), since in this case, I = (I : g∞) follows, see

[Mus13, p. 26f] for proofs of these statements. The saturation occurs in a chain of ideal

quotients, which gets stationary because the polynomial ring is noetherian, and there

are algorithms to compute ideal quotients, see [Bö, p. 77ff].

7.6 Proposition

Let I ⊂ Q[x] be an ideal and let I : x∞ be its saturation with respect to the product of all

variables x = x1 ∗ ... ∗ xn. Their tropicalizations coincide:

Trop (I) = Trop (I : x∞) .

Proof:

"⊆"

Assume w ∈ Trop (I), so by definition 5.5, the initial form inw (f) of any polynomial

f ∈ I is not a monomial. For any element g of I : x∞, there is an n ∈ N such that

xng ∈ I. Note that the multiplication with xn increases the w-degree of any term

of f by the constant n ∗ (w1 + ... + wn), so the maximal terms of g are the maximal

terms of f multiplied with xn and we get

inw
(
xng
)

= xn inw (g) .

Since we know that inw (xng) is not a monomial, inw (g) cannot be a monomial and

we conclude w ∈ Trop (I : x∞).

"⊇"

We have I ⊆ (I : x∞), so we can conclude Trop (I) ⊇ Trop (I : x∞), see [JMM08, p. 8].

In the later parts of this thesis, this proposition justifies the restriction to saturated ideals,

since the saturation can be computed and it has the same tropicalization.

Before moving on with the theory, we will study some examples.

7.7 Theorem

The Pluecker ideal Ir ,m for any r , m ∈ N, m ≥ r is saturated with respect to the product

of the variables p =
∏

I∈Λ(r ,m) pI .

7 Structural results about tropical varieties 34

Proof:

We have to show (Ir ,m : p) ⊆ I since the reverse inclusion does always hold. Suppose

f ∈ (I : p), that is pf ∈ Ir ,m. Since Ir ,m is prime, we conclude that either f ∈ Ir ,m or p ∈ Ir ,m.

Let pI be any variable of the Pluecker coordinate ring and let Sr ,m be the Groebner basis

for Ir ,m from theorem 3.26. Since Sr ,m is a Groebner basis with homogeneous elements

of degree two and pI has degree one, we have pI 6∈ Ir ,m. By the primeness of Ir ,m,

p =
∏

I∈Λ(r ,m) pI 6∈ Ir ,m follows and we are done, since we have shown f ∈ I.

7.8 Example

a) Let I = 〈 x + y 〉 ⊆ Q[x , y]. There are various ways to show that I is saturated with

respect to x ∗ y . We may compute the ideal quotient I : (x ∗ y) using algorithms

from computer algebra to verify I = (I : (x ∗ y)).

b) The ideal I = 〈 x2 + y2 − w2, z 〉 ⊆ Q[w , x , y , z] is not saturated with respect to the

product of the variables. In fact, we have

(I : (w ∗ x ∗ y ∗ z)) = (I : (w ∗ x ∗ y ∗ z)∞) = 〈 1 〉

since for any polynomial f ∈ Q[w , x , y , z], we have w ∗ x ∗ y ∗ z ∗ f ∈ 〈 w 〉 ⊆ I.

7.9 Remark

The saturation I : g∞ corresponds to removing the vanishing set of g from the vanishing

set of I. To be more specific,

V (I : g∞) = V (I)\V (g)

where the line denotes the closure in the Zariski topology (since the right hand side

without the closure may not be an algebraic set).

In the special case of g = x = x1 ∗ ... ∗ xn, we have

V (I : x∞) = V (I)\V (x) = V (I)\ {p ∈ An
K | pi = 0 for some i} = V (I) ∩ T n

K .

Therefore, proposition 7.6 implies that we actually loose all irreducible parts of the van-

ishing set completely contained in the complement of the torus by tropicalizing it.

This motivates the goal of this thesis, which is to study how to recover the tropicalization

of the intersection of V (I) with some coordinate hyperplanes. Especially for the second

way to do this, we will need more information about the structure of tropical varieties. To

precisely capture this structure, we introduce polyhedral theory.

7.10 Definition

A polyhedron in Rn is a finite intersection of half-spaces.

If P is a polyhedron, there exist some m ∈ N, a matrix A ∈ Rm xn and b ∈ Rm with

P = P(A, b) = {x ∈ Rn | Ax ≥ b} .

7 Structural results about tropical varieties 35

We call P rational if there are A ∈ Qm xn, b ∈ Qm with P = P(A, b).

7.11 Remark

If P1 and P2 are polyhedra in Rn, their intersection P1 ∩ P2 is also a polyhedron.

Suppose P1 = P(A1, b1) and P2 = P(A2, b2). The points in P1 ∩ P2 are exactly the points

fulfilling the inequalities defining P1 and P2, so

P1 ∩ P2 = P

([
A1

A2

]
,

[
b1

b2

])
.

7.12 Definition

A conical combination of the elements of some set C ⊆ Rn is a finite sum

y =
∑
x∈C

λxx ∈ Rn

where λx ≥ 0 for all x ∈ C and λx = 0 for all but finitely many.

A subset C ⊆ Rn is called a (convex) cone if C is closed under conical combinations, i.e.

any conical combination of elements of C lies in C.

If a subset C ⊆ Rn is a polyhedron of type P(A, 0), we call it polyhedral cone.

Figure 1 shows a schematic representation of a non-polyhedral and a polyhedral cone in

R3. Note that the intersection of the polyhedral cone with any plane parallel to the x-y -

plane is always a polyhedron. The intersection of such a plane with the non-polyhedral

cone may be a circle.

7.13 Lemma

As the name suggests, any polyhedral cone C = P(A, 0) is a cone.

Proof:

Let
∑

x∈C λxx be some conical combination. Since matrix multiplication is linear and

λx ≥ 0, we get

A
∑
x∈C

λxx =
∑
x∈C

λxAx ≥
∑
x∈C

0 = 0,

so
∑

x∈C λxx ∈ P(A, 0) = C.

7.14 Remark

If C1 and C2 are cones, then any conical combination of the elements of C1 ∩ C2 an be

seen as conical combination of elements of C1 ⊇ (C1 ∩ C2). By definition, it lies in C1

and analogously also in C2. Hence, it lies in C1 ∩C2. This shows that the intersections of

cones are cones.

By taking remark 7.11 into account, the intersections of polyhedral cones are polyhedral

cones since b1 = 0 and b2 = 0 in this case.

7 Structural results about tropical varieties 36

Figure 1: Schematic representation of a non-polyhedral and a polyhedral cone in R3,
where the black area indicates the intersection of the cone with a plane parallel
to the x-z-plane.

7.15 Remark

The computer algebra system SINGULAR allows the definition of cones via two methods.

One of them is coneViaInequalities which takes a matrix IE ∈ Zm xn (inequalities)

and a matrix E ∈ Zk xn (equalities) and returns an object representing

C = {x | IEx ≥ 0, Ex = 0}.

We may rewrite the equalities as inequalities

Ex = 0⇔ Ex ≤ 0 and Ex ≥ 0⇔ −Ex ≥ 0 and Ex ≥ 0,

so C is really a polyhedral cone:

C = P

 IE

E

−E

 ,

0

0

0

 .

Vice versa, the procedures inequalities and equations are provided to retrieve the

matrices IE and E as above from a cone.

Note that even if we are given rational matrices and vectors, we may multiply all entries

with their least common multiple to get integer data.

7 Structural results about tropical varieties 37

7.16 Example

Let A =
[
1 −1

]
∈ Z1 x2. We can use it to define the two cones C1 = P(A, 0) and

C2 = P(−A, 0) in R2. Their intersection is the cone

C0 = C1 ∩ C2 = P

([
1 −1

−1 1

]
, 0

)
.

Figure 2 depicts these cones.

Figure 2: The three cones from example 7.16.

We want to study sets of polyhedra such that their elements are compatible in a certain

way. To define whether two polyhedra are compatible, we need to formalize their borders.

7.17 Definition

Let P ⊆ Rn be some polyhedron. Some w ∈ Rn and t ∈ R define a valid inequality for

P if all points of P satisfy wT x ≥ t :

P =
{

x ∈ P | wT x ≥ t
}

.

A subset F ⊆ P is called face of P if it is the equality set of a valid inequality given by

w ∈ Rn, t ∈ R:

F =
{

x ∈ P | wT x = t
}
⊆ P =

{
x ∈ P | wT x ≥ t

}
.

7.18 Remark

The inequalities 0T x ≥ 0 and 0T x ≥ −1 are valid for all polyhedra P. The first one is

always fulfilled with equality and defines the face P. The second one is never fulfilled

with equality and defines the face ∅.

7 Structural results about tropical varieties 38

We call P and ∅ the trivial faces of P. We are mostly interested in the non-trivial faces,

called proper faces.

7.19 Lemma

A face of a polyhedron is a polyhedron.

Proof:

Let P(A, b) ⊆ Rn be some polyhedron and wT x ≥ t be some valid inequality.

The face defined by the inequality is the polyhedron

{
x ∈ P(A, b) | wT x = t

}
=
{

x ∈ P(A, b) | wT x ≥ t ,−wT x ≥ −t
}

= P

 A

w

−w

 ,

 b

t

−t

 .

To study the faces of cones, we will first need an alternative way to define them.

7.20 Remark

Let P(A, b) ⊆ Rn be a polyhedron for some A ∈ Rr xn, b ∈ Rr . We may choose a set of

row-indices I ⊆ {1, ..., r} to define the polyhedron P ′ we get by enforcing equality in the

inequalities given by rows with index in I. By splitting the equalities into two inequalities,

we can write it as

P ′ = P

A{1,...,m}\I

AI

−AI

 ,

b{1,...,m}\I

bI

−bI

where AI is the submatrix we get by only keeping the rows with indices in I. Any polyhe-

dron of this form is a face of P, since it is given by the valid inequality wT x ≥ t with

wT =
∑
i∈I

Ai , t =
∑
i∈I

bi

where Ai denotes the i th row of A.

The inequality is valid since it is the sum of the valid inequalities Aix ≥ bi occurring in

the definition of the original polyhedron P. The points in P ′ certainly fulfill it with equality

since they fulfill each inequality Aix ≥ bi with equality by the definition of P ′. Any point

x ′ ∈ P\P ′ violates at least one equality, i.e. there is some j ∈ I with Ajx ′ > bj . Since we

have Aix ≥ bi for all points in P and for all i , we get

wT x ′ =

(∑
i∈I

Ai

)
x ′ =

(∑
i∈I,i 6=j

Ai

)
x ′ + Ajx ′

x ′∈P
≥
∑
i∈I

bi + Ajx ′
x ′ 6∈P′

>
∑
i∈I

bi + bj =
∑
i∈I

bi = t ,

so x ′ is not in the equality set of wT x ≥ t .

7 Structural results about tropical varieties 39

7.21 Theorem

Any proper face of a polyhedron P(A, b) can be obtained by replacing some of the in-

equalities Ax ≥ b by equalities as in remark 7.20 and any set obtained in this way is a

face of P(A, b).

In particular, any polyhedron has only finitely many faces and the faces of a rational

polyhedron are rational polyhedra.

Proof:

We have already proven a part of the theorem in remark 7.20.

For a full proof, see [Kru, p. 19f].

7.22 Corollary

The intersection of two faces F1, F2 ⊆ P(A, b) is a face of P(A, b).

Proof:

By theorem 7.21, F1 is given by some equality set I1 ⊆ {1, ..., r} and analogously F2 by

I2. Their intersection is defined by the equality set I1 ∪ I2.

7.23 Corollary

Let F1 ⊆ P be a face. The faces of F1 are exactly the faces of P contained in F1.

Proof:

Let F2 be a face of F1. By theorem 7.21, F1 is given by some equality set I1 ⊆ {1, ..., r}
and F2 is given by some equality set I2 ⊆ {1, ..., r} \I1. The union I1 ∪ I2 defines the face

F1 ∩ F2 = F2 of P.

Assume F2 is some face of P contained in F1, then F2 is given by some valid inequality

wT x ≥ t for P, which is also valid for F1 ⊆ P and thus defines a face of F1. Since

F2 ⊆ F1, this face is F2 itself.

7.24 Corollary

Any face of a polyhedral cone is also a polyhedral cone and it can be defined as the

equality set of a valid inequality of the form wT x ≥ 0 for some wT ∈ Rn.

Proof:

By theorem 7.21, any face F of a polyhedron P(A, b) can be defined by choosing some

set I of row indices and then replacing the inequalities in the rows with index in I by

equalities. In the case of a polyhedral cone, b = 0 ∈ Rm, so we get bI = −bI = 0 ∈ R|I|

in the definition of the face as in remark 7.20. If we construct a valid inequality wT x ≥ t

defining this face as the remark, we get

t =
∑
i∈I

bi =
∑
i∈I

0 = 0,

so we have found a defining inequality of the desired form.

7 Structural results about tropical varieties 40

7.25 Definition

A polyhedral complex P in Rn is a finite set of polyhedra in Rn such that the following

two properties hold:

• For any polyhedron in P , all its proper faces are also in P .

• The intersection P ∩ Q of two polyhedra P, Q in P is a face of both.

We call the union of all polyhedra in P its support :

Supp (P) =
⋃

P∈P

P ⊆ Rn.

If all polyhedra contained in a polyhedral complex are polyhedral cones, we call it a

(polyhedral) fan.

7.26 Definition

Let P ⊆ Rn be a polyhedron (respectively P a set of polyhedra). Its lineality space is the

largest affine subspace of Rn contained in P (respectively contained in all P ∈ P), and

its dimension is called lineality dimension.

The dimension of P (respectively P) is the dimension of the smallest affine subspace of

Rn such that P (respectively all P ∈ P) are contained in it. This subspace is called the

affine hull of P (respectively P).

Since the lineality space is contained in the affine hull, we get

lineality dimension ≤ dimension ≤ ambient dimension = dimR(Rn) = n.

7.27 Remark

If C ⊆ Rn is a polyhedral cone, then lineality space as well as affine hull are actually

linear subspaces of Rn.

7.28 Definition

Let P be a polyhedral complex and P ∈ P . P is called maximal if it is not contained in

any other polyhedron in P . A polyhedral complex is called pure if all maximal polyhedra

have the same dimension.

By corollary 7.24, it is sufficient to show that the maximal polyhedra of a polyhedral

complex are cones, to conclude that the polyhedral complex is a fan.

7.29 Example

We continue example 7.16. The cone C1 has three faces: itself, C0 and the empty-set. In

particular, C0 is the only proper face of C1 and it is obtained by replacing the inequality

1 ∗ x1 − 1 ∗ x2 ≥ 0 by an equality. Analogously, C0 is also the only proper face of C2.

Therefore, the set F = {C0, C1, C2} is a fan, a polyhedral complex consisting of cones.

7 Structural results about tropical varieties 41

We have now gathered all prerequisites to describe the structure of tropicalizations in

more detail.

7.30 Lemma

Let I ⊆ Q[x] be a homogeneous ideal and > a global monomial ordering. Then C>(I) is

a polyhedral cone.

Proof:

In [Jen07, p. 28], it is shown that C>(I) is a polyhedral cone if it contains a strictly positive

vector. We will now show h = (1, ..., 1) ∈ C>(I). Proposition 5.20 states that it is sufficient

to show

for all g ∈ G> : LM>(inh (g)) = LM>(g),

and we have stated in theorem 5.18 that G> consists only of homogeneous elements.

For those elements, we have inh (g) = g, so the condition is trivially fulfilled.

7.31 Definition

Let I ⊆ Q[x] be a homogeneous ideal. The Groebner fan GF (I) of I is the set containing

all non-empty faces of the cones C>(I) where > is a global monomial ordering, i.e.

GF (I) = {F | F face of some C>(I),> global monomial ordering, F 6= ∅} .

Note that lemma 7.30 does not hold for non-homogeneous ideals and therefore, the

definition of the Groebner fan for non-homogeneous ideals has to impose a restriction

on the sets C>(I).

7.32 Theorem

Let I ⊆ Q[x] be a homogeneous ideal. As the name suggests, its Groebner fan GF (I) is

a fan.

Proof:

See [Jen07, p. 35].

7.33 Example

We continue the examples 7.16 and 6.9 by bringing them together. Let I = 〈 x + y 〉 ⊆ Q[x , y].

There are only two different Groebner cones for I. Let >x be the lexicographic ordering

with respect to the variable order x > y > 1 respectively >y the ordering for y > x > 1.

We have C1 = C>x (I) and C2 = C>y (I). In fact, the fan F = {C0, C1, C2} depicted in figure

2 is the Groebner fan of I.

7.34 Theorem (Structure theorem part 1)

Let I ⊆ Q[x] be some homogeneous ideal. Then Trop (I) = Supp (F) where F is the

following polyhedral fan:

F = {Cw (I) | w ∈ Rn such that inw (I) is monomial-free } .

7 Structural results about tropical varieties 42

In particular, F is a subfan of GF (I) consisting of the cones of GF (I) such that inw (I) is

monomial-free for the weight vectors in their relative interior.

Proof:

See [Jen07, p. 67].

7.35 Remark

In rest of this thesis, we will identify Trop (I) with the fan above which has Trop (I) as its

support, if I ⊆ Q[x] is homogeneous.

Note that for non-homogeneous ideals, the sets Cw (I) are not convex and in particular

no polyhedral cones. Examples for this case and ways to extend the theory to non-

homogeneous ideals are studied in [Jen07]

The algorithms to compute Trop (I) briefly mentioned in remark 5.21 do naturally re-

turn Trop (I) as a fan and SINGULAR provides an implementation via the procedure

tropicalVariety.

7.36 Example

We continue example 7.33. We already noted that Trop (I) =
{

(w1, w1) ∈ R2
}

. In fact,

Trop (I) is the support of the fan consisting of the single cone C0, which is a subfan of

the Groebner fan computed in the previous example. Note that C0 has itself as linearity

space and as affine hull, so dimension and lineality dimension are 1.

7.37 Theorem (Structure theorem part 2, Theorem of Bieri-Groves)

Let I ⊆ Q[x] be some homogeneous monomial-free prime ideal of dimension d . Then

Trop (I) is a pure polyhedral fan of dimension d .

Proof:

See [MS15, p. 108ff] for the proofs of several theorems in more general settings which

imply the statement above.

7.38 Example

Let f h ∈ Q[w , x , y] be the homogenization of the polynomial f = x2 + y2 − 1 ∈ Q[x , y]

defining the circle with radius 1, i.e.

f h = x2 + y2 − w2 ∈ Q[w , x , y].

The principal ideal I = 〈f h〉 has the tropicalization

Trop (I) = {C0, C1, C2, C3}

where

C1 = P

−1 0 1

0 1 −1

0 −1 1

 , 0

 ,

7 Structural results about tropical varieties 43

C2 = P

 0 −1 1

1 0 −1

−1 0 1

 , 0

 ,

C3 = P

 0 1 −1

1 −1 0

−1 1 0

 , 0

and

C0 = C1 ∩ C2 ∩ C3 = C1 ∩ C2 = C1 ∩ C3 = C2 ∩ C3 = P

1 0 −1

−1 0 1

0 1 −1

0 −1 1

 , 0

 .

Its lineality space is the one-dimensional space with (1, 1, 1)T as basis vector. The weight

vectors in the relative interior of each cone define the same initial ideal, as indicated in

the following table.

cone example point w inw
(
f h
)

inw (I)

C0 (0 , 0 , 0) f h I

C1 (−2 , 1 , 1) x2 + y2 〈 x2 + y2 〉
C2 (1 , −2 , 1) w2 + y2 〈 w2 + y2 〉
C3 (1 , 1 , −2) w2 + x2 〈 w2 + x2 〉

7.39 Example

Let r = 2, m = 4. We have computed in example 3.18 that

I2,4 = 〈 f 〉 = 〈 p{1,4} ∗ p{2,3} − p{1,3} ∗ p{2,4} + p{1,2} ∗ p{3,4} 〉

Similar to the example above, we have Trop (I2,4) = {C0, C1, C2, C3} where C1, C2 and C3

are 5-dimensional cones in R6 and in the relative interior of each of those, the initial form

of f consists of two of the quadric terms of f . Their intersection C0 is a 4-dimensional

cone and the initial form of f with respect to any weight vector in C0 is f itself. Trop (I2,4)

has a 4-dimensional lineality spaces given as the row space of the matrix

E =

1 0 0 0 0 −1

0 1 0 0 −1 0

0 0 −1 0 −1 −1

0 0 0 −1 −1 −1

 .

8 Computing the boundary via elimination 44

Part IV.

Computing the boundary

As we have seen in proposition 7.6, tropicalizing a variety always implies a restriction to

the torus where no component is zero. The goal of the next two sections will be to study

how we can find a fan representing the part of the tropical variety living in the boundary.

8. Computing the boundary via elimination

Firstly, we will study a method purely relying on tropicalizing the vanishing set of a a

modified ideal, which represents the projection onto the part normally excluded by the

restriction to the torus.

8.1 Remark

Given a tropicalization Trop (I) of some homogeneous ideal I ⊆ Q[x], we may as well

view V (I) as its vanishing set in the projective space Pn−1
C .

In projective space, the points which lie in the hyperplane Hi at infinity in the i th-direction

are points 〈v〉 with vi = 0, i.e.

Hi = {v ∈ Pn−1
K | vi = 0}

Therefore, if we want to study the boundary of a tropicalization Trop (I) in the i th direction,

we may intersect V (I) with Hi and tropicalize the ideal corresponding to this algebraic set.

Since Hi = V (〈xi〉) and the intersection of vanishing sets corresponds to the ideal gener-

ated by the union of ideals, we have to look at the ideal 〈 I, xi 〉 we get by adding xi as a

generator tor I. Note that if I was homogeneous, 〈 I, xi 〉 is still homogeneous.

Unfortunately, this approach yields a problem: The set X ∩Hi is completely contained in

the complement of the torus. On the algebraic side, any initial ideal inw
(
〈 I, xi 〉

)
is never

monomial-free since the monomial inw (xi) = xi will surely be contained in it.

To solve this, we can project the i th component away (since it is zero anyway) and tropi-

calize the resulting subset of Pn−2
K .

8.2 Definition

Let πi for some i ∈ {1, ..., n} be the projection which removes the i th component, i.e.

πi : Pn−1
K \{〈ei〉} → Pn−2

K

(p1, ..., pn) 7→ (p1, ..., pi−1, pi+1, ..., pn).

8 Computing the boundary via elimination 45

Note that we need to exclude the point 〈ei〉 generated by the i th unit vector, since its

image (0, 0, ..., 0) is not generating an one-dimensional subspace and thus not contained

in Pn−2
K . For any other point p, the map is well-defined: If q = λp ∈ K n for some λ ∈ K ∗,

we have

πi (q) = (λp1, ..., λpi−1, λpi+1, ..., λpn) = λ(p1, ..., pi−1, pi+1, ..., pn) = λπi (p)

and those two vectors define the same point in Pn−2
K .

To see a concept on the algebraic side which is equivalent to projection, we need to

study elimination theory briefly.

8.3 Definition

Let I ⊆ K [x] be an ideal and i ∈ {1, ..., n}. Let

K [xj | j 6= i] = K [x1, ..., xi−1, xi+1, ..., xn]

be the subring of K [x] not containing the i th variable. We call the ideal

Ie
i = I ∩ K [xj | j 6= i] ⊆ K [xj | j 6= i]

the elimination ideal of I (with respect to i).

8.4 Lemma

For an ideal I ⊆ K [x], its elimination ideal Ie
i is an ideal of K [xj | j 6= i].

Proof:

Since 0 ∈ Ie
i , the elimination ideal is non-empty.

Any expression af + bg with f , g ∈ Ii ⊆ I and a, b ∈ K [xj | j 6= i] ⊆ K [x] can be

seen as expression in K [x]. This shows af + bg ∈ I since I was an ideal. Since all

terms of this expression are in K [xj | j 6= i], we have af + bg ∈ K [xj | j 6= i] and thus

af + bg ∈ K [xj | j 6= i] ∩ I = Ie
i .

8.5 Example

In computer algebra systems like S INGULAR, ideals are given as a finite site of genera-

tors. Let

f = p{1,4}p{2,3} − p{1,3}p{2,4} + p{1,2}p{3,4} ∈ K [p]

be the generator of the principal ideal Ir ,m for r = 2, m = 4 as computed in example 3.18.

Let J = 〈 I2,4, p{1,2} 〉 be the ideal we get by adding the generator p{1,2}. If we intersect

the set of generators with the subring not containing the variable p{1,2}, we would end up

with the empty set. But one can show that p{1,4}p{2,3}−p{1,3}p{2,4} ∈ J∩Q[pI | I 6= {1, 2}],
so the ideal intersected with the subring is not the zero ideal 0 = 〈∅〉.

8 Computing the boundary via elimination 46

As the example above shows, in general, it is not sufficient to intersect a set of genera-

tors, i.e.

〈G〉 ∩ K [xj | j 6= i] 6= 〈G ∩ K [xj | j 6= i] 〉

for some G ⊆ K [x], even when G is a Groebner basis for 〈G〉.

We will now define monomial orderings such that the procedure indicated above works

for their corresponding Groebner bases.

8.6 Definition

A monomial ordering is called elimination order for xi if we can decide subring member-

ship by looking at the leading monomial, i.e.

LM(f) ∈ K [xj | j 6= i]⇒ f ∈ K [xj | j 6= i]

for all f ∈ K [x].

8.7 Definition

Let xi1 > ... > xin > 1 be some ordering of the variables with {i1, ..., in} = {1, ..., n}. The

lexicographic ordering >lp with respect to this ordering is the global monomial ordering

defined by

xα >lp xβ :⇔ αik = βik for k = 1, ..., r − 1 and

αir > βir .

8.8 Lemma

The lexicographic ordering with respect to the variable ordering

xi > x1 > x2 > ... > xi−1 > xi+1 > ... > xn > 1

is an elimination ordering for xi .

Proof:

By the definition of >lp, a monomial xα with αi > 0 is always bigger than any monomial

xβ with βi = 0. Therefore, xi is a factor in the leading monomial if and only if it occurs in

the polynomial at all.

8.9 Theorem

Let G be a Groebner basis for 〈G〉 with respect to an elimination ordering for xi . Then

〈G〉 ∩ K [xj | j 6= i] = 〈G ∩ K [xj | j 6= i] 〉.

Proof:

This is a special case of [Bö, p. 61f]. In fact G ∩ K [xj | j 6= i] is even a Groebner basis

with respect to the induced ordering on the subring.

8 Computing the boundary via elimination 47

8.10 Example

We continue example 8.10. We have seen that the generators of

J = 〈 p{1,2}, p{1,4}p{2,3} − p{1,3}p{2,4} 〉

are not well-behaved with respect to elimination. In fact, this set is not a Groebner basis

with respect to >lp (for the variable ordering which orders the variables pI by the sets I

as in remark 3.4.) One can compute that the set of generators

{
p{1,2}, p{1,4}p{2,3} − p{1,3}p{2,4}

}
is a >lp-Groebner basis for J, and thus

J ∩Q[pI | I 6= {1, 2}] = 〈 p{1,4}p{2,3} − p{1,3}p{2,4} 〉.

8.11 Corollary

If I ⊆ K [x] is a homogeneous ideal, Ie
i is a homogeneous ideal of K [xj | j 6= i].

Proof:

Let G be the reduced Groebner basis for I with respect to the elimination orderings from

lemma 8.8. By theorem 5.18, it consists of homogeneous elements. Its intersection with

the subring is a set of homogeneous polynomials generating Ie
i by theorem 8.9.

8.12 Theorem

Let I ⊆ Q[x] be an ideal and Ie
i its elimination ideal as above. The vanishing set of Ie

i in

Pn−2
C is the closure of the projection of V (I) in the Zariski-topolgy:

πi (V (I)) = V (Ie
i) ⊆ Pn−2

C .

Proof:

See [Bö, p. 64f] for a proof of the affine case in a slightly more general setting. By

swapping the i th variable to the first position and by using the projective Nullstellensatz

together with corollary 8.11, the proof for the projective case follows.

By this theorem, we have found an ideal that corresponds to the projection of the van-

ishing set and can use it to define the boundary via elimination.

8.13 Definition

Let I ⊆ Q[x] be a homogeneous ideal and let i ∈ {1, ..., n}. The boundary via elimination

in the i th direction is the tropicalization

Bounde
i (I) = Trop

(
〈 I, xi 〉ei

)
.

An algorithm to compute it follows immediately by theorem 8.9.

8 Computing the boundary via elimination 48

8.14 Algorithm

Input:

I ⊆ Q[x], an ideal given via homogeneous generators f1, ..., fr ∈ Q[x],

i ∈ {1, ..., n}
Output:

Bounde
i (I)

1 H := {f1, ..., fr}
2 H := H ∪ {xi}
3 G := Groebner basis for 〈H〉 with respect to >lp for the variable ordering

xi > x1 > ... > xi−1 > xi+1 > ... > xn > 1

4 Gi := G ∩ K [xj | j 6= i]

5 E := 〈Gi〉
6 return Trop (E)

Proof of termination:

Starting from a finite set of generators, a Groebner basis with respect to a global order-

ing like >lp can be computed in finitely many steps, for example with the Buchberger

algorithm. As stated in remark 7.35, there are algorithms to compute tropicalizations in

finite time.

Proof of soundness:

We have shown in lemma 8.8 that >lp with respect to the variable ordering in the al-

gorithm is an elimination ordering for xi and we have shown in theorem 8.9 that it is

sufficient to intersect a Groebner basis with respect to such an elimination ordering with

the subring to get a set of generators for the elimination ideal.

8.15 Remark

Computing with elimination orders is very expensive in terms of time consumption, since

they do not respect the total degree of polynomials. Even though this is less of a problem

for homogeneous polynomials, it may still be faster to start by computing a Groebner

basis with respect to >dp and then use the information (like the Hilbert polynomial) ob-

tainable by this Groebner basis to speed up the elimination process.

8 Computing the boundary via elimination 49

8.16 Example

Let I = 〈 x2 + y2 − w2, z 〉 ⊆ Q[w , x , y , z] be the non-saturated ideal from example

7.8. Note that it represents a circle in P3
C embedded in the w-x-y -plane where z = 0.

In particular, it is contained in the complement of the torus and we have computed in

example 7.8 that Trop (I) = Trop (I : x∞) = Trop
(
〈1〉
)

= ∅.
The generators are already a Groebner basis with respect to >lp, so we get that

I ∩Q[w , x , y] = 〈 x2 + y2 − w2 〉.

We conclude that Bounde
4 (I) = Trop

(
〈 x2 + y2 − w2 〉

)
, which we have computed in

example 7.38. We were able to recover the tropicalization of the circle by eliminating the

z-component. Note that Bounde
4
(
〈1〉
)

= ∅, so the boundary depends on the ideal and

two ideals with the same tropicalization may have different boundaries.

8.17 Example

In example 8.10, we have computed that

p{1,4}p{2,3} − p{1,3}p{2,4}

is a generator for I2,4∩Q[pI | I 6= {1, 2}]. We can use this to compute Bounde
1 (I2,4) = {C}

where

C = P

([
−1 1 1 −1 0

1 −1 −1 1 0

]
, 0

)
⊆ R4.

9 Computing the boundary via projection 50

9. Computing the boundary via projection

Instead of altering the ideal, we can also compute the boundary starting from its tropi-

calization. As stated in theorem 7.34 respectively remark 7.35, tropical varieties of ho-

mogeneous ideals are (polyhedral) fans, so we can use the fan structure to define the

boundary. Since we used a negative sign in the definition of tropicalizations, we are ac-

tually interested in cones that remain if we restrict the i th component to "−∞", i.e. the

cones that contain −λei for any λ ∈ R≥0.

9.1 Definition

Let pi for some i ∈ {1, ..., n} be the projection which removes the i th component, i.e.

pi : Rn → Rn−1

(a1, ..., an) 7→ (a0, ..., ai−1, ai+1, ..., an)

Let I ⊆ Q[x] be a homogeneus ideal and let i ∈ {1, ..., n}. The boundary via projection

in the i th-direction is the set

Boundp
i (I) = { pi (C) | − λei ∈ C for all λ ∈ R≥0, C ∈ Trop (I)} .

Here, ei denotes the i th unit vector of Rn.

Note that in contrast to the boundary via elimination, this definition is only dependent

on Trop (I), but it leads to many questions concerning the structure of Boundp
i (I). It is

unclear whether pi (C) is a cone and one can show that the projection of a fan is not a

fan in general, so we have to show that the restriction −e1 ∈ C is sufficient to guarantee

that Boundp
i (I) is a fan. Furthermore, we need algorithms to compute the projection and

to check the condition −λei ∈ C for all λ ∈ R≥0. We will address the issues concerning

the structure soon. Let us see first that the condition is easy to check.

9.2 Lemma

Let C be a polyhedral cone. Then

−ei ∈ C ⇔ −λei ∈ C for all λ ∈ R≥0.

Proof:

"⇒" By lemma 7.13, −λei is contained in C since it is a conical combination of -ei .

"⇐" Choose λ = 1.

We will need a new way to describe cones to see that pi (C) is always a polyhedral cone

easily.

9 Computing the boundary via projection 51

9.3 Definition

Let S ⊆ Rn be a finite set of vectors. The cone generated by S is the cone defined via

cone(S) =

{∑
x∈S

λxx | λx ∈ R≥0 for all x

}
.

9.4 Theorem

Any polyhedral cone is of the form cone(S) for some finite set S ⊆ Rn, and all sets of

type cone(S) are polyhedral cones.

If the cone is rational, S can be chosen as subset of Qn and vice versa, if S ⊆ Qn,

cone(S) is a rational cone.

Proof:

A variant of this statement is called the Theorem of Weyl-Minkowski-Farkas, see

[Kru, p. 23f] for a proof.

9.5 Remark

The computer algebra system SINGULAR allows the definition of cones via two methods,

one of them mentioned in remark 7.15. The other one is coneViaPoints which takes

a matrix HL ∈ Zm xn (half-lines) and a matrix L ∈ Zk xn (lines) and returns an object

representing

C =

{ ∑
x∈rows(HL)

λxx +
∑

y∈rows(L)

µyy | λx ∈ R≥0 ∀x , µy ∈ R ∀y

}

where rows(A) denotes the set of vectors given by the rows of a matrix A.

We may write

C = cone (rows(HL) ∪ rows(L) ∪ − rows(L))

so C is indeed a polyhedral cone.

Vice versa, given any cone, the procedures rays and generatorsOfLinealitySpace

yield matrices containing the half-lines respectively lines which generate the cone as

its rows. Since the lineality space is a linear subspace (see remark 7.27), the rows of

generatorsOfLinealitySpace form a vector space basis for the lineality space.

Note that we can replace any element of S by a positive scalar multiple and still get the

same cone(S), so if we start with a set of rational vectors, we may multiply each vector

with the least common multiple of its entries to get a set of integer vectors representing

the same cone.

We indicated in remark 5.21 that the Groebner bases of an ideal can be used to define

the cones occurring in the tropicalization. Since the degree-conditions give inequalities

with integer coefficients, all cones in the tropicalization are rational cones.

9 Computing the boundary via projection 52

9.6 Example

Let C1 be the cone from example 7.39. It can be defined as

C1 = P

−1 0 1 1 0 −1

0 −1 1 1 −1 0

0 1 −1 −1 1 0

 , 0

 ⊆ R6

Note that −e1 fulfills all the defining inequalities, so by lemma 9.2, we have −λe1 ∈ C1

for any λ ∈ R≥0. We can represent C1 as cone(S) with

S =
{

(−2, 1, 1, 1, 1,−2)T
}
∪ L ∪ −L

where L is a set of generators of the lineality space of C1:

L =
{

(−1,−1,−1, 0, 0, 0)T , (−1,−1, 0,−1, 0, 0)T , (0, 1, 0, 0,−1, 0)T , (1, 0, 0, 0, 0,−1)T
}

.

9.7 Lemma

Let pi be a projection as above and let C be some polyhedral cone. pi (C) is also a

polyhedral cone.

Proof:

By using proposition 9.4, we can write C = cone(S) for some finite set of vectors S.

We have

pi (C) = {pi (y) | y ∈ C} = {pi (y) | y ∈ cone(S)}
=
{

pi
(∑

x∈S λxx
)
| λx ∈ R≥0 ∀x

}
=
{∑

x∈S λxpi (x) | λx ∈ R≥0 ∀x
}

= cone
(
{pi (x) | x ∈ S}

)
= cone (pi (S))

since pi is a homomorphism of vector spaces. Using theorem 9.4 again, cone (pi (S)) is

a polyhedral cone.

This shows that Boundp
i (I) is a set of cones. To see that it is in fact a fan, we will need

to understand the faces of the projection of a cone.

9.8 Example

We continue example 9.6. Using lemma 9.7 we get

p1(C1) = cone(p1(S)) = cone
({

(1, 1, 1, 1,−2)T
}
∪ p1(L) ∪ −p1(L)

)
.

This representation is not minimal, since (1, 1, 1, 1,−2) is contained in the span of the

vectors in p1(L). In fact, p1(C1) is a linear subspace of R5 with p1(L) as basis:

p1(C1) = cone (p1(L) ∪ −p1(L)) .

9 Computing the boundary via projection 53

There are ways to transform this representation to a representation using inequalities.

p1(C1) = P

([
1 −1 −1 1 0

−1 1 1 −1 0

]
, 0

)
⊆ R5

9.9 Proposition

Let C ⊆ Rn be some cone and pi (C) its projection as above.

Any face F ⊆ pi (C) is of the form F = pi (F) for some face F of C.

Proof:

Any face F of pi (C) can be defined as the equality set of some valid inequality wT x ≥ 0

with w ∈ Rn−1 by corollary 7.24. Note that

pi (C) = {pi (x) | x ∈ C} =
{

x ∈ Rn−1 | ∃x ∈ Rn : x = pi (x), x ∈ C
}

.

Define w ∈ Rn by pi (w) = w and wi = 0.

By the construction of the projection pi (C), wT x ≥ 0 is a valid inequality for C since if

x ∈ C violates wT x ≥ 0, then its projection x = pi (x) would violate wT x ≥ 0.

The equality set of wT x ≥ 0 defines a face F of C with pi (F) = F since the points fulfilling

wT x = t are exactly the projections of the points fulfilling wT x = t .

9.10 Remark

There are some faces lost by projection, i.e. even if F is a face of C, pi (F) may not be

a face of pi (C). In fact, the faces of pi (C) correspond to the faces of C given by valid

inequalities wT x ≥ t with wi = 0. For a proof and more information on the projection of

faces, see [BO98, p. 7].

9.11 Corollary

Let C ⊆ Rn be a cone with −ei ∈ C. Let F be a face of pi (C), then we have F = pi (F)

for some face F of C with −ei ∈ F .

Proof:

We have shown the existence of F in proposition 8.14, it remains to show −ei ∈ F . F

can be defined as the equality set of a a valid inequality wT x ≥ 0 with wi = 0. We have

wT (−ei) = w1 ∗ 0 + ... + wi ∗ (−1) + ... + wn ∗ 0 = −wi = 0,

so −ei is in the equality set and since −ei ∈ P, we conclude −ei ∈ F .

This shows that Boundp
i (I) fulfills the first condition of being a fan: any face of a cone

contained in Boundp
i (I) is also contained in it.

9 Computing the boundary via projection 54

9.12 Proposition

Let C, D ⊆ Rn be cones with −ei ∈ C, D. In this case, intersection and projection

commute:

pi (C) ∩ pi (D) = pi (C ∩ D).

Proof:

We may write C = P(A, 0) and D = P(B, 0) and get

C ∩ D = {x ∈ Rn | Ax ≥ 0, Bx ≥ 0}.

Unfolding the definitions of projection and intersection, we get

pi (C ∩ D) = {x ∈ Rn−1 | ∃z ∈ Rn : pi (z) = x , Az ≥ 0, Bz ≥ 0}

and

pi (C) ∩ pi (D) = {x ∈ Rn−1 | ∃x , y ∈ Rn : pi (x) = pi (y) = x , Ax ≥ 0, By ≥ 0}.

By choosing x = y = z, the direction pi (C ∩ D) ⊆ pi (C) ∩ pi (D) is obvious.

For the reverse inclusion, choose some point x ∈ pi (C) ∩ pi (D). By definition, there are

points x , y ∈ Rn with pi (x) = pi (y) = x fulfilling the inequalities. We know that xj = yj

for all j 6= i . If xi = yi , we are done by choosing x = y = z in the definition of pi (C ∩ D).

Assume without loss of generality xi < yi (otherwise interchange the roles of C and D),

so there is some λ ∈ R≥0 with x = y − λei . Since y ∈ D,−ei ∈ D and cones are closed

under conical combinations of their elements, we have x = y −λei ∈ D and thus x fulfills

both sets of inequalities. As desired, x = pi (x) ∈ pi (C ∩ D) follows.

9.13 Proposition

Let C, D ∈ F be cones in a fan with −ei ∈ C, D. The intersection pi (C) ∩ pi (D) is a face

of both pi (C) and pi (D).

Proof:

Note that C ∩ D is a cone with −ei ∈ C ∩ D and C ∩ D is a face of C since F is a fan.

Suppose wT x ≥ 0 is a valid inequality for C such that its equality set is the face C ∩ D.

If wi 6= 0, we have

wT (−ei) = wi ∗ (−1) = −wi 6= 0,

which contradicts eI ∈ C∩D. Therefore, C∩D is defined via a valid inequality with wi = 0

and its projection is a face of C by remark 9.10. By proposition 9.12, we conclude that

pi (C ∩ D) = pi (C) ∩ pi (D) is a face of C.

By interchanging the roles of C and D in the proof, we can show that pi (C) ∩ pi (D) is a

face of pi (D) analogously.

9 Computing the boundary via projection 55

We have gathered all ingredients to show that Boundp
i (I) preserves the structure of

Trop (I) in the sense that it is still a polyhedral fan.

9.14 Theorem

Let I ⊆ Q[x] be a homogeneous ideal. Then Boundp
i (I) is a polyhedral fan.

Proof:

We know by theorem 7.34 that Trop (I) is a fan and we have seen in lemma 9.7 that

the projection of a cone is a cone. We already concluded that Boundp
i (I) is a set of

cones. Corollary 9.11 shows that every non-zero face of a polyhedron in Boundp
i (I) is

also contained in Boundp
i (I) and we may apply proposition 9.13 for P = Trop (I) to see

that the intersection of two cones in Boundp
i (I) is a face of both.

An algorithm to compute Boundp
i (I) follows directly from the definition and lemma 9.2.

9.15 Algorithm

Input:

I ⊆ Q[x], a homogeneous ideal,

i ∈ {1, ..., n}
Output:

Boundp
i (I)

1 F := ∅
2 for C ∈ Trop (I) do

3 if −ei ∈ C then

4 F := F ∪ {pi (C)}
5 end

6 end

7 return F

Proof of termination:

Trop (I) is a polyhedral complex and thus contains only finitely many cones and it can be

computed in finite time.

Proof of soundness:

We have shown in lemma 9.2 that it is sufficient to check −ei ∈ C. Together with defini-

tion 9.1, it is immediately clear that the fan returned by the algorithm is Boundp
i (I).

9.16 Remark

Singular provides the procedure insertCone to insert a cone into a fan, and we can

use this command to implement the algorithm above. By default, the procedure checks

whether the cone is compatible with the fan, i.e. if the intersection of the cone with any

cone in the fan is a face of both, and returns an error if this is not the case. By proposition

9.13, we know that during our algorithm to compute Boundp
i (I), no incompatibilities will

9 Computing the boundary via projection 56

occur and we can use an additional parameter to disable the checks to minimize the

running time. Furthermore, the procedure will not only add the cone to the fan, but it will

also add all of its faces. If we order the cones of Trop (I) by their dimension in ascending

order, we know that if we reach some cone C ∈ Trop (I) during the algorithm, we already

have added all proper faces of p1(C) to F , since they are the projections of faces of C

containing −e1 by corollary 9.11.

Theorem 7.37 stated that Trop (I) is a pure fan if we start with a homogeneous prime

ideal. The final goal of this section is to study whether Boundp
i (I) retains this property.

9.17 Lemma

If C ⊆ Rn is a cone of dimension k with −ei ∈ C, its projection has dimension k − 1.

Proof:

By the definition of the projection,

dim(pi (C)) ∈ {k , k − 1}

is clear. The question is whether the case dim(pi (C)) = k can occur. Let U be the smallest

affine space containing C, and note that U is actually a linear space and its projection

pi (U) is a linear space containing pi (C). Since −ei ∈ U and vector spaces are closed

under scalar multiplication, λei ∈ U for all λ ∈ R. We loose this whole line by projecting,

so we have dimR(pi (U)) < dimR(U) and thus dim(pi (C)) ≤ k − 1.

9.18 Theorem

Let I ⊆ Q[x] be a homogeneous prime ideal, then Boundp
i (I) is a pure fan.

Proof:

By theorem 9.14, only the pureness has to be shown.

Let C be a maximal cone of Boundp
i (I), i.e. C = pi (C) for some cone C ∈ Trop (I).

We can assume that C is maximal without loss of generality. If C is not maximal, then

there is some D ∈ Trop (I) with C ⊆ D, −ei ∈ D and C = pi (C) ⊆ pi (D). By the choice of

C as maximal cone, equality has to hold for the projections, so we may replace C by D.

The structure theorem 7.37 states that Trop (I) is a pure fan if I is monomial-free, i.e.

its maximal cones have the same dimension k for some k ∈ N. By lemma 9.17, we

conclude dim(C) = dim(C) − 1 = k − 1 and we are done since C was an arbitrary cone

and k is independent of C. If I is not monomial-free, we have Trop (I) = Boundp
i (I) = ∅,

which is also a pure fan.

9.19 Example

We continue example 9.8. Note that C1 is the only cone of Trop (I2,4) containing −e1, so

by definition,

Boundp
1 (I2,4) = {p1(C1)} .

9 Computing the boundary via projection 57

9.20 Example

Let I = 〈 x2 + y2 − w2, z 〉 ⊆ Q[w , x , y , z] be the non-saturated ideal from example 7.8.

We have seen that Trop (I) = Trop (I : x∞) = Trop
(
〈1〉
)

= ∅.
It is obvious that our algorithm to compute the boundary via projection can not recover

the tropicalization of the circle and we have Boundp
4 (I) = ∅.

10 The correspondence between elimination and projection 58

10. The correspondence between elimination and

projection

The next question is how the two methods to compute the boundary are related. We

have seen in section 8, that in classical algebraic geometry, there is some correspon-

dence between elimination on the algebraic and projection on the geometric side, and

we have used this correspondence to justify our definition of Bounde
i (Trop (I)). We will

show that there is a similar correspondence in tropical geometry.

When comparing the examples 8.17 and 9.19 respectively 8.16 and 9.20, one can see

that the two methods did not always lead to the same result, but at least the support of

Boundp
i (I) was always contained in the support of Bounde

i (I). The next theorem states

that this inclusion holds in general.

10.1 Theorem

Let I ⊆ Q[x] be a homogeneous ideal. Then the following inclusion holds:

Supp
(
Boundp

i (I)
)
⊆ Supp

(
Bounde

i (I)
)

.

Proof:

Assume w is in the support of Boundp
i (I). By definition, w is in some pi (C) for C ∈ Trop (I)

with −ei ∈ C. This means that there is some w ∈ C with pi (w) = w . Since −ei ∈ C and

C is a cone, we know that the conical combination w − λei is also contained in C for any

λ ∈ R≥0.

Our goal is to show w ∈ Supp (Bounde
i (I)) and by proposition 5.9, it is sufficient to show

that inw (f) is not a monomial for any 0 6= f ∈ E , where E = 〈 I, xi 〉 ∩Q[xj | j 6= i].

If we show that for any f ∈ E , there is some f ′ ∈ I and λ ∈ R≥0 such that

inw (f) = inw−λei

(
f ′
)

,

we are done, since we know that the right hand side is never a monomial by the assump-

tion w − λei ∈ C ⊆ Supp (Trop (I)).

Any polynomial 0 6= f ∈ E can be written as f = g + d ∗ xi for some g ∈ I, d ∈ Q[x].

1. Case d = 0: Since f ∈ Q[x] does not contain a term in which the i th variable occurs,

we have

inw (f) = inw (g + d ∗ xi) = inw (g) = inw (g)

and we are done by choosing f ′ = g ∈ I and λ = 0.

10 The correspondence between elimination and projection 59

2. Case d 6= 0: Since f ∈ Q[xj | j 6= i], but d ∗ xi ∈ 〈xi〉, we may write

g = f − d ∗ xi .

Given any polynomial
∑

α∈Nn cαxα, we may choose λ large enough such that

(w − λei)Tα is not maximal for any term cαxα with αi > 0 unless all terms with

cα 6= 0 have xi as a factor.

Since we assumed f 6= 0, we know that terms without xi as factor do exist in g. We

may choose λ large enough such that

inw (f) = inw−λei (f) = inw−λei (g) ,

so the terms coming from the (d ∗ xi)-part do not occur in the initial form of g. We

are done by using this λ and choosing f ′ = g ∈ I.

We have seen that the reverse inclusion does not hold, but as shown in example 7.8,

the ideal used in example 9.20 is not saturated. If we replace it by its saturation with

respect to the product of the variables x , we get Bounde
i
(
〈1〉
)

= Boundp
i
(
〈1〉
)

= ∅ for

any i ∈ {1, ..., 4}.

Therefore, our final goal is to show that the two ways yield the same result if we start with

a homogeneous ideal which is saturated with respect to x . We present a proof developed

by Thomas Markwig.

To simplify the notation in the following proofs, we will assume that i = 1, i.e. we compute

the boundary in the first direction. The following lemma justifies that this is valid and the

results also hold for any other i with analogous proofs by swapping the variables.

10.2 Lemma

If an ideal I ⊆ Q[x] is saturated with respect to the product of the variables x , then it is

saturated with respect to any variable xi (for some i ∈ {1, ..., n}).

Proof:

We know I ⊆ (I : xi) by definition and I = (I : x) by the assumption. We are done if we

show (I : xi) ⊆ (I : x), since then I ⊆ (I : xi) ⊆ (I : x) = I follows and equality has to hold

in every step. Assume f ∈ (I : xi), i.e. xf ∈ I. The ideal I is closed under the multiplication

with ring elements, so ∏
j∈{1,...,n},

j 6=i

xj

 (xi f) = xf ∈ I,

and we are done since this is the defining condition for f ∈ (I : x).

10 The correspondence between elimination and projection 60

10.3 Notation

In the following, I ⊆ Q[x] will always be a homogeneous ideal which is saturated with

respect to x (and therefore also saturated with respect to x1).

We write xs = x2 ∗ ... ∗ xn and Q[xs] for the subring

Q[xs] = Q[x2, ..., xn] = Q[xj | j 6= 1].

The ideal

E = 〈 I, x1 〉e1 = 〈 I, x1 〉 ∩Q[xs] ⊆ Q[xs]

will be the elimination ideal used to define Bounde
1 (Trop (I)).

Given a polynomial

g =
∑
α∈Nn

cαxα ∈ Q[x]

we define g(0, xs) as the polynomial in Q[xs] we get by letting all terms containing x1

vanish, i.e.

g(0, xs) =
∑

α∈Nn,α1=0

cαxα ∈ Q[xs].

10.4 Remark

Any monomial ordering > on Q[x] induces a monomial ordering on Q[xs] which we will

also call >. If > is global, the induced ordering is also global.

10.5 Definition

Given a polyhedral cone C ⊆ Rn, we define its interior Int (C) as the interior of C as set

in the euclidean topology on Rn. The relative interior relInt (C) is the interior of C in the

induced topology on its affine hull, the smallest linear subspace of Rn which contains C.

10.6 Remark

If C has dimension n in the definition above, interior and relative interior coincide.

Let C = P(A, 0) be given via irredundant inequalities, i.e. we can not remove rows of A

without changing the polyhedron. Then the interior is the set of points fulfilling Ax > 0.

Let A′ be the submatrix of A we get by deleting all inequalities which are fulfilled with

equality for all points of C. The relative interior is the set of points in C fulfilling A′x > 0.

10.7 Proposition

Let > be a global monomial ordering such that −e1 ∈ C>(I) and G = G> the corre-

sponding reduced Groebner basis for I. Suppose g ∈ G is a polynomial in the Groebner

basis.

a) x1 does not divide LM>(g).

b) For all w ∈ C>(I), λ ∈ R>0 : x1 does not divide any term of inw−λe1 (g)

10 The correspondence between elimination and projection 61

c) For all w ∈ Int (C>(I)) : x1 does not divide any term of inw (g)

Proof:

a) Suppose LM>(g) = xα with α1 > 0 and let w ∈ C>(I).

By proposition 5.20, we know that LM>(inw−λe1 (g)) = LM>(g) for any λ ∈ R≥0

since w−λe1 is a conical combination of vectors in the cone and cones are closed

under those.

This implies that the (w − λe1)-degree of g and its leading monomial coincide and

no term in g has a larger (w − λe1)-degree than (w − λe1)Tα for any λ ∈ R≥0.

If a monomial of the form xβ with β1 = 0 occurs in g, then we can use this obser-

vation to conclude

degw (xβ) = degw−λe1
(xβ) ≤ degw−λe1

(xα) = degw (xα)− λα0

for any λ ∈ R≥0. This yields a contradiction, since we can choose λ large enough

such that the inequality does not hold.

Therefore, all terms of g are divisible by x1 and we can write g = x1 ∗ f for some

f ∈ Q[x]. Since I is saturated with respect to x1, we conclude f ∈ I. The lead-

ing monomial of f is xα

x1
and since G is a Groebner basis, we can find a g′ ∈ G

such that LM>(g′) divides it. This implies that LM>(g′) divides LM>(g), which is a

contradiction to the definition of a reduced Groebner basis.

b) Suppose there is a monomial xβ in inw−λe1 (g) divisible by x1 and let xα = LT>(g).

With the same argument as in the proof of part a), we get

degw (xβ) ≤ degw (xα) = degw−λe1
(xα).

Furthermore, the definition of the weighted degree and the assumption β1 > 0

yield

degw−λe1
(xβ) = degw (xβ)− λe1 < degw (xβ).

The monomials xα and xβ occur both in inw−λe1 (g), so their (w − λe1)-degrees

coincide and we derive the contradiction

degw (xβ) ≤ degw−λe1
(xα) = degw−λe1

(xβ) < degw (xβ).

c) If w ∈ Int (C>(I)), there is a small ball Bε(w) ⊆ C>(I) for some ε ∈ R>0. In partic-

ular, we have w + εe1 ∈ C>(w). We may apply part b) for the vector w + εe1 and

λ = ε to conclude the desired statement.

10 The correspondence between elimination and projection 62

Note that part a) implies that g(0, xs) 6= 0 for any g ∈ G>.

10.8 Proposition

Let > be a global monomial ordering with −e1 ∈ C>(I) and let G = G> be the cor-

responding reduced Groebner basis for I. Then G′ is the reduced Groebner basis for

〈 I, x1 〉, where

G′ = {g(0, xs) | g ∈ G} ∪ {x1} .

Proof:

Note that g − g(0, xs) ∈ 〈x1〉, so all terms occurring in the expression

g(0, xs) = g − x1
g − g(0, xs)

x1

are in Q[x] and we conclude g(0, xs) ∈ 〈 I, x1 〉. Since x1 ∈ 〈 I, x1 〉, we have shown that

G′ is a subset of 〈 I, x1 〉.
Out next goal is to show that the leading ideal of the G′ is the leading ideal of 〈 I, x1 〉,
where only the inclusion L>(G′) ⊇ L>(〈 I, x1 〉) is non-trivial. Let h ∈ 〈 I, x1 〉 be an

arbitrary element. We may write it as h = f + dx1 for some f ∈ I, d ∈ Q[x].

If x1 divides LM>(h), we know that LM>(h) ∈ L>(G′) since x1 ∈ G′, so we can assume

x1 - LM>(h) in the following.

G was a Groebner basis for I, so by theorem 5.18, there is a representation

f =
∑
g∈G

cgg

with cg ∈ Q[x] and for the finitely many cg with cg 6= 0, LM>(f) ≥ LM>(cgg) holds. We

can decompose this representation into

f =
∑
g∈G,
x1-cg

cgg +
∑
g∈G,
x1|cg

cgg =
∑
g∈G,
x1-cg

cgg + x1

∑
g∈G,
x1|cg

cg

x1
g

and plug this in to get

f =
∑
g∈G,
x1-cg

cgg + x1

∑
g∈G,
x1|cg

cg

x1
+ d ∗ x1 =

∑
g∈G,
x1-cg

cgg + x1

∑
g∈G,
x1|cg

cg

x1
+ d

 .

By replacing d with
∑

g∈G, x1|cg

cg

x1
+ d and f by

∑
g∈G, x1-cg

cgg, we can assume that we

have a representation

h = f + x1d =
∑
g∈G

cgg + x1d

such that all non-zero cg are not divisible by x1. By proposition 10.7, we know that LM>(g)

is not divisible by x1 and we can conclude that x1 does not divide LM>(f) = LM>

(∑
g∈G cgg

)
.

10 The correspondence between elimination and projection 63

Since x1 does neither divide LM>(h) nor LM>(f), but it divides LM>(x1 ∗ d), we conclude

LM>(h) = LM>(f) = LM>

∑
g∈G

cgg

 ∈ 〈 LM>(g) | g ∈ G 〉.

By proposition 10.7, we know that x1 does not divide LM>(g) and in particular, their

leading monomials coincide: LM>(g) = LM> (g(0, xs)). We can use this to obtain

LM>(h) ∈ 〈 LM>(g) | g ∈ G 〉 = 〈 LM>(g(0, xs)) | g ∈ G 〉 ⊆ L>(G′).

To see that G′ is a reduced Groebner basis, observe that all terms occurring in g(0, xs)

also occur in g and furthermore, no term of g(0, xs) is divisible by x1, so the conditions c)

and d) in definition 5.17 are fulfilled. We already stated LT>(g(0, xs)) = LT>(g) = LM>(g),

so the g(0, xs) are normalized and we are done.

10.9 Corollary

Let > be a global monomial ordering with −e1 ∈ C>(I) and let G = G> be the corre-

sponding reduced Groebner basis for I. Then G′′ is the reduced Groebner basis for E

with respect to the induced ordering, where

G′′ = {g(0, xs) | g ∈ G} .

Proof:

We have seen in the proof of proposition 10.8 that g(0, xs) ∈ 〈 I, x1 〉, and by definition

we have g(0, xs) ∈ Q[xs]. We conclude g(0, xs) ∈ E and G′′ ⊆ E .

Any polynomial h ∈ E is also a polynomial in 〈 I, x1 〉 and has a standard representation

h =
∑
g∈G

cgg(0, xs) + cx1x1

for some cg, cx1 ∈ Q[x] since G′ is a Groebner basis for 〈 I, x1 〉 proposition 10.8. Since

both the left hand side h and the Groebner basis elements of type g(0, xs) are contained

in the subring Q[xs], we can assume cx1 = 0 and cg ∈ Q[xs]. By this, we get a standard

representation h =
∑

g∈G cgg(0, xs) for h in Q[xs] with respect to G′′. By theorem 5.18,

this is an equivalent condition for G′′ being a Groebner basis, i.e. L>(G′′) = L>(E). By

definition, G′′ ⊆ G′, and G′ was minimal, reduced and normalized, so G′′ retains these

properties. We have shown that G′′ is a reduced Groebner basis.

10 The correspondence between elimination and projection 64

10.10 Proposition

Let > be a monomial ordering with −e1 ∈ C>(I). Then the projection of the Groebner

cone C>(I) is the Groebner cone C>(E) for the induced ordering:

C>(E) = p1(C>(I)) = {w ∈ Rn−1 | ∃w1 ∈ R : (w1, w) ∈ C>(I)}.

Proof:

Note that the second equality holds by the definition of p1, so only the first equality

remains to show.

Let G = G> be the reduced Groebner basis for I, we have shown in corollary 10.9 that

G′′ = {g(0, xs) | g ∈ G} is the reduced Groebner basis for E .

"C>(E) ⊇ p1(C>(I))"

Assume w = (w1, w) ∈ C>(I) and let g ∈ G be an arbitrary element of the Groebner

basis. By the propositions 10.7 and 5.20, we have

LM>(g(0, xs)) = LM>(g) = LM>(inw (g)).

This means LM>(g) occurs in inw (g), but since LM>(g) is also the leading mono-

mial g(0, xs) it also occurs in inw (g(0, xs)). Since g(0, xs) ∈ Q[xs], we can write

inw (g(0, xs)) = inw (g(0, xs))

and we conclude

LM>(g(0, xs)) = LM>(inw (g(0, xs))).

The polynomial g was an arbitrary element of G and as stated above, g(0, xs) ∈ G′′

is an element of the reduced Groebner basis for E and all elements of G′′ are of

this form. We can apply proposition 5.20 to get w ∈ C>(E).

"C>(E) ⊆ p1(C>(I))"

Assume w ∈ C>(E). Then by proposition 5.20

LM(g(0, xs)) = LM>(inw (g(0, xs)))

for any g(0, xs) ∈ G′′ since G′′ is a reduced Groebner basis for E . We can consider

g(0, xs) as a polynomial in Q[x] and write

LM>(inw (g(0, xs))) = LM>(inw (g(0, xs)))

10 The correspondence between elimination and projection 65

for w = (w1, w) with w1 ∈ R arbitrary. Similar to our argument in the proof of

theorem 10.1, we can choose λg large enough such that for wg = (−λg, w), we

have

inwg (g(0, xs)) = inwg (g)

and thus

LM>(inwg (g(0, xs))) = LM>(inwg (g)).

This property continues to hold if we increase λ even further than necessary, since

the left hand side does not contain any term divisible by x1. Standard bases are

finite sets, so we can choose λ = max {λg | g ∈ G} and w = (−λ, w) to get a vector

with

LM>(inwg (g(0, xs))) = LM>(inwg (g))

for all g ∈ G. Since LM>(inwg (g(0, xs))) = LM>(inw (g(0, xs))) = LM>(g) by propo-

sition 10.7, we conclude

LM>(g) = LM>(inwg (g))

for all g ∈ G. This shows w ∈ C>(I) by proposition 5.20.

10.11 Lemma

Let J ⊆ K [x] be a homogeneous ideal, > a global monomial ordering and w ∈ C>(J)

a weight vector. Then the set {inw (g) | g ∈ G>} is a reduced Groebner basis for inw (J)

with respect to >.

Proof:

See [Jen07, p. 33].

10.12 Lemma

The relative interior of a cone in the Groebner fan is an equivalence class with respect to

the equality of initial ideals. More precisely, let C be a cone in the Groebner fan of I and

let v , w ∈ relInt (C). Then inv (I) = inw (I).

Proof:

See [Jen07, p. 34].

10.13 Proposition

Let C ∈ GF (I) be a cone in the Groebner fan of I with −e1 ∈ C. For any weight vector

w = (w1, w) ∈ relInt (C):

inw (I) is monomial-free⇔ inw (E) is monomial-free,

where E is the elimination ideal defined in 10.3.

10 The correspondence between elimination and projection 66

Proof:

First note that it is sufficient to show the statement for "small" w1: If w ∈ relInt (C), then

w − λe1 ∈ relInt (C) for any λ ∈ R≥0 and by lemma 10.12, we have inw (I) = inw−λe1 (I).

Furthermore if C is a cone in the Groebner fan and −e1 ∈ C, there is a global monomial

ordering with C ⊆ C>(I) and −e1 ∈ C>(I). Let G be the reduced Groebner basis with

respect to this ordering.

"⇒"

Suppose the monomial xα is contained in inw (E). Since G′′ as in corollary 10.9 is

a Groebner basis for E , we may use lemma 10.11 to derive a standard represen-

tation

xα =
∑
g∈G

cg inw (g(0, xs))

for some cg ∈ Q[xs]. As in the proof of proposition 10.10, we can choose λ large

enough such that for w ′ = (−λ, w) = w − (λ + w1)e1 we have

inw (g(0, xs)) = inw ′ (g)

for all g ∈ G. This yields the contradiction

xα =
∑
g∈G

cg inw (g(0, xs)) =
∑
g∈G

cg inw ′ (g) ∈ inw ′ (I) .

"⇐"

Suppose the monomial xα is contained in inw (I). Again, lemma 10.11 yields a

standard representation

xα =
∑
g∈G

cg inw (g)

for some cg ∈ Q[x]. Since the left-hand side is w-homogeneous and the inw (g)

are w-homogeneous by definition, we can assume that the cg are w-homogeneous

such that

degw (cg) = degw (xα)− degw (inw (g)) .

We distinguish two cases.

1. Case α1 = 0 :

Since the left hand side is not divisible by x1, all terms of the right hand side

in which x1 occurs have to cancel out and we may write

xα =
∑
g∈G

cg(0, xs) inw (g(0, xs)) =
∑
g∈G

cg(0, xs) inw (g(0, xs))

where the last equality holds since w1 does not occur as factor in any term

of g(0, xs). We have shown that the set of all g(0, xs) is a Groebner basis for

10 The correspondence between elimination and projection 67

E . In particular, the right hand side is a expression in inw (E) and we have

derived a contradiction to the assumption that inw (E) is monomial-free.

2. Case α1 6= 0 :

We have seen in proposition 10.7 that x1 does not divide any term of inw (g) if

we assume w1 small enough. We can view the cg as polynomials in (Q[xs])[x1],

i.e.

cg =

dege1
(cg)∑

i=0

cg,ix i
1

where cg,i ∈ Q[xs]. As in the first case, all terms with e1-degree not equal to

α1 have to cancel out, so we may write

xα =
∑
g∈G

cg,α1x
α1 inw (g) .

By just removing the factor xα1 in each term, we get a new monomial in inw (I)

xβ =
∑
g∈G

cg,α1 inw (g)

with β0 = 0. We have already shown in the first case that this yields a contra-

diction to the assumption.

10.14 Theorem

The Groebner fan of the elimination ideal consists exactly of the projections of the cones

in the Groebner fan of I containing −e1:

GF (E) = {p1(C) | C ∈ GF (I),−e1 ∈ C}.

Proof:

Suppose C is in the Groebner fan of E . By the definition of the Groebner fan, there is

a global monomial ordering > on Q[xs] such that C is a face of C>(E). We define the

monomial ordering >′ on Q[x] by

xα >′ xβ ⇔ −α1 > −β1

or
(
α1 = β1 and xα

x
α1
1

> xβ

x
α1
1

)
.

This monomial ordering is not global since x1 < 1, but we may construct the global

monomial ordering >′h as in definition 5.14. The set C>′h
(I) is contained in the Groebner

fan of I, let us check whether e1 ∈ C>′h
(I).

By theorem 5.18, the reduced Groebner basis G>′h
is homogeneous, so taking the lead-

ing monomial with respect to >′h and with respect to >′ yields the same result. Fur-

thermore, by the definition of >′, the leading monomial is always among the terms with

10 The correspondence between elimination and projection 68

minimal e1-degree. Therefore, we have LM>′h
(in−e1 (g)) = LM>′h

(g) for any g ∈ G>′h
and

we can conclude by proposition 5.20 that −e1 ∈ C>′h
(I). We have already shown in

proposition 10.10 that in this case, the projection of the cone is the Groebner cone of E

with respect to the induced order. Since x1 does not occur in polynomials in Q[xs], we

see that the ordering induced by >′h on Q[xs] is >h.

Using proposition 5.20 again, it is easy to show C>(E) = C>h(E) since again the Groeb-

ner bases G> and G>h coincide by lemma 5.19 and they contain only homogeneous

polynomials, so taking the leading monomial with respect to > and >h yields the same

result.

We summarize what we have shown: any maximal cone C>(I) containing −e1 gets pro-

jected to a cone of GF (E) by proposition 10.10 and we have just seen that any cone

in GF (E) is contained in a maximal cone C>(E) which can be obtained by projecting a

cone C>(I). To finish the proof, we can use the theory developed in last section to see

that even the non-maximal cones of GF (E) are projections of cones in GF (I) containing

−e1 by corollary 9.11.

10.15 Corollary

The tropicalization of the elimination ideal consists exactly of the projections of the cones

in the tropicalization of I containing −e1:

Trop (E) = {p1(C) | C ∈ Trop (I) ,−e1 ∈ C}.

In particular,

Supp (Trop (E)) =
⋃

C∈Trop(I),
−e1∈C

p1(C).

Proof:

We have seen in theorem 7.34 that Trop (E) consists of the cones of GF (E) such that for

all weight vectors w in their relative interior, inw (E) is monomial-free, so we can apply

theorem 10.14 together with proposition 10.10.

To conclude this thesis, we drop the special notation introduced in this chapter and state

the theorem for the general case.

10.16 Theorem

Let I ⊆ Q[x] be a homogeneous ideal which is saturated with respect to x = x1 ∗ ... ∗ xn

and let i ∈ {1, ..., n}. The two ways to compute the boundary lead to the same result:

Boundp
i (I) = Bounde

i (I) .

Proof:

This follows directly from theorem 10.15, if we swap the first and the i th variable.

10 The correspondence between elimination and projection 69

10.17 Corollary

Let r , m ∈ N with m ≥ r and let i ∈
{

1, ...,
(m

r

)}
. The two ways to compute the boundary

applied to the Pluecker ideal Ir ,m lead to the same result:

Boundp
i (Ir ,m) = Bounde

i (Ir ,m) .

Proof:

By theorem 7.7, the Pluecker ideal is saturated with respect to the product of variables,

so this follows from theorem 10.16.

A grassmanian.lib 70

Part V.

Appendix: SINGULAR code

The appendix contains code for the computer algebra system SINGULAR [Sing] providing

implementations for the algorithms mentioned in the theoretical part of the thesis.

Note that at the moment, SINGULAR does not support polyhedral objects by default.

The compilation of the binary library gfanlib.so [gfanlib] has to be explicitly enabled

when compiling SINGULAR . This has to be done, or any of the following code (except

grassmanian.lib) will not work.

A. grassmanian.lib

This section contains the code implementing the algorithms studied in the second part

of this thesis to compute the Pluecker ideal defining the Grassmanian.

A.1 Library overview

Library: grassmanian.lib

Purpose: Compute the Pluecker ideal defining the Grassmanian

Category: Algebraic geometry

Author: Sebastian Muskalla (muskalla@mathematik.uni-kl.de)

References: [Stu93], this thesis

Procedures:

subsets(m, r) Subsets of {1, ..., m} of size r

sublists(L, r) Sublists of L of size r

plueckerCoordRing(r,m) Pluecker coordinate ring K [p]

plueckerRelation(I, J) Pluecker relation PI,J

grassmanianGenerators(r, m) Generators for the Pluecker ideal Ir ,m

vanDerWaerdenSyzygy(a, b, c) Van Der Waerden syzygy [[aḃc]]

grassmanianGB(r, m) >dp-Groeber basis for the Pluecker ideal

A grassmanian.lib 71

A.2 Exported procedures

The following procedures are available after the library has been loaded,

• subsets

Usage: subsets(r, m, [upto]);

r , m natural numbers, m ≥ r , upto 0 (default) or 1

Purpose: Compute all subsets of {1, ..., m} of size = r (or leqr iff upto was 1)

Return: Subsets as list of lists

Note: The subsets are ordered with respect to the order from remark 3.4

Example:

1 > example subsets;
2 // proc subsets from lib grassmanian.lib
3 EXAMPLE:
4 list eq2 = subsets (2, 3);
5 print (eq2);
6 [1]:
7 [1]:
8 1
9 [2]:

10 2
11 [2]:
12 [1]:
13 1
14 [2]:
15 3
16 [3]:
17 [1]:
18 2
19 [2]:
20 3
21 list leq2 = subsets (2, 3, 1);
22 print (leq2);
23 [1]:
24 empty list
25 [2]:
26 [1]:
27 1
28 [3]:
29 [1]:
30 2
31 [4]:
32 [1]:
33 3
34 [5]:
35 [1]:
36 1
37 [2]:
38 2
39 [6]:
40 [1]:
41 1
42 [2]:
43 3
44 [7]:
45 [1]:
46 2
47 [2]:
48 3

A grassmanian.lib 72

• sublists

Usage: sublists(r, L);

r natural number, L list such that |L| ≥ r

Purpose: Compute all sublists of L of size r

Return: List of sublists

Example:

1 > example sublists;
2 // proc sublists from lib grassmanian.lib
3 EXAMPLE:
4 list testparam = 1,3,7;
5 list ls = sublists (2, testparam);
6 print (ls);
7 [1]:
8 [1]:
9 1

10 [2]:
11 3
12 [2]:
13 [1]:
14 1
15 [2]:
16 7
17 [3]:
18 [1]:
19 3
20 [2]:
21 7

• plueckerCoordRing

Usage: plueckerCoordRing(r, m);

r , m natural numbers with m ≥ r

Purpose: Computes the Pluecker coordinate ring K [p] (with >dp / the tableaux order

as monomial ordering)

Return: The Pluecker coordinate ring for the given r , m

Example:

1 > example plueckerCoordRing ;
2 // proc plueckerCoordRing from lib grassmanian.lib
3 EXAMPLE:
4 def Kp = plueckerCoordRing(2,3);
5 setring Kp;
6 print (Kp);
7 polynomial ring, over a field, global ordering
8 // characteristic : 0
9 // number of vars : 3

10 // block 1 : ordering dp
11 // : names p_1_2 p_1_3 p_2_3
12 // block 2 : ordering C

A grassmanian.lib 73

• plueckerRelation

Usage: plueckerRelation(I, J);

I, J lists consisting of natural numbers sorted in ascending order of size

|I| = r − 1, |J| = r + 1

Assume: The Pluecker coordinate ring K [p] for appropriate r and m is active

Purpose: Compute the quadric Pluecker relation PI,J given by the sets I and J

Return: The Pluecker relation as a polynomial in the Plucker coordinate ring

Example:

1 > example plueckerRelation ;
2 // proc plueckerRelation from lib grassmanian.lib
3 EXAMPLE:
4 def Kp = plueckerCoordRing(2,3);
5 setring Kp;
6 list I = 1;
7 list J = 1, 2, 3;
8 print(plueckerRelation(I, J));
9 // j = J[1] = 1

10 // j already contained in I
11 // j = J[2] = 2
12 // p_1_2*p_1_3
13 // j = J[3] = 3
14 // -p_1_2*p_1_3
15 0

• grassmanianGenerators

Usage: grassmanianGenerators(r, m);

r , m natural numbers with m ≥ r

Purpose: Compute a set of generators for the Pluecker ideal using the Pluecker

relations

Return: The Pluecker coordinate ring with the Pluecker ideal called Irm in it

Note: The generators of the ideal may not form a Groebner basis.

The procedure returns a ring with the ideal inside, see the enclosed ex-

ample.

Example:

1 > example grassmanianGenerators ;
2 // proc grassmanianGenerators from lib grassmanian.lib
3 EXAMPLE:
4 def Kp = grassmanianGenerators(2,3);
5 // Pluecker relation for
6 // I = 1
7 // J = 1,2,3
8 // P_I,J = 0
9 // Pluecker relation for

10 // I = 2
11 // J = 1,2,3
12 // P_I,J = 0
13 // Pluecker relation for
14 // I = 3
15 // J = 1,2,3
16 // P_I,J = 0

A grassmanian.lib 74

17 // This method returns a ring containing the ideal "Irm"
18 // USAGE: def Kp = grassmanianGenerators(_,_); setring Kp; Irm;
19 setring Kp;
20 // Irm = 0 because G(r,m) = |P^{2}
21 print (Irm);
22 0

• vanDerWaerdenSyzygy

Usage: vanDerWaerdenSyzygy(alpha, beta, gamma);

α,β,γ subsets of {1, ..., m} of size s − 1, r + 1, r − s

Assume: The Pluecker coordinate ring K [p] for appropriate r and m is active.

Purpose: Compute the quadric van der Waerden syzygy [[αβ̇γ]].

Return: The van der Waerden Syzygy as a polynomial in the Pluecker coordinate

ring

Example:

1 > example vanDerWaerdenSyzygy ;
2 // proc vanDerWaerdenSyzygy from lib grassmanian.lib
3 EXAMPLE:
4 def Kp = plueckerCoordRing(2,4);
5 setring Kp;
6 list alpha = list(); // empty list
7 list beta = 1,2,3;
8 list gamma = 4;
9 print(vanDerWaerdenSyzygy(alpha, beta, gamma));

10 // beta_tau = 1
11 // beta_tau_bar = 2,3
12 // p_1_4*p_2_3
13 // beta_tau = 2
14 // beta_tau_bar = 1,3
15 // -p_1_3*p_2_4
16 // beta_tau = 3
17 // beta_tau_bar = 1,2
18 // p_1_2*p_3_4
19 p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4

A grassmanian.lib 75

• grassmanianGB

Usage: grassmanianGB(r, m);

r , m natural numbers with m ≥ r

Purpose: Compute a >dp-Groebner basis for the Pluecker ideal using the van Der

Waerden syzygies

Return: The Pluecker coordinate ring with the Pluecker ideal given via a Groebner

basis called Irm in it

Note: The generators of the ideal will form a Groebner basis with respect to >lp

/ the tableaux order.

The procedure returns a ring with the ideal inside, see the enclosed ex-

ample.

Example:

1 > example grassmanianGB;
2 // proc grassmanianGB from lib grassmanian.lib
3 EXAMPLE:
4 def Kp = grassmanianGB(2, 4);
5 // Splitted
6 // R = 1,4
7 // S = 2,3
8 // into
9 // a = 1

10 // b = 2,3,4
11 // c =
12 // [[a (dot b) c] =
13 // p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4
14 // This method returns a ring containing the ideal "Irm"
15 // USAGE: def Kp = grassmanianGB(_,_); setring Kp; Irm;
16 setring Kp;
17 print (Irm);
18 p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4

A grassmanian.lib 76

A.3 Source code

Listing 1: grassmanian.lib

1 //
2 version="version grassmanian.lib 4.0.0.0 Apr_2015 "; // $Id: $
3 category="Algebraic Geometry";
4 info="
5 LIBRARY: grassmanian.lib Compute the Pluecker ideal defining the Grassmanian
6 AUTHOR: Sebastian Muskalla, email: muskalla@mathematik.uni-kl.de
7

8 KEYWORDS: grassmanian; pluecker; subsets; van der waerden;
9

10 REFERENCES:
11 [1] Bernd Sturmfels: Algorithms in invariant theory, Springer (1991)@*
12 [2] Sebastian Muskalla: Computing the boundaries of tropical varieties,@*
13 Master thesis, TU Kaiserslautern (2015)
14

15 PROCEDURES:
16 subsets(m, r); subsets of {1, ..., m} of size r
17 sublists(L, r); sublists of L of size r
18

19 plueckerCoordRing(r,m); Pluecker coordinate ring
20

21 plueckerRelation(I, J); Pluecker relation P_I,J
22 grassmanianGenerators(r, m); generators for the Pluecker ideal
23

24 vanDerWaerdenSyzygy(a, b, c); van Der Waerden syzygy [[a (dot b) c]]
25 grassmanianGB(r, m); dp-Groeber basis for the Pluecker ideal
26 ";
27 //
28 //
29 // EXPORTED PROCEDURES
30 //
31 /**
32 * @param r a natural number
33 * @param m a natural number >= r
34 * @param upto set to 1 to compute subsets of size <= r instead of subsets of size ==r
35 * @returns a list of all subsets of {1, ..., m} of size == r
36 * (respectively <= r) (as list of lists)
37 */
38 proc subsets (int r, int m, list #)
39 "USAGE: subsets(r, m, [upto]);
40 @* r, m natural numbers, m @math{\geq} r, upto 0 (default) or 1
41 PURPOSE: compute all subsets of {1, ..., m} of size @math{=} r
42 (or @math{\leq} r iff upto was 1)
43 RETURN: subsets as list of lists
44 NOTE: the subsets are ordered with respect to the following order:
45 @* @math{A < B} iff @math{|A| < |B|} or @math{|A| = |B|}
46 and the smallest element not contained in both is contained in @math{A}
47 EXAMPLE: example subsets; shows an example"
48 {
49 int upto = 0;
50 list result;
51

52 // find out whether upto was given and set to 1
53 if (size(#) > 0)
54 {
55 if (typeof(#[1]) == "int")
56 {
57 if (#[1] == 1)
58 {

A grassmanian.lib 77

59 upto = 1;
60 }
61 }
62 }
63

64 // if yes, compute also subsets of size < r
65 if (upto)
66 {
67 for (int i = 0; i <= r-1; i++)
68 {
69 result = result + subsetsStartingFrom(i, m, 1);
70 }
71 }
72

73 // call helper procedure to compute subsets of size ==r
74 result = result + subsetsStartingFrom(r, m, 1);
75 return (result);
76 }
77 example
78 { "EXAMPLE:"; echo = 2;
79 list eq2 = subsets (2, 3);
80 print (eq2);
81 list leq2 = subsets (2, 3, 1);
82 print (leq2);
83 }
84 //
85 /**
86 * @param r a natural number
87 * @param L a list
88 * @returns a list of all subsets of the elements of L of size r (as list of lists)
89 */
90 proc sublists (int r, list L)
91 "USAGE: sublists(r, L);
92 @* r natural number, L list such that @math{|L| \geq r}
93 PURPOSE: compute all sublists of L of size r
94 RETURN: list of sublists
95 EXAMPLE: example sublists; shows an example"
96 {
97 list result;
98

99 if (r == 0)
100 {
101 result[1] = list();
102 return (result);
103 }
104

105 int m = size(L);
106 if (m <= 0)
107 {
108 return (result);
109 }
110

111 // list without first element
112 list partial;
113 if (m > 1) // workaround because L[2..1] is illegal
114 {
115

116 partial = L[2 .. m];
117 }
118

119 list without = sublists(r , partial);
120 list with = sublists(r-1, partial);
121

122 for (int i = 1; i <= size(with); i++)

A grassmanian.lib 78

123 {
124 with[i] = list(L[1]) + with[i];
125 }
126

127 result = with + without;
128 return (result);
129 }
130 example
131 { "EXAMPLE:"; echo = 2;
132 list testparam = 1,3,7;
133 list ls = sublists (2, testparam);
134 print (ls);
135 }
136 //
137 /**
138 * @param r a natural number
139 * @param m a natural number >= m
140 * @returns The Pluecker coordinate ring for r,m
141 */
142 proc plueckerCoordRing (int r, int m)
143 "USAGE: plueckerCoordRing(r, m);
144 @* r, m natural numbers with @math{m \geq r}
145 PURPOSE: Computes the Pluecker coordinate ring @math{K[p]}
146 (with dp / the tableaux order as monomial ordering)
147 NOTE: The result of this procedure should be stored in a variable of type \"def\",
148 see the enclosed example.
149 RETURN: The Pluecker coordinate ring for the given r, m
150 EXAMPLE: example plueckerCoordRing; shows an example"
151 {
152 string ringstring = "ring Kpluecker_INTERNAL = 0,(";
153 string vars_string = "";
154

155 list rm_subsets = subsets(r, m);
156

157 // add one variable for each subset
158 for (int i = 1; i <= size(rm_subsets); i++)
159 {
160 vars_string = vars_string + subsetToVarstring(rm_subsets[i]);
161 if (i != size(rm_subsets))
162 {
163 vars_string = vars_string + ",";
164 }
165 }
166 ringstring = ringstring + vars_string + "),dp";
167 execute(ringstring);
168 return (Kpluecker_INTERNAL);
169 }
170 example
171 { "EXAMPLE:"; echo = 2;
172 def Kp = plueckerCoordRing(2,3);
173 setring Kp;
174 print (Kp);
175 }
176 //
177 /**
178 * @param I a list of natural numbers, sorted in ascending order
179 * @param J a list of natural numbers, sorted in ascending order
180 * @returns the Pluecker relation given by I and J
181 */
182 proc plueckerRelation (list I, list J)
183 "USAGE: plueckerRelation(I, J);
184 @* I,J lists consisting of natural numbers sorted in ascending order
185 of size @math{|I| = r-1} resp. @math{|J| = r+1}
186 ASSUME: The Pluecker coordinate ring @math{K[p]} for appropriate r and m is active

A grassmanian.lib 79

187 PURPOSE: Compute the quadric Pluecker relation @math{P_I_,_J} given by the sets I and J
188 RETURN: the Pluecker relation as a polynomial in the Plucker coordinate ring
189 EXAMPLE: example plueckerRelation; shows an example"
190 {
191 poly PIJ = 0;
192

193 int pluecker_sign;
194 int pluecker_sign_exponent;
195

196 int j;
197

198 /** index of j in J */
199 int remove_index;
200 /** index of j in I \cup {j} */
201 int insert_index;
202 list Icupj;
203

204 /** output will be printed if p > 0 */
205 int p = printlevel - voice +3;
206

207 for (remove_index = 1; remove_index <= size(J); remove_index++)
208 {
209 j = J[remove_index];
210 (Icupj, insert_index) = insertSorted(I, j);
211

212 dbprint(p , "// j = J[" + string(remove_index) + "] = " + string(j));
213

214 // check whether element was already in there
215 if (insert_index != 0)
216 {
217 pluecker_sign_exponent = size(J) - 1 - remove_index + insert_index;
218 pluecker_sign = 1;
219 if (pluecker_sign_exponent % 2 != 0)
220 {
221 pluecker_sign = -1;
222 }
223

224 dbprint(p, "// " + string(pluecker_sign * subsetToVar(Icupj)
225 * subsetToVar (delete(J, remove_index))));
226

227 PIJ = PIJ
228 + pluecker_sign
229 * subsetToVar(Icupj)
230 * subsetToVar (delete(J, remove_index));
231 }
232 else
233 {
234 dbprint(p, "// j already contained in I");
235 }
236 }
237 return (PIJ);
238 }
239 example
240 { "EXAMPLE:"; printlevel = 1; echo = 2;
241 def Kp = plueckerCoordRing(2,3);
242 setring Kp;
243 list I = 1;
244 list J = 1, 2, 3;
245 print(plueckerRelation(I, J));
246 }
247 //
248 /**
249 * Computes the Pluecker coordinate ring with the the Pluecker ideal in it
250 *

A grassmanian.lib 80

251 * Usage:
252 * def Kp = grassmanianGenerators(2, 4);
253 * setring Kp;
254 * Irm;
255 *
256 * @param r a natural number
257 * @param m a natural number >= m
258 * @returns The Pluecker coordinate ring with the Pluecker ideal called "Irm" in it
259 */
260 proc grassmanianGenerators (int r, int m)
261 "USAGE: grassmanianGenerators(r, m);
262 @* r, m natural numbers with m @math{\geq} r
263 PURPOSE: Compute a set of generators for the Pluecker ideal using the Pluecker relations
264 RETURN: The Pluecker coordinate ring with the Pluecker ideal called \"Irm\" in it
265 NOTE: The generators of the ideal may not form a Groebner basis.
266 @* The procedure returns a ring with the ideal inside, see the enclosed example.
267 EXAMPLE: example grassmanianGenerators; shows an example"
268 {
269 def Kp = plueckerCoordRing(r, m);
270 setring Kp;
271

272 ideal Irm;
273

274 int index_I;
275 int index_J;
276 list list_I = subsets(r-1, m);
277 list list_J = subsets(r+1, m);
278

279 /** output will be printed if p > 0 */
280 int p = printlevel - voice +3;
281

282 // compute all Pluecker relations P_{I, J}
283 for (index_I = 1; index_I <= size(list_I); index_I++)
284 {
285 for (index_J = 1; index_J <= size(list_J); index_J++)
286 {
287 dbprint (p, "// Pluecker relation for");
288 dbprint (p, "// I = " + string (list_I[index_I]));
289 dbprint (p, "// J = " + string (list_J[index_J]));
290 dbprint (p, "// P_I,J = "
291 + string(plueckerRelation (list_I[index_I], list_J[index_J])));
292

293 Irm = Irm + plueckerRelation (list_I[index_I], list_J[index_J]);
294 }
295 }
296

297 dbprint (p, "// This method returns a ring containing the ideal \"Irm\"");
298 dbprint (p, "// USAGE: def Kp = grassmanianGenerators(_,_); setring Kp; Irm;");
299

300 export (Irm);
301 return (Kp);
302 }
303 example
304 { "EXAMPLE:"; printlevel = 1; echo = 2;
305 def Kp = grassmanianGenerators(2,3);
306 setring Kp;
307 // Irm = 0 because G(r,m) = |P^{2}
308 print (Irm);
309 }
310 //
311 /**
312 * @param alpha a subset of {1, ..., m} of size s-1
313 * @param beta a subset of {1, ..., m} of size r+1
314 * @param gamma a subset of {1, ..., m} of size r-s

A grassmanian.lib 81

315 * @returns the van der Wearden Syzygy [[alpha (dot beta) gamma]]
316 */
317 proc vanDerWaerdenSyzygy (list alpha, list beta, list gamma)
318 "USAGE: vanDerWaerdenSyzygy(alpha, beta, gamma);
319 @* alpha subset of {1, ..., m} of size s-1
320 @* beta subset of {1, ..., m} of size r+1
321 @* gamma subset of {1, ..., m} of size r-s
322 ASSUME: The Pluecker coordinate ring for appropriate r and m is active
323 PURPOSE: Compute the quadric van der Waerden syzygy @math{[[\alpha \dot \beta \gamma]]}
324 RETURN: the van der Waerden Syzygy as a polynomial in the Pluecker coordinate ring
325 EXAMPLE: example vanDerWaerdenSyzygy; shows an example"
326 {
327 poly vdWs = 0;
328

329 int s = size(alpha) + 1;
330 int r = size(beta)- 1;
331

332 if (size(gamma) != r - s)
333 {
334 ERROR ("vanDerWaerdenSyzygy: unexpected input size");
335 }
336

337 list beta_taus = sublists(s, beta);
338 list beta_tau;
339 list beta_tau_bar;
340

341 int sgn_fst_term;
342 int sgn_snd_term;
343 list fst_term;
344 list snd_term;
345

346 /** output will be printed if p > 0 */
347 int p = printlevel - voice +3;
348

349 for (int taui = 1; taui <= size(beta_taus); taui++)
350 {
351 beta_tau = beta_taus[taui];
352 beta_tau_bar = complementOfSet(beta_tau, beta);
353

354 (sgn_fst_term, fst_term) = concatSorted(alpha, beta_tau_bar);
355 (sgn_snd_term, snd_term) = concatSorted(beta_tau, gamma);
356

357 // term vanishes if double element occur
358 if (sgn_fst_term != 0 && sgn_snd_term != 0)
359 {
360

361 dbprint(p, "// beta_tau = " + string(beta_tau));
362 dbprint(p, "// beta_tau_bar = " + string(beta_tau_bar));
363 dbprint(p, "// " + string(sgn_fst_term
364 * sgn_snd_term
365 * signOfShuffle(beta_tau, beta_tau_bar)
366 * subsetToVar(fst_term)
367 * subsetToVar(snd_term)));
368

369 vdWs = vdWs + (sgn_fst_term * sgn_snd_term
370 * signOfShuffle(beta_tau, beta_tau_bar)
371 * subsetToVar(fst_term)
372 * subsetToVar(snd_term));
373 }
374 else
375 {
376 dbprint(p, "// beta_tau = " + string(beta_tau));
377 dbprint(p, "// beta_tau_bar = " + string(beta_tau_bar));
378 dbprint(p, "// bracket contains duplicate entries");

A grassmanian.lib 82

379 }
380 }
381 return (vdWs);
382 }
383 example
384 { "EXAMPLE:"; printlevel = 1; echo = 2;
385 def Kp = plueckerCoordRing(2,4);
386 setring Kp;
387 list alpha = list(); // empty list
388 list beta = 1,2,3;
389 list gamma = 4;
390 print(vanDerWaerdenSyzygy(alpha, beta, gamma));
391 }
392 //
393 /**
394 * Computes the Pluecker coordinate ring with the the Pluecker ideal given via a Grobener
395 * basis in it
396 *
397 * Usage:
398 * def Kp = grassmanianGB(2, 4);
399 * setring Kp;
400 * Irm;
401 *
402 * @param r a natural number
403 * @param m a natural number >= m
404 * @returns The Pluecker coordinate ring with the Pluecker ideal called "Irm" in it
405 */
406 proc grassmanianGB (int r, int m)
407 "USAGE: grassmanianGB(r, m); r, m natural numbers with m @math{\geq r} r
408 PURPOSE: Compute a dp-Groebner basis for the Pluecker ideal
409 using the van Der Waerden syzygies
410 RETURN: The Pluecker coordinate ring with the Pluecker ideal
411 given via a Groebner basis called \"Irm\" in it
412 NOTE: The generators of the ideal will form
413 a Groebner basis with respect to dp / the tableaux order.
414 @* The procedure returns a ring with the ideal inside,
415 see the enclosed example.
416 EXAMPLE: example grassmanianGB; shows an example"
417 {
418 def Kp = plueckerCoordRing(r, m);
419 setring Kp;
420

421 ideal Irm;
422

423 list L = subsets(r, m);
424

425 int i;
426 int j;
427

428 list R;
429 list S;
430

431 list beta;
432 list beta1;
433 list beta2;
434 list alpha;
435 list gamma;
436

437 int s;
438

439 /** output will be printed if p > 0 */
440 int p = printlevel - voice +3;
441

442 for (i = 1; i <= size(L); i++)

A grassmanian.lib 83

443 {
444 // only check sets S with S > R
445 for (j = i+1; j <= size(L); j++)
446 {
447 R = L[i]; // alpha and last part of beta
448 S = L[j]; // first part of beta and gamma
449

450 s = firstLargerPosition(R, S);
451

452 if (s != 0)
453 {
454 // if we just write "beta = S[1 .. s]; + R[s .. (r+1)]",
455 // Singular adds componentwise ???
456 beta1 = S[1 .. s];
457 beta2 = R[s .. r];
458 beta = beta1 + beta2;
459

460

461 if (s == 1)
462 {
463 // workaround because R[1 .. 0] is illegal
464 alpha = list();
465 }
466 else
467 {
468 alpha = R[1 .. (s-1)];
469 }
470

471 if (s+1 > r)
472 {
473 // see above
474 gamma = list();
475 }
476 else
477 {
478 gamma = S[(s+1) .. r];
479 }
480

481 dbprint (p, "// Splitted");
482 dbprint (p, "// R = " + string (R));
483 dbprint (p, "// S = " + string (S));
484 dbprint (p, "// into");
485 dbprint (p, "// a = " + string (alpha));
486 dbprint (p, "// b = " + string (beta));
487 dbprint (p, "// c = " + string (gamma));
488 dbprint (p, "// [[a (dot b) c] = ");
489 dbprint (p, "// "
490 + string(vanDerWaerdenSyzygy(alpha, beta, gamma)));
491

492 Irm = Irm + vanDerWaerdenSyzygy(alpha, beta, gamma);
493 }
494

495 }
496 }
497

498 dbprint (p, "// This method returns a ring containing the ideal \"Irm\"");
499 dbprint (p, "// USAGE: def Kp = grassmanianGB(_,_); setring Kp; Irm;");
500

501 attrib(Irm,"isSB",0); // we know that Irm is a dp-Groebner basis
502

503 export (Irm);
504 return (Kp);
505 }
506 example

A grassmanian.lib 84

507 { "EXAMPLE:"; printlevel = 1; echo = 2;
508 def Kp = grassmanianGB(2, 4);
509 setring Kp;
510 print (Irm);
511 }
512 //
513 //
514 // STATIC HELPER PROCEDURES
515 //
516 /**
517 * @param r a natural number
518 * @param m a natural number
519 * @param start a natural number
520 * @returns a list of all subsets of {start, ..., m} of size == r (as list of lists)
521 */
522 static proc subsetsStartingFrom (int r, int m, int start)
523 {
524 list result;
525

526 if (r == 0)
527 {
528 result[1] = list();
529 return (result);
530 }
531

532 if (m - start < 0)
533 {
534 return (result);
535 }
536

537 list without = subsetsStartingFrom(r, m, start+1);
538 list with = subsetsStartingFrom(r-1, m, start+1);
539

540 for (int i = 1; i <= size(with); i++)
541 {
542 with[i] = list(start) + with[i];
543 }
544

545 result = with + without;
546

547 return (result);
548 }
549 //
550 /**
551 * Gives the variable name corresponding to a subset as string
552 * @param subset a list of natural numbers
553 * @returns a string of form p_v1_..._vr where the vi are the entries of subset
554 */
555 static proc subsetToVarstring (list subset)
556 {
557 string s = "p";
558 for (int i = 1; i <= size(subset); i++)
559 {
560 s = s + "_" + string(subset[i]);
561 }
562 return (s);
563 }
564 //
565 /**
566 * Warning: a ring with the correct variables has to be the active basering!
567 * @param subset a list of natural numbers
568 * @returns a polynomial p_v1_..._vr where the vi are the entries of subset
569 */
570 static proc subsetToVar (list subset)

A grassmanian.lib 85

571 {
572 execute ("poly f = " + subsetToVarstring(subset));
573 return (f);
574 }
575 //
576 /**
577 * Inserts an element into a sorted list.
578 * @param L a list of natural numbers, sorted in ascending order
579 * @param j the element which should be inserted
580 * @returns (L’, i)
581 * L’ a new list containing the elements of L and j, sorted in ascending order
582 * i the index at which j was inserted (or 0 if i was already contained in L)
583 */
584 static proc insertSorted (list L, int j)
585 {
586 int i = 0;
587

588 // variables for binary search
589 int lb = 1;
590 int ub = size(L);
591 int mid = (lb + ub) div 2;
592 int oldmid = -1;
593

594 // do binary search
595 while (1)
596 {
597 if (oldmid == mid || mid > size(L) || mid < 1)
598 {
599 return (insert(L, j, mid), mid+1);
600 }
601

602 if (L[mid] == j)
603 {
604 return (L, 0);
605 }
606

607 if (L[mid] < j)
608 {
609 lb = mid + 1;
610 oldmid = mid;
611 mid = (lb + ub) div 2;
612 }
613 if (L[mid] > j)
614 {
615 ub = mid - 1;
616 oldmid = mid;
617 mid = (lb + ub) div 2;
618 }
619 }
620 }
621 //
622 /**
623 * @param alpha a list of natural numbers, sorted in ascending order
624 * @param beta a list of natural numbers, sorted in ascending order
625 * @returns (i, L)
626 * i = 0 iff the "intersection" of alpha and beta is nonempty,
627 * and the sign of the permution which sorts alpha++beta otherwise
628 * L = sort(alpha + beta)
629 */
630 static proc concatSorted (list alpha, list beta)
631 {
632 int a = 1;
633 int b = 1;
634

A grassmanian.lib 86

635 int sgn_exponent = 0;
636 int sgn = 1;
637

638 list result;
639 for (int i = 1; i <= size(alpha) + size(beta); i++)
640 {
641 if (a > size(alpha))
642 {
643 result[i] = beta[b];
644 b++;
645 }
646 else { if (b > size (beta))
647 {
648 result[i] = alpha[a];
649 a++;
650 }
651 else { if (alpha[a] == beta[b])
652 {
653 return (0, result);
654 }
655 else { if (alpha[a] < beta[b])
656 {
657 result[i] = alpha[a];
658 a++;
659 }
660 else
661 {
662 result[i] = beta[b];
663 sgn_exponent = sgn_exponent + size(alpha) - a + 1;
664 b++;
665 }}}}
666 }
667

668 if (sgn_exponent % 2 != 0)
669 {
670 sgn = -1;
671 }
672

673 return (sgn, result);
674 }
675 //
676 /**
677 * @param r a list of natural numbers
678 * @param s a list of natural numbers of the same size as r
679 * @returns the first index such that r[i] > s[i] or 0 if no such index exists
680 */
681 static proc firstLargerPosition (list r, list s)
682 {
683 for (int i = 1; i <= size(r); i++)
684 {
685 if (r[i] > s[i])
686 {
687 return (i);
688 }
689 }
690 return (0);
691 }
692 //
693 /**
694 * @param tau a list
695 * @param beta a list which contains tau as sublist
696 * @returns the list of entries which are contained in beta but not in tau
697 */
698 static proc complementOfSet(list tau, list beta)

A grassmanian.lib 87

699 {
700 list tau_bar;
701

702 int taui = 1;
703 int taun = 1;
704

705 for (int i = 1; i <= size(beta); i++)
706 {
707

708 if (tau[taui] == beta[i])
709 {
710 if (taui < size(tau))
711 {
712 taui++;
713 }
714 }
715 else
716 {
717 tau_bar[taun] = beta[i];
718 taun++;
719 }
720 }
721 return (tau_bar);
722 }
723 //
724 /**
725 * @param tau, a subset of {1, ..., t}
726 * @param tau_complement the complement of tau in {1, ..., t}
727 * @returns sgn(tau, tau_complement)
728 */
729 static proc signOfShuffle (list tau, list tau_complement)
730 {
731 int sgn_exponent = 0;
732 int a = 1;
733 int b = 1;
734 while (a <= size(tau) && b <= size(tau_complement))
735 {
736 // this should never happen
737 if (tau[a] == tau_complement[b])
738 {
739 return (0);
740 }
741 if (tau[a] < tau_complement[b])
742 {
743 a++;
744 }
745 else
746 {
747 sgn_exponent = sgn_exponent + size(tau) - a + 1;
748 b++;
749 }
750 }
751 if (sgn_exponent % 2 == 0)
752 {
753 return (1);
754 }
755 else
756 {
757 return (-1);
758 }
759 }
760 //

B tropicalboundaries.lib 88

B. tropicalboundaries.lib

This section contains the code implementing the algorithms studied in the fourth part of

this thesis to compute boundary of tropical varieties starting from a set of homogeneous

generators for an defining ideal.

B.1 Library overview

Library: tropicalboundaries.lib

Purpose: Compute the boundary of tropical varieties

Category: Tropical geometry

Author: Sebastian Muskalla (muskalla@mathematik.uni-kl.de)

References: This thesis

Procedures:

intersectAndProject(I, #) 〈 I, xi | i ∈ # 〉 ∩ K [xi , i 6∈ #]

boundaryViaElimination(I, #) Boundary Bounde
(I)

boundaryViaProjection(I, #) Boundary Boundp
(I)

B tropicalboundaries.lib 89

B.2 Exported procedures

The following procedures are available after the library and gfanlib.so have been

loaded.

• intersectAndProject

Usage: intersectAndProject(I, #);

I homogeneous ideal, # list of variable indices (natural numbers) or vari-

ables (polynomials)

Assume: The current basering uses a global or local ordering listed in the points

1. or 2. in the SINGULAR documentation on monomial orderings or one of

those with an extra weight vector

Purpose: Compute the "elimination ideal" 〈 I, xi | i ∈ # 〉 ∩ K [xi | i 6∈ #]

Return: A ring containing the "elimination ideal" called E

Note: The result of this procedure should be stored in a variable of type def.

On the geometric side, the ideal returned by this procedure corresponds

to the algebraic set we get by the following procedure:

1. Intersect V (I) with all hyperplanes Hi where i in #.

2. Project the resulting set to the space not containing the directions in #.

3. Take the closure in the Zariski topology.

Example:

1 > example intersectAndProject;
2 // proc intersectAndProject from lib tropicalboundaries.lib
3 EXAMPLE:
4 ring R = 0,(x,y,z,q,r,s),dp;
5 ideal I = xy + zq + rs;
6 // second argument should either be a list of variable indices...
7 def R1 = intersectAndProject(I, 1);
8 // This procedure returns a ring containg the ideal "E"
9 // Usage: def R = intersectAndProject(I); setring R; E;

10 setring (R1);
11 print (E);
12 zq+rs
13 // ... or a list of variables as polynomials
14 setring (R);
15 def R2 = intersectAndProject(I, x);
16 // This procedure returns a ring containg the ideal "E"
17 // Usage: def R = intersectAndProject(I); setring R; E;
18 setring (R1);
19 print (E);
20 zq+rs

B tropicalboundaries.lib 90

• boundaryViaElimination

Usage: boundaryViaElimination(I, #);

I homogeneous ideal, # list of variable indices (natural numbers) or vari-

ables (polynomials)

Assume: The current basering uses a global or local ordering listed in the points

1. or 2. in the SINGULAR documentation on monomial orderings or one of

those with an extra weight vector

Purpose: Compute the boundary via elimination Bounde
(I) in the directions given

by #

Return: The boundary as fan

Example:

1 > example boundaryViaElimination ;
2 // proc boundaryViaElimination from lib tropicalboundaries.lib
3 EXAMPLE:
4 ring R = 0,(x,y,z,q,r,s),dp;
5 ideal I = xy + zq + rs;
6

7 print (boundaryViaElimination(I, 1));
8 _application PolyhedralFan
9 _version 2.2

10 _type PolyhedralFan
11

12 AMBIENT_DIM
13 5
14

15 DIM
16 4
17

18 LINEALITY_DIM
19 4
20

21 RAYS
22

23 N_RAYS
24 0
25

26 LINEALITY_SPACE
27 -1 0 0 0 0 # 0
28 0 1 0 0 1 # 1
29 0 0 -1 0 -1 # 2
30 0 0 0 1 -1 # 3
31

32 ORTH_LINEALITY_SPACE
33 0 1 1 -1 -1 # 0
34

35 F_VECTOR
36 1
37

38 SIMPLICIAL
39 1
40

41 PURE
42 1
43

44 CONES
45 {} # Dimension 4

B tropicalboundaries.lib 91

46

47 MAXIMAL_CONES
48 {} # Dimension 4
49

50 MULTIPLICITIES
51 1 # Dimension 4
52

53 // one can also use a list variables as the second argument:
54 // boundaryViaElimination(I, x);
55 // yields the same result.

• boundaryViaProjection

Usage: boundaryViaProjection(IorF, #);

IorF homogeneous ideal or fan, # list of variable indices (natural num-

bers) or variables (polynomials)

Assume: The current basering uses a global or local ordering listed in the points

1. or 2. in the SINGULAR documentation on monomial orderings or one of

those with an extra weight vector

Purpose: Compute the boundary via projection Boundp
(I) in the directions given

by #

Return: The boundary as fan

Note: If an ideal is passed as first argument, the procedure starts by computing

its tropicalization. Boundp
i (I) only depends on Trop (I).

The result coincides with the result of boundaryViaElimination if the

ideal is saturated with respect to the product of the ring variables.

Example:

1 > example boundaryViaProjection ;
2 // proc boundaryViaProjection from lib tropicalboundaries.lib
3 EXAMPLE:
4 ring R = 0,(x,y,z,q,r,s),dp;
5 ideal I = xy + zq + rs;
6 fan F = tropicalVariety(I);
7 print (boundaryViaProjection(F, 1));
8 _application PolyhedralFan
9 _version 2.2

10 _type PolyhedralFan
11

12 AMBIENT_DIM
13 5
14

15 DIM
16 4
17

18 LINEALITY_DIM
19 4
20

21 RAYS
22

23 N_RAYS
24 0
25

26 LINEALITY_SPACE
27 -1 0 0 0 0 # 0

B tropicalboundaries.lib 92

28 0 1 0 0 1 # 1
29 0 0 -1 0 -1 # 2
30 0 0 0 1 -1 # 3
31

32 ORTH_LINEALITY_SPACE
33 0 1 1 -1 -1 # 0
34

35 F_VECTOR
36 1
37

38 SIMPLICIAL
39 1
40

41 PURE
42 1
43

44 CONES
45 {} # Dimension 4
46

47 MAXIMAL_CONES
48 {} # Dimension 4
49

50 MULTIPLICITIES
51 1 # Dimension 4
52

53 // one can also use a ideal as the first arguement
54 // or/and use a list of variables as polynomials as second argument:
55 // boundaryViaProjection(I, x);
56 // yields the same result.

B tropicalboundaries.lib 93

B.3 Source code

Listing 2: tropicalboundaries.lib

1 //
2 version="version tropicalboundaries.lib 4.0.0.0 Apr_2015 "; // $Id: $
3 category="Tropical Geometry";
4 info="
5 LIBRARY: tropicalboundaries.lib Compute the boundary of tropical varieties
6 AUTHOR: Sebastian Muskalla, email: muskalla@mathematik.uni-kl.de
7

8 KEYWORDS: tropic; tropical; boundary; tropicalization;
9

10 REFERENCES:
11 [1] Sebastian Muskalla: Computing the boundaries of tropical varieties,@*
12 Master thesis, TU Kaiserslautern (2015)
13

14 PROCEDURES:
15 intersectAndProject(I, #); <I, vars(#)> intersected with K[x, x not in #]
16 boundaryViaElimination(I, #); boundary via elimination in the directions in #
17 boundaryViaProjection(IorF, #); boundary via projection in the directions in #
18 ";
19 //
20 // DEPENDENCIES
21 //
22 LIB "gfanlib.so";
23 //
24 //
25 // EXPORTED PROCEDURES
26 //
27 /**
28 * WARNING:
29 * Weigth vector projection works only for the following term orders:
30 * 1. Global orderings
31 * 2. Local orderings
32 * 4. Extra weight vector (where a is a term ordering from 1. or 2.)
33 *
34 * @param I homogeneous ideal
35 * @param # list of variable indices (natural numbers) or variables (polynomials)
36 * @returns the ideal <I, V> \cup R where V is the ideal generated by the variables
37 * given by the list #
38 * and R is the subring of the basering without the variables in #
39 */
40 proc intersectAndProject (ideal I, list #)
41 "USAGE: intersectAndProject(I, #);
42 @* I homogeneous ideal
43 @* # list of variable indices (natural numbers) or variables (polynomials)
44 ASSUME: the current basering uses a monomial ordering of one of the following types:
45 @* 1. Global orderings
46 @* 2. Local orderings
47 @* 4. Extra weight vector (where a is a term ordering from 1. or 2.)
48 @* (numbers correspond to the Singular documentation
49 for monomial orderings)
50 PURPOSE: compute the ideal <I, V> intersected with the subring not containing
51 @* the variables in #, where V is the ideal generated by the variables in #
52 RETURN: a ring containing the \"elimination ideal\" called \"E\"
53 NOTE: The result of this procedure should be stored in a variable of type def.
54 @* On the geometric side, the ideal returned by this procedure corresponds to
55 the algebraic set we get by the following procedure:
56 @* 1. intersect @math{V(I)} with all hyperplanes @math{H_i} where i in #
57 @* 2. project the resulting set to the space not containing the directions in #
58 @* 3. take the closure in the Zariski topology

B tropicalboundaries.lib 94

59 EXAMPLE: example intersectAndProject; shows an example"
60 {
61 /** output will be printed if p > 0 */
62 int p = printlevel - voice +3;
63

64 dbprint (p, "// This procedure returns a ring containg the ideal \"E\"");
65 dbprint (p, "// Usage: def R = intersectAndProject(I); setring R; E;");
66

67 // handle the empty list
68 if (size (#) == 0)
69 {
70 ideal E = I;
71 export (E);
72 return (basering);
73 }
74

75 // check type of first list entry
76 if (typeof(#[1]) == "int")
77 {
78 return (intersectAndProjectInds(I, #));
79 }
80 if (typeof(#[1]) == "poly")
81 {
82 return (intersectAndProjectVars(I, #));
83 }
84

85 // all other types should not occur
86 ERROR ("intersectAndProject: 2nd argument should be a list of ints"
87 + "or a list of variables");
88 }
89 example
90 { "EXAMPLE:"; printlevel = 1; echo = 2;
91 ring R = 0,(x,y,z,q,r,s),dp;
92 ideal I = xy + zq + rs;
93 // second argument should either be a list of variable indices...
94 def R1 = intersectAndProject(I, 1);
95 setring (R1);
96 print (E);
97 // ... or a list of variables as polynomials
98 setring (R);
99 def R2 = intersectAndProject(I, x);

100 setring (R1);
101 print (E);
102 }
103 //
104 /**
105 * @param I homogeneous ideal
106 * @param # list of variable indices (natural numbers) or variables (polynomials)
107 * @return the fan representing the boundary via elimination in the directions
108 * corresponding to the variables in #
109 *
110 * WARNING:
111 * Weigth vector projection works only for the following term orders:
112 * 1. Global orderings
113 * 2. Local orderings
114 * 4. Extra weight vector (where a is a term ordering from 1. or 2.)
115 */
116 proc boundaryViaElimination (ideal I, list #)
117 "USAGE: boundaryViaElimination(I, #);
118 @* I homogeneous ideal
119 @* # list of variable indices (natural numbers) or variables (polynomials)
120 ASSUME: the current basering uses a monomial ordering of one of the following types:
121 @* 1. Global orderings
122 @* 2. Local orderings

B tropicalboundaries.lib 95

123 @* 4. Extra weight vector (for a term ordering from 1. or 2.)
124 @* (numbers correspond to the numbers in the Singular documentation
125 for monomial orderings)
126 PURPOSE: compute the boundary via elimination in the directions given by #
127 RETURN: the boundary as fan
128 EXAMPLE: example boundaryViaElimination; shows an example"
129 {
130 def Ering = intersectAndProject(I, #);
131 setring Ering;
132 return (tropicalVariety(E));
133 }
134 example
135 { "EXAMPLE:"; printlevel = 1; echo = 2;
136 ring R = 0,(x,y,z,q,r,s),dp;
137 ideal I = xy + zq + rs;
138 print (boundaryViaElimination(I, 1));
139 // one can also use a list variables as the second argument:
140 // boundaryViaElimination(I, x);
141 // yields the same result.
142 }
143 //
144 /**
145 * @param IorF ideal or fan
146 * @param # list of variable indices (natural numbers) or variables (polynomials)
147 * @return the fan representing the boundary via projection in the directions
148 * corresponding to the variables in #
149 */
150 proc boundaryViaProjection (IorF, list #)
151 "USAGE: boundaryViaProjection(IorF, #);
152 @* IorF homogeneous ideal or fan
153 @* # list of variable indices (natural numbers) or variables (polynomials)
154 PURPOSE: compute the boundary via projection in the directions given by #
155 RETURN: the boundary as fan
156 NOTE: If an ideal is passed as first argument, the procedure starts by computing
157 its tropicalization.
158 @* The result coincides with the result of \"boundaryViaElimination"\
159 if the ideal is saturated with respect to the product of the ring variables.
160 EXAMPLE: example boundaryViaProjection; shows an example"
161 {
162 fan F;
163

164 // check type of first argument
165 if (typeof(IorF) == "fan")
166 {
167 F = IorF;
168 }
169 else { if (typeof(IorF) == "ideal")
170 {
171 F = tropicalVariety(IorF);
172 }
173 else
174 {
175 // all other types should not occur
176 ERROR ("boundaryViaProjection: 1st argument should be an ideal or a fan");
177 }}
178

179 // handle the empty list
180 if (size(#) == 0)
181 {
182 return (F);
183 }
184

185 // check type of first list entry
186 if (typeof(#[1]) == "int")

B tropicalboundaries.lib 96

187 {
188 return (boundaryViaProjectionInds(F, #));
189 }
190 if (typeof(#[1]) == "poly")
191 {
192 return (boundaryViaProjectionInds(F, varIndices(#)));
193 }
194 // all other types should not occur
195 ERROR ("boundaryViaProjection: 2nd argument should be a list of ints"
196 + "or a list of variables");
197 }
198 example
199 { "EXAMPLE:"; printlevel = 1; echo = 2;
200 ring R = 0,(x,y,z,q,r,s),dp;
201 ideal I = xy + zq + rs;
202 fan F = tropicalVariety(I);
203 print (boundaryViaProjection(F, 1));
204 // one can also use a ideal as the first arguement
205 // or/and use a list of variables as polynomials as second argument:
206 // boundaryViaProjection(I, x);
207 // yields the same result.
208 }
209 //
210 //
211 // STATIC HELPER PROCEDURES
212 //
213 /**
214 * @param lst some list (or ideal) of elements
215 * such that they are comparable via == with elem
216 * @param elem some element
217 * @returns 1 iff there is some i with lst[i] == elem
218 */
219 static proc elem (lst, elem)
220 {
221 for (int i = 1; i <= size(lst); i++)
222 {
223 if (lst[i] == elem)
224 {
225 return (1);
226 }
227 }
228 return (0);
229 }
230 //
231 /**
232 * @param lst some list of variables (as polynomials)
233 * @returns the list of corresponding indices
234 */
235 static proc varIndices (lst)
236 {
237 int i;
238 int j;
239 int found;
240 list indices;
241 for (i = 1; i <= size(lst); i++)
242 {
243 found = 0;
244 for (j = 1; j <= nvars(basering) && found == 0; j++)
245 {
246 if (lst[i] == var(j))
247 {
248 indices[i] = j;
249 found = 1;
250 }

B tropicalboundaries.lib 97

251 }
252 }
253 return (indices);
254 }
255 //
256 /**
257 * Eliminates a list of variables from an ideal
258 *
259 * @param I homogeneous ideal
260 * @param # a list of variables as polynomials that should be eliminated.
261 * @returns The elimination ideal
262 */
263 static proc addAndEliminate (ideal I, list #)
264 {
265 // nothing to do if list is empty
266 if (size(#) == 0)
267 {
268 return (std(I));
269 }
270

271 // add variables to ideal ("intersection")
272 // and compute the product of the variables
273 ideal I2 = I;
274 poly varprod = 1;
275

276 for (int j = 1; j <= size(#); j++)
277 {
278 I2 = I2, #[j];
279 varprod = varprod * #[j];
280 }
281

282 if (homog(I))
283 {
284 // compute a dp Groebner basis
285 // and use the hilbert function to speed up elimination
286 // if the ideal is homogeneous
287 def Rbase = basering;
288 execute ("ring Rdp = "
289 + string(ringlist(Rbase)[1]) + ",(" + string(varstr(basering)) + "),dp");
290 setring Rdp;
291

292 ideal Idp = imap (Rbase, I2);
293 Idp = std(Idp);
294 intvec hilbvec = hilb(Idp, 1);
295 setring Rbase;
296 return (std (eliminate(I2, varprod, hilbvec)));
297 }
298 {
299 // "slow" elimination if I is not homogeneous
300 return (std (eliminate(I2, varprod)));
301 }
302 }
303 //
304 /**
305 * @param I ideal
306 * @param # list of variable indices (natural numbers)
307 *
308 * Computes the polynomials corresponding the the variables with indices in #, then calls
309 * @see intersectAndProjectBoth
310 */
311 static proc intersectAndProjectInds (ideal I, list #)
312 {
313 // find variables corresponding to the polynomials
314 list polys;

B tropicalboundaries.lib 98

315

316 for (int i = 1; i <= size(#); i++)
317 {
318 polys = polys + list(var(#[i]));
319 }
320 return (intersectAndProjectBoth(I, #, polys));
321 }
322 //
323 /**
324 * @param I ideal
325 * @param # list of variables (polynomials)
326 *
327 * Computes the variable indices of the variables in #, then calls
328 * @see intersectAndProjectBoth
329 */
330 static proc intersectAndProjectVars (ideal I, list #)
331 {
332 return (intersectAndProjectBoth(I, varIndices(#), #));
333 }
334 //
335 /**
336 * Adds variables to an ideal (geometric intersection) and intersects it with the subring
337 * not containing these variables (geometric projection).
338 *
339 * WARNING:
340 * Weigth vector projection works only for the following term orders:
341 * 1. Global orderings
342 * 2. Local orderings
343 * 4. Extra weight vector (where a is a term ordering from 1. or 2.)
344 *
345 * @param I homogeneous ideal
346 * @param indices list of variable indices
347 * @param polys list of corresponding polynomials
348 * (i.e. for all i: var(indices[i]) == polys[i]
349 * @returns The ring without the eliminated variables
350 * with the elimination ideal called "E" inside it
351 */
352 static proc intersectAndProjectBoth (ideal I, list indices, list polys)
353 {
354 def R = basering;
355 list ringparams = ringlist(R);
356

357 intvec var_weights = ringparams[3][1][2];
358 intvec new_var_weights;
359

360 list vars_as_strings = ringparams[2];
361 int n = size(vars_as_strings);
362 list new_vars_as_strings;
363

364 // compute the "elimination ideal"
365 ideal Ie = addAndEliminate(I, polys);
366

367 // create the variable list for the new ring
368 int remove_this;
369 int h = 1;
370

371 for (int l = 1; l <= n; l++)
372 {
373 if (elem(indices, l) == 0)
374 {
375 new_vars_as_strings = new_vars_as_strings + list(vars_as_strings[l]);
376 new_var_weights[h] = var_weights[l];
377 h++;
378 }

B tropicalboundaries.lib 99

379 }
380 if (size(new_vars_as_strings) < 1)
381 {
382 ERROR ("intersectAndProjectBoth: New ring has no variables!");
383 }
384

385 // create ring with new variable list
386 ringparams[2] = new_vars_as_strings;
387 ringparams[3][1][2] = new_var_weights;
388 def R_elim = ring(ringparams);
389 setring R_elim;
390

391 // map "elimination ideal" to the new ring ("projection")
392 ideal E = imap(R,Ie);
393 E = std(E);
394

395 export (E);
396 return (R_elim);
397 }
398 //
399 /**
400 * @param n dimension of the vector space
401 * @param # list of indices
402 * @returns size(#) x n matrix where the i-th column is 0 but -1 at position (i, #[i])
403 */
404 static proc negative_basis_vectors (int n, list #)
405 {
406 int m = size(#);
407 intmat vs[m][n];
408 for (int i = 1; i <= m; i++)
409 {
410 vs[i,#[i]] = -1;
411 }
412 return (vs);
413 }
414 //
415 /**
416 * @param m a matrix
417 * @param # a list of column indices
418 * @returns a matrix containing the columns with column index not in #
419 */
420 static proc copyButColumns(intmat m, list #)
421 {
422 int rows = nrows(m);
423 int cols = ncols(m);
424 int count_remove = size(#);
425

426 intmat res [rows][cols-count_remove];
427 int i;
428 int j;
429 int skipped;
430 for (i = 1; i <= rows; i++)
431 {
432 skipped = 0;
433 for (j = 1; j <= cols; j++)
434 {
435 if (elem(#, j))
436 {
437 skipped++;
438 }
439 else
440 {
441 res[i,j-skipped] = m[i,j];
442 }

B tropicalboundaries.lib 100

443 }
444 }
445 return (res);
446 }
447 //
448 /**
449 * @param c a cone
450 * @param vs a matrix where each row represents a vector
451 * @returns 1 iff there vs[i] is in the support of c for all i
452 */
453 static proc containsAllInSupport(cone c, intmat vs)
454 {
455 intvec v;
456 for (int i = 1; i <= nrows(vs); i++)
457 {
458 v = vs[i,1 .. ncols(vs)];
459 if (!containsInSupport(c,v))
460 {
461 return (0);
462 }
463 }
464 return (1);
465 }
466 //
467 /**
468 * @param F fan
469 * @param # list of indices in {1, ..., ambientDimension(F)}
470 * @returns the fan { proj(C) | C in F, -e_i in C for all i in # }
471 */
472 static proc boundaryViaProjectionInds (fan F, list #)
473 {
474 int elim_count = size(#);
475 int ambient = ambientDimension (F);
476

477 // construct new fan
478 fan proj_F = emptyFan(ambient - elim_count);
479

480 /** zero matrix */
481 intmat empt[1][ambient - elim_count];
482

483 /** matrix containing -e_i for all i in # */
484 intmat minus_ei_s = negative_basis_vectors(ambient, #);
485

486 /** number of cones of a certain dimension */
487 int nr_cones;
488

489 /** loop counter for dimension */
490 int i; //
491

492 /** loop counter for cone index */
493 int j;
494

495 cone c;
496 cone proj_c;
497

498 intmat halflines;
499 intmat lines;
500

501 for (i = 1; i <= ambient; i++)
502 {
503 nr_cones = numberOfConesOfDimension (F, i, 0, 0);
504

505 for (j = 1; j <= nr_cones; j++)
506 {

B tropicalboundaries.lib 101

507 c = getCone(F, i, j);
508

509 if (containsAllInSupport(c, minus_ei_s))
510 {
511 // find halflines generating the projected cone
512 halflines = rays(c);
513 if (nrows(halflines) > 0)
514 {
515 halflines = copyButColumns(halflines, #);
516 }
517 else
518 {
519 halflines = empt;
520 }
521

522 // find lines generating the projected cone
523 if (linealityDimension(c) > 0)
524 {
525 lines = generatorsOfLinealitySpace(c);
526 lines = copyButColumns(lines, #);
527 proj_c = coneViaPoints(halflines, lines);
528 }
529 else
530 {
531 proj_c = coneViaPoints(halflines);
532 }
533

534 if (dimension(proj_c) > 0)
535 {
536 // we do not need to check compatiblity
537 insertCone(proj_F, proj_c, 0);
538 }
539 }
540 }
541 }
542 return (proj_F);
543 }
544 //

C test_tropicalboundaries.c 102

C. test_tropicalboundaries.c

The following code contains procedures to study whether the results of the two algo-

rithms presented in the fourth part are equal. It was written before the theoretic results

presented in section 10 were developed, but it may continue to be useful to study the

boundary for non-saturated ideals.

Listing 3: test_tropicalboundaries.c

1 LIB "gfanlib.so";
2 LIB "random.lib";
3 LIB "tropicalboundaries.lib";
4 LIB "grassmanian.lib"; // for the subsets method
5

6 /**
7 * Checks whether two fans are equal. Note that by definition,
8 * it is sufficient to check that the maximal cones coincide.
9 *

10 * @param F
11 * @param F2
12 * @returns 1 iff F == F2 (as set of cones)
13 */
14 proc fansEqual (fan F, fan F2)
15 {
16 if (ambientDimension(F) != ambientDimension(F2))
17 {
18 return (0);
19 }
20

21 if (nmaxcones(F) != nmaxcones(F2))
22 {
23 return (0);
24 }
25

26 int ambient = ambientDimension (F2);
27 int nrc;
28 int i;
29 int dimi;
30 cone c;
31

32 for (dimi = ambient; dimi >= 1; dimi--)
33 {
34 nrc = numberOfConesOfDimension (F2, dimi, 0, 1);
35

36 for (i = 1; i <= nrc; i++)
37 {
38 c = getCone(F2, dimi, i);
39

40 if (! containsInCollection(F,c))
41 {
42 return (0);
43 }
44 }
45 }
46 return (1);
47 }
48

49

50 /**
51 * Tests for all subsets of directions # whether boundaryViaElimination(I, #) and
52 * boundaryViaProjection(I, #) yield the same result

C test_tropicalboundaries.c 103

53 *
54 * @param I ideal
55 */
56 proc testAllBoundaries(ideal I)
57 {
58 fan F = tropicalVariety (I);
59 return (testAllBoundariesWithGivenFan(I, F));
60 }
61

62 /**
63 * Tests for the sets given by the entries of the second parameter whether
64 * boundaryViaElimination(I, _) and boundaryViaProjection(I, _) yield the same result
65 *
66 * @param I ideal
67 * @param indicies list of lists where each inner list represents a set of directions.
68 * The inner lists do not have to be sorted, but they should not contain duplicate
69 * entries.
70 */
71 proc testBoundaries(ideal I, list indices)
72 {
73 return (testBoundariesWithGivenFan(I, tropicalVariety (I), indices));
74 }
75

76 /**
77 * Just as testAllBoundaries, but the fan used for "boundaryViaProjection" is passed as
78 * parameter to avoid a time-consuming computation via "tropicalVariety(I)"
79 *
80 * @param I ideal
81 * @param F fan which should be equal to tropicalVariety(I)
82 */
83 proc testAllBoundariesWithGivenFan(ideal I, fan F)
84 {
85 return (testBoundariesWithGivenFan(I, F,
86 subsets (nvars(basering), nvars(basering), 1)));
87 }
88

89 /**
90 * Just as testBoundaries, but the fan used for "boundaryViaProjection" is passed as
91 * parameter to avoid a time-consuming computation via "tropicalVariety(I)"
92 *
93 * @param I ideal
94 * @param F fan which should be equal to tropicalVariety(I)
95 * @param indicies list of lists where each inner list represents a set of directions.
96 * The inner lists do not have to be sorted, but they should not contain duplicate
97 * entries.
98 */
99 proc testBoundariesWithGivenFan (ideal I, fan F, list indices)

100 {
101 fan F_boundary;
102 fan F_vanish;
103 list varinds;
104

105 int nr = size(indices);
106 print("// Checking " + string(nr) + " combinations for equality:");
107

108 for (int i = 1; i <= nr; i++)
109 {
110 varinds = indices[i];
111

112 // if varinds contains all variables, nothing is left and the methods to compute
113 // the boundary will return errors.
114 if (size(varinds) == nvars(basering))
115 {
116 print ("// TRIVIALLY EQUAL");

C test_tropicalboundaries.c 104

117 }
118 else
119 {
120 print ("// Checking " + string(varinds));
121 F_vanish = boundaryViaElimination (I, varinds);
122 F_boundary = boundaryViaProjection (F, varinds);
123

124 if (!fansEqual(F_vanish, F_boundary))
125 {
126 print ("// NOT EQUAL:");
127 print ("// Indices were:" + string(varinds));
128 print ("// ");
129 print ("// F_vanish:");
130 print ("// ");
131 print (F_vanish);
132 print ("// ");
133 print ("// F_boundary:");
134 print ("// ");
135 print (F_boundary);
136 print ("// ");
137 print ("// STOP");
138 return (0);
139 }
140 print ("// EQUAL");
141 print ("// " + string((i * 100) div nr) + "% DONE");
142 }
143 }
144 print ("// EQUAL FOR ALL COMBINATIONS!");
145 return (1);
146 }
147

148 /**
149 * Creates a random homogeneous ideal in the ring with the specified number of variables
150 * and calls testAllBoundaries on it.
151 * @param varcount number of variables
152 */
153 proc rndTest(int varcount)
154 {
155 int i;
156 string varstring = "";
157 string weightstring = "";
158 for (i = 1; i <= varcount; i++)
159 {
160 varstring = varstring + "x" + string(i);
161 weightstring = weightstring + string (1);
162 if (i != varcount)
163 {
164 varstring = varstring + ",";
165 weightstring = weightstring + ",";
166 }
167 }
168 string ringstring = "ring RND = 0,(" + varstring + "),wp(" + weightstring + ");";
169 execute(ringstring);
170 ideal I = sparseHomogIdeal(5, 3,5, 75, 100);
171

172 print ("// Ideal:");
173 print (I);
174 fan F = tropicalVariety(I);
175 print ("// Tropicalization:");
176 print (F);
177 print ("// Saturated?");
178 print (isSaturated(I));
179 return (testAllBoundariesWithGivenFan(I, F));
180 }

C test_tropicalboundaries.c 105

181

182 /**
183 * @returns the product of the ring variables of the current basering as polynomial
184 */
185 proc varprod()
186 {
187 poly prod = 1;
188 for (int i = 1; i <= nvars(basering); i++)
189 {
190 prod = prod * var(i);
191 }
192 return (prod);
193 }
194

195 /**
196 * @param I ideal
197 * @returns 1 iff I is saturated with respect to the product of the ring variables
198 */
199 proc isSaturated(ideal I)
200 {
201 ideal IdealQuot = quotient(I, varprod());
202 return (reduce (std(IdealQuot), std(I)) == 0);
203 }

D Examples 106

D. Examples

D.1 Example

The following code deals with the tropicalization of 〈 x + y 〉 ∈ Q[x , y]. It is mentioned

during the thesis in the examples 4.7, 5.12, 6.9, 7.16, 7.29, 7.33 and 7.36.

Listing 4: xplusy.c

1 LIB "gfanlib.so";
2

3 ring r = 0,(x,y), dp; // Q[x,y]
4 ideal I = x+y;
5

6 print ("// Ideal:");
7 print (I);
8

9 fan F = tropicalVariety(I);
10

11 // the tropical Variety consists of one cone of dimension 1
12 print ("// Tropicalization:");
13 print (F);
14

15 // store first cone of dimension 1 in F
16 cone c = getCone(F, 1, 1);
17

18 print ("");
19

20 print ("// F = {c} where c is defined via...");
21 // print it out - representation using (in)equalities
22 print ("// Inequalities:");
23 print (inequalities(c));
24 print ("// Equalities:");
25 print (equations(c));
26

27 // print it out - representation cone (HL \cup L \cup -L)
28 print ("// ... respectively c = cone (Half-Lines cup Lines cup -Lines) where...");
29 print ("// Half-Lines:");
30 print (rays(c));
31 print ("// Lines:");
32 print (generatorsOfLinealitySpace(c));
33

34

35 print ("");
36 // since neither (-1, 0) nor (0, -1) is contained in the support of F
37 // it is not interesting to see the boundary in this case - it is the empty set
38 intvec minus_e1 = -1, 0;
39 intvec minus_e2 = 0, -1;
40 print ("// -e_1 in c?");
41 containsInSupport(c, minus_e1);
42 print ("// -e_2 in c?");
43 containsInSupport(c, minus_e2);

Output:
1 // Ideal:
2 x+y
3 // Tropicalization:
4 _application PolyhedralFan
5 _version 2.2
6 _type PolyhedralFan
7

8 AMBIENT_DIM

D Examples 107

9 2
10

11 DIM
12 1
13

14 LINEALITY_DIM
15 1
16

17 RAYS
18

19 N_RAYS
20 0
21

22 LINEALITY_SPACE
23 -1 -1 # 0
24

25 ORTH_LINEALITY_SPACE
26 1 -1 # 0
27

28 F_VECTOR
29 1
30

31 SIMPLICIAL
32 1
33

34 PURE
35 1
36

37 CONES
38 {} # Dimension 1
39

40 MAXIMAL_CONES
41 {} # Dimension 1
42

43 MULTIPLICITIES
44 1 # Dimension 1
45

46

47 // F = {c} where c is defined via...
48 // Inequalities:
49

50 // Equalities:
51 1,-1
52 // ... respectively c = cone (Half-Lines cup Lines cup -Lines) where...
53 // Half-Lines:
54

55 // Lines:
56 -1,-1
57

58 // -e_1 in c?
59 0
60 // -e_2 in c?
61 0

D Examples 108

D.2 Example

The following code computes the tropicalization of the homogenization of the circle

〈 x2 + y2 − w2 〉 ⊆ Q[w , x , y]

respectively its embedding in P4
C given by

〈 x2 + y2 − w2, z 〉 ⊆ Q[w , x , y , z].

It occurs in the following examples: 7.8, 7.38, 8.16 and 9.20.

Listing 5: circle.c

1 LIB "gfanlib.so";
2 LIB "tropicalboundaries.lib";
3

4 ring R = 0,(w,x,y), dp; // Q[x,y]
5 ideal Circle = x2 + y2 - w2; // homogenization of x2 + y2 - 1
6

7 print ("// Ideal:");
8 print (Circle);
9

10 fan F = tropicalVariety(Circle);
11

12 // the tropical Variety consists only of four cones
13 print ("// Tropicalization:");
14 print (F);
15

16 print ("// F = {C0, C1, C2, C3}");
17

18 // store first cone of dimension 1 in F
19 cone c;
20

21 int i = 0;
22

23 c = getCone(F, 1, 1);
24 // print it out
25 print ("// C0:");
26 print ("// Inequalities:");
27 print (inequalities(c));
28 print ("// Equalities:");
29 print (equations(c));
30

31 for (i = 1; i <= 3; i++)
32 {
33 c = getCone(F, 2, i);
34 print ("// C" + string (i) + ":");
35 print ("// Inequalities:");
36 print (inequalities(c));
37 print ("// Equalities:");
38 print (equations(c));
39 }
40

41 // Let us embed the circle in the w-x-y-plane in a 4 dimensional space
42 ring Rz = 0,(w,x,y,z), dp; // Q[x,y]
43 ideal CircleEmbedded = x2 + y2 - w2, z;
44

45 print ("// Ideal:");
46 print (CircleEmbedded);

D Examples 109

47

48 print ("// The ideal is not saturated.");
49 print ("// Its saturation is the whole ring:");
50 print (quotient(CircleEmbedded, w*x*y*z));
51

52 print("// Therefore, its tropicalization is the empty set");
53 print (tropicalVariety(CircleEmbedded));
54

55 print ("// The boundary via projection can’t recover the original tropicaliation:");
56 print (boundaryViaProjection(CircleEmbedded, 4));
57

58 print ("// But the boundary via elimination can!");
59 print (boundaryViaElimination(CircleEmbedded, 4));

Output:
1 // Ideal:
2 -w2+x2+y2
3 // Tropicalization:
4 _application PolyhedralFan
5 _version 2.2
6 _type PolyhedralFan
7

8 AMBIENT_DIM
9 3

10

11 DIM
12 2
13

14 LINEALITY_DIM
15 1
16

17 RAYS
18 -2 1 1 # 0
19 1 -2 1 # 1
20 1 1 -2 # 2
21

22 N_RAYS
23 3
24

25 LINEALITY_SPACE
26 -1 -1 -1 # 0
27

28 ORTH_LINEALITY_SPACE
29 1 -1 0 # 0
30 1 0 -1 # 1
31

32 F_VECTOR
33 1 3
34

35 SIMPLICIAL
36 1
37

38 PURE
39 1
40

41 CONES
42 {} # Dimension 1
43 {0} # Dimension 2
44 {1}
45 {2}
46

47 MAXIMAL_CONES
48 {0} # Dimension 2

D Examples 110

49 {1}
50 {2}
51

52 MULTIPLICITIES
53 1 # Dimension 2
54 1
55 1
56

57 // F = {C0, C1, C2, C3}
58 // C0:
59 // Inequalities:
60

61 // Equalities:
62 1,-1, 0,
63 0, 1,-1
64 // C1:
65 // Inequalities:
66 -1,0,1
67 // Equalities:
68 0,1,-1
69 // C2:
70 // Inequalities:
71 0,-1,1
72 // Equalities:
73 1,0,-1
74 // C3:
75 // Inequalities:
76 0,1,-1
77 // Equalities:
78 1,-1,0
79 // Ideal:
80 -w2+x2+y2,
81 z
82 // The ideal is not saturated.
83 // Its saturation is the whole ring:
84 1
85 // Therefore, its tropicalization is the empty set
86 _application PolyhedralFan
87 _version 2.2
88 _type PolyhedralFan
89

90 AMBIENT_DIM
91 4
92

93 DIM
94 -1
95

96 LINEALITY_DIM
97 4
98

99 RAYS
100

101 N_RAYS
102 0
103

104 LINEALITY_SPACE
105 1 0 0 0 # 0
106 0 1 0 0 # 1
107 0 0 1 0 # 2
108 0 0 0 1 # 3
109

110 ORTH_LINEALITY_SPACE
111

112 F_VECTOR

D Examples 111

113

114

115 SIMPLICIAL
116 1
117

118 PURE
119 1
120

121 CONES
122

123 MAXIMAL_CONES
124

125 MULTIPLICITIES
126

127 // The boundary via projection can’t recover the original tropicaliation:
128 _application PolyhedralFan
129 _version 2.2
130 _type PolyhedralFan
131

132 AMBIENT_DIM
133 3
134

135 DIM
136 -1
137

138 LINEALITY_DIM
139 3
140

141 RAYS
142

143 N_RAYS
144 0
145

146 LINEALITY_SPACE
147 1 0 0 # 0
148 0 1 0 # 1
149 0 0 1 # 2
150

151 ORTH_LINEALITY_SPACE
152

153 F_VECTOR
154

155

156 SIMPLICIAL
157 1
158

159 PURE
160 1
161

162 CONES
163

164 MAXIMAL_CONES
165

166 MULTIPLICITIES
167

168 // But the boundary via elimination can!
169 _application PolyhedralFan
170 _version 2.2
171 _type PolyhedralFan
172

173 AMBIENT_DIM
174 3
175

176 DIM

D Examples 112

177 2
178

179 LINEALITY_DIM
180 1
181

182 RAYS
183 -2 1 1 # 0
184 1 -2 1 # 1
185 1 1 -2 # 2
186

187 N_RAYS
188 3
189

190 LINEALITY_SPACE
191 -1 -1 -1 # 0
192

193 ORTH_LINEALITY_SPACE
194 1 -1 0 # 0
195 1 0 -1 # 1
196

197 F_VECTOR
198 1 3
199

200 SIMPLICIAL
201 1
202

203 PURE
204 1
205

206 CONES
207 {} # Dimension 1
208 {0} # Dimension 2
209 {1}
210 {2}
211

212 MAXIMAL_CONES
213 {0} # Dimension 2
214 {1}
215 {2}
216

217 MULTIPLICITIES
218 1 # Dimension 2
219 1
220 1

D Examples 113

D.3 Example

The Grassmanian G(2, 4) respectively its defining ideal was used as the main example

in the thesis and it was studied in the examples 3.7, 3.11, 3.15, 3.18, 3.31, 7.39, 8.5,

8.10, 8.17, 9.6, 9.8 and 9.19.

Listing 6: g24.c

1 LIB "grassmanian.lib";
2 execute(read("test_tropicalboundaries.c"));
3

4 int r = 2;
5 int m = 4;
6 def Kp = plueckerCoordRing(r, m);
7 setring Kp;
8

9 print ("// The Pluecker ideal Irm for r = 2, m = 4 is a principal ideal.");
10 print ("// Its generator can be computed as the following Pluecker relation:");
11 list I = 2;
12 list J = 1, 3, 4;
13 print ("// P_{2},{1,3,4} = ");
14 print (plueckerRelation(I,J));
15

16 print ("// or as the following van der Waerden syzgy:");
17 list alpha = 1;
18 list beta = 2,3,4;
19 list gamma = list(); // empty
20 print ("// [[1 .2 .3 .4]] =");
21 print (vanDerWaerdenSyzygy(alpha, beta, gamma));
22

23 // suppress output of "grassmanianGB"
24 printlevel = -1;
25 Kp = grassmanianGB(2,4);
26 setring Kp;
27 printlevel = 1;
28

29 // use gfanlib
30 fan F2 = tropicalVariety(Irm);
31

32 print ("");
33

34 print ("// Irm:");
35 print (Irm);
36 print ("// Trop(Irm):");
37 print (F2);
38

39 // create fan returned by gfan by hand
40 fan F = emptyFan(6);
41 intvec r0 = -2,1,1,1,1,-2;
42 intvec r1 = 1,-2,1,1,-2,1;
43 intvec r2 = 1,1,-2,-2,1,1;
44 intmat L[4][6] = 1,0,0,0,0,-1,0,1,0,0,-1,0,0,0,1,0,1,1,0,0,0,1,1,1;
45 intmat C1[1][6] = -2,1,1,1,1,-2;
46 intmat C2[1][6] = 1,-2,1,1,-2,1;
47 intmat C3[1][6] = 1,1,-2,-2,1,1;
48 cone c1 = coneViaPoints(C1,L);
49 cone c2 = coneViaPoints(C2,L);
50 cone c3 = coneViaPoints(C3,L);
51 insertCone(F, c1);
52 insertCone(F, c2);
53 insertCone(F, c3);
54

55 print ("// One can also compute Trop(Irm) in Gfan and import it to get the same fan");

D Examples 114

56 print (fansEqual(F, F2));
57

58 print ("// The Pluecker ideal Irm is always saturated wrt the product of the variables");
59 print ("// p = ");
60 print (varprod());
61 print ("// Irm = (Irm : p)");
62 print (isSaturated(Irm));
63

64 print ("// Therefore, the two ways to compute the boundary always yield the same result")
;

65 testAllBoundariesWithGivenFan(Irm, F);

Output:
1 // The Pluecker ideal Irm for r = 2, m = 4 is a principal ideal.
2 // Its generator can be computed as the following Pluecker relation:
3 // P_{2},{1,3,4} =
4 // j = J[1] = 1
5 // p_1_2*p_3_4
6 // j = J[2] = 3
7 // p_1_4*p_2_3
8 // j = J[3] = 4
9 // -p_1_3*p_2_4

10 p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4
11 // or as the following van der Waerden syzgy:
12 // [[1 .2 .3 .4]] =
13 // beta_tau = 2,3
14 // beta_tau_bar = 4
15 // p_1_4*p_2_3
16 // beta_tau = 2,4
17 // beta_tau_bar = 3
18 // -p_1_3*p_2_4
19 // beta_tau = 3,4
20 // beta_tau_bar = 2
21 // p_1_2*p_3_4
22 p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4
23

24 // Irm:
25 p_1_4*p_2_3-p_1_3*p_2_4+p_1_2*p_3_4
26 // Trop(Irm):
27 _application PolyhedralFan
28 _version 2.2
29 _type PolyhedralFan
30

31 AMBIENT_DIM
32 6
33

34 DIM
35 5
36

37 LINEALITY_DIM
38 4
39

40 RAYS
41 -2 1 1 1 1 -2 # 0
42 1 -2 1 1 -2 1 # 1
43 1 1 -2 -2 1 1 # 2
44

45 N_RAYS
46 3
47

48 LINEALITY_SPACE
49 1 0 0 0 0 -1 # 0
50 0 1 0 0 -1 0 # 1

D Examples 115

51 0 0 -1 0 -1 -1 # 2
52 0 0 0 -1 -1 -1 # 3
53

54 ORTH_LINEALITY_SPACE
55 0 -1 1 1 -1 0 # 0
56 -1 0 1 1 0 -1 # 1
57

58 F_VECTOR
59 1 3
60

61 SIMPLICIAL
62 1
63

64 PURE
65 1
66

67 CONES
68 {} # Dimension 4
69 {0} # Dimension 5
70 {1}
71 {2}
72

73 MAXIMAL_CONES
74 {0} # Dimension 5
75 {1}
76 {2}
77

78 MULTIPLICITIES
79 1 # Dimension 5
80 1
81 1
82

83 // One can also compute Trop(Irm) in Gfan and import it to get the same fan
84 1
85 // The Pluecker ideal Irm is always saturated wrt the product of the variables
86 // p =
87 p_1_2*p_1_3*p_1_4*p_2_3*p_2_4*p_3_4
88 // Irm = (Irm : p)
89 1
90 // Therefore, the two ways to compute the boundary always yield the same result
91 // Checking 64 combinations for equality:
92 // Checking
93 // EQUAL
94 // 1% DONE
95 // Checking 1
96 // EQUAL
97 // 3% DONE
98 // Checking 2
99 // EQUAL

100 // 4% DONE
101 // Checking 3
102 // EQUAL
103 // 6% DONE
104 // Checking 4
105 // EQUAL
106 // 7% DONE
107 // Checking 5
108 // EQUAL
109 // 9% DONE
110 // Checking 6
111 // EQUAL
112 // 10% DONE
113 // Checking 1,2
114 // EQUAL

D Examples 116

115 // 12% DONE
116 // Checking 1,3
117 // EQUAL
118 // 14% DONE
119 // Checking 1,4
120 // EQUAL
121 // 15% DONE
122 // Checking 1,5
123 // EQUAL
124 // 17% DONE
125 // Checking 1,6
126 // EQUAL
127 // 18% DONE
128 // Checking 2,3
129 // EQUAL
130 // 20% DONE
131 // Checking 2,4
132 // EQUAL
133 // 21% DONE
134 // Checking 2,5
135 // EQUAL
136 // 23% DONE
137 // Checking 2,6
138 // EQUAL
139 // 25% DONE
140 // Checking 3,4
141 // EQUAL
142 // 26% DONE
143 // Checking 3,5
144 // EQUAL
145 // 28% DONE
146 // Checking 3,6
147 // EQUAL
148 // 29% DONE
149 // Checking 4,5
150 // EQUAL
151 // 31% DONE
152 // Checking 4,6
153 // EQUAL
154 // 32% DONE
155 // Checking 5,6
156 // EQUAL
157 // 34% DONE
158 // Checking 1,2,3
159 // EQUAL
160 // 35% DONE
161 // Checking 1,2,4
162 // EQUAL
163 // 37% DONE
164 // Checking 1,2,5
165 // EQUAL
166 // 39% DONE
167 // Checking 1,2,6
168 // EQUAL
169 // 40% DONE
170 // Checking 1,3,4
171 // EQUAL
172 // 42% DONE
173 // Checking 1,3,5
174 // EQUAL
175 // 43% DONE
176 // Checking 1,3,6
177 // EQUAL
178 // 45% DONE

D Examples 117

179 // Checking 1,4,5
180 // EQUAL
181 // 46% DONE
182 // Checking 1,4,6
183 // EQUAL
184 // 48% DONE
185 // Checking 1,5,6
186 // EQUAL
187 // 50% DONE
188 // Checking 2,3,4
189 // EQUAL
190 // 51% DONE
191 // Checking 2,3,5
192 // EQUAL
193 // 53% DONE
194 // Checking 2,3,6
195 // EQUAL
196 // 54% DONE
197 // Checking 2,4,5
198 // EQUAL
199 // 56% DONE
200 // Checking 2,4,6
201 // EQUAL
202 // 57% DONE
203 // Checking 2,5,6
204 // EQUAL
205 // 59% DONE
206 // Checking 3,4,5
207 // EQUAL
208 // 60% DONE
209 // Checking 3,4,6
210 // EQUAL
211 // 62% DONE
212 // Checking 3,5,6
213 // EQUAL
214 // 64% DONE
215 // Checking 4,5,6
216 // EQUAL
217 // 65% DONE
218 // Checking 1,2,3,4
219 // EQUAL
220 // 67% DONE
221 // Checking 1,2,3,5
222 // EQUAL
223 // 68% DONE
224 // Checking 1,2,3,6
225 // EQUAL
226 // 70% DONE
227 // Checking 1,2,4,5
228 // EQUAL
229 // 71% DONE
230 // Checking 1,2,4,6
231 // EQUAL
232 // 73% DONE
233 // Checking 1,2,5,6
234 // EQUAL
235 // 75% DONE
236 // Checking 1,3,4,5
237 // EQUAL
238 // 76% DONE
239 // Checking 1,3,4,6
240 // EQUAL
241 // 78% DONE
242 // Checking 1,3,5,6

D Examples 118

243 // EQUAL
244 // 79% DONE
245 // Checking 1,4,5,6
246 // EQUAL
247 // 81% DONE
248 // Checking 2,3,4,5
249 // EQUAL
250 // 82% DONE
251 // Checking 2,3,4,6
252 // EQUAL
253 // 84% DONE
254 // Checking 2,3,5,6
255 // EQUAL
256 // 85% DONE
257 // Checking 2,4,5,6
258 // EQUAL
259 // 87% DONE
260 // Checking 3,4,5,6
261 // EQUAL
262 // 89% DONE
263 // Checking 1,2,3,4,5
264 // EQUAL
265 // 90% DONE
266 // Checking 1,2,3,4,6
267 // EQUAL
268 // 92% DONE
269 // Checking 1,2,3,5,6
270 // EQUAL
271 // 93% DONE
272 // Checking 1,2,4,5,6
273 // EQUAL
274 // 95% DONE
275 // Checking 1,3,4,5,6
276 // EQUAL
277 // 96% DONE
278 // Checking 2,3,4,5,6
279 // EQUAL
280 // 98% DONE
281 // TRIVIALLY EQUAL
282 // EQUAL FOR ALL COMBINATIONS!
283 1

D Examples 119

D.4 Example

The tropicalization of the Pluecker ideal I3,6 is a 10-dimensional fan with about 3000

cones in R20. Because of its size, it is only mentioned briefly in example 3.32 and we do

not give the full output here.

Listing 7: g36.c

1 LIB "grassmanian.lib";
2 execute(read("test_tropicalboundaries.c"));
3

4 int r = 3;
5 int m = 6;
6 print ("// For r = 3, m = 6, the set of all Pluecker relations is not a Groebner basis");
7

8 def Kp = grassmanianGenerators(r, m);
9 setring Kp;

10 print ("// Irm: (set of generators, not a Groebner basis)");
11 print (Irm);
12

13 Kp = grassmanianGB(r, m);
14 setring Kp;
15 print ("// Irm: (dp-Groebner basis)");
16 print (Irm);
17

18 // takes about 10 minutes
19 // print (tropicalVariety(Irm));
20

21 print ("// It takes quite long to compute Trop(Irm)");
22 print ("// so we can compute in Gfan and import the result");
23

24 string g36gfan = read("g36out.gfan");
25 fan F = fanFromString(g36gfan);
26

27 // ~3000 lines
28 // print ("// Trop(Irm):");
29 // print (F)
30

31 print ("// Trop(Irm) is a pure fan of dimension 10 in a 20-dimensional ambient space");
32 print ("// Number of maximal cones:");
33 print (nmaxcones(F));
34

35 // takes about 20*10 minutes
36 print ("// As for r = 2, m = 4, the two ways to compute the boundaries are equivalent");
37 print ("// To verify this, one can change Bound^p_i (Irm) = Bound^e_i(Irm) for all i");
38 list single_vars = subsets(1, 20);
39 testBoundariesWithGivenFan(Irm, F, single_vars);

D Examples 120

Input for Gfan to compute Trop (I3,6):

Listing 8: g36in.gfan

1 Q[p_1_2_3,p_1_2_4,p_1_2_5,p_1_2_6,p_1_3_4,p_1_3_5,p_1_3_6,p_1_4_5,p_1_4_6,p_1_5_6,p_2_3_4
,p_2_3_5,p_2_3_6,p_2_4_5,p_2_4_6,p_2_5_6,p_3_4_5,p_3_4_6,p_3_5_6,p_4_5_6]

2 {
3 p_2_5_6*p_3_4_6-p_2_4_6*p_3_5_6+p_2_3_6*p_4_5_6,
4 p_1_5_6*p_3_4_6-p_1_4_6*p_3_5_6+p_1_3_6*p_4_5_6,
5 p_2_5_6*p_3_4_5-p_2_4_5*p_3_5_6+p_2_3_5*p_4_5_6,
6 p_2_4_6*p_3_4_5-p_2_4_5*p_3_4_6+p_2_3_4*p_4_5_6,
7 p_2_3_6*p_3_4_5-p_2_3_5*p_3_4_6+p_2_3_4*p_3_5_6,
8 p_1_5_6*p_3_4_5-p_1_4_5*p_3_5_6+p_1_3_5*p_4_5_6,
9 p_1_4_6*p_3_4_5-p_1_4_5*p_3_4_6+p_1_3_4*p_4_5_6,

10 p_1_3_6*p_3_4_5-p_1_3_5*p_3_4_6+p_1_3_4*p_3_5_6,
11 p_1_2_6*p_3_4_5-p_1_2_5*p_3_4_6+p_1_2_4*p_3_5_6-p_1_2_3*p_4_5_6,
12 p_1_5_6*p_2_4_6-p_1_4_6*p_2_5_6+p_1_2_6*p_4_5_6,
13 p_2_3_6*p_2_4_5-p_2_3_5*p_2_4_6+p_2_3_4*p_2_5_6,
14 p_1_5_6*p_2_4_5-p_1_4_5*p_2_5_6+p_1_2_5*p_4_5_6,
15 p_1_4_6*p_2_4_5-p_1_4_5*p_2_4_6+p_1_2_4*p_4_5_6,
16 p_1_3_6*p_2_4_5-p_1_3_5*p_2_4_6+p_1_3_4*p_2_5_6+p_1_2_3*p_4_5_6,
17 p_1_2_6*p_2_4_5-p_1_2_5*p_2_4_6+p_1_2_4*p_2_5_6,
18 p_1_5_6*p_2_3_6-p_1_3_6*p_2_5_6+p_1_2_6*p_3_5_6,
19 p_1_4_6*p_2_3_6-p_1_3_6*p_2_4_6+p_1_2_6*p_3_4_6,
20 p_1_4_5*p_2_3_6-p_1_3_5*p_2_4_6+p_1_3_4*p_2_5_6+p_1_2_5*p_3_4_6-p_1_2_4*p_3_5_6+

p_1_2_3*p_4_5_6,
21 p_1_5_6*p_2_3_5-p_1_3_5*p_2_5_6+p_1_2_5*p_3_5_6,
22 p_1_4_6*p_2_3_5-p_1_4_5*p_2_3_6-p_1_3_4*p_2_5_6+p_1_2_4*p_3_5_6,
23 p_1_4_5*p_2_3_5-p_1_3_5*p_2_4_5+p_1_2_5*p_3_4_5,
24 p_1_3_6*p_2_3_5-p_1_3_5*p_2_3_6+p_1_2_3*p_3_5_6,
25 p_1_2_6*p_2_3_5-p_1_2_5*p_2_3_6+p_1_2_3*p_2_5_6,
26 p_1_5_6*p_2_3_4-p_1_3_4*p_2_5_6+p_1_2_4*p_3_5_6-p_1_2_3*p_4_5_6,
27 p_1_4_6*p_2_3_4-p_1_3_4*p_2_4_6+p_1_2_4*p_3_4_6,
28 p_1_4_5*p_2_3_4-p_1_3_4*p_2_4_5+p_1_2_4*p_3_4_5,
29 p_1_3_6*p_2_3_4-p_1_3_4*p_2_3_6+p_1_2_3*p_3_4_6,
30 p_1_3_5*p_2_3_4-p_1_3_4*p_2_3_5+p_1_2_3*p_3_4_5,
31 p_1_2_6*p_2_3_4-p_1_2_4*p_2_3_6+p_1_2_3*p_2_4_6,
32 p_1_2_5*p_2_3_4-p_1_2_4*p_2_3_5+p_1_2_3*p_2_4_5,
33 p_1_3_6*p_1_4_5-p_1_3_5*p_1_4_6+p_1_3_4*p_1_5_6,
34 p_1_2_6*p_1_4_5-p_1_2_5*p_1_4_6+p_1_2_4*p_1_5_6,
35 p_1_2_6*p_1_3_5-p_1_2_5*p_1_3_6+p_1_2_3*p_1_5_6,
36 p_1_2_6*p_1_3_4-p_1_2_4*p_1_3_6+p_1_2_3*p_1_4_6,
37 p_1_2_5*p_1_3_4-p_1_2_4*p_1_3_5+p_1_2_3*p_1_4_5
38 }

Bibliography 121

Bibliography

[BO98] Egon Balas and Maarten Oosten. “On the dimension of projected polyhedra”.

In: Discrete Applied Mathematics 87.1–3 (1998), pp. 1 –9.

[Bö] Janko Böhm. “Computer Algebra”. Lecture Notes (TU Kaiserslautern, winter

term 2012/13), http://www.mathematik.uni-kl.de/~boehm/lehre/

1213_CA/ca.pdf.

[Gfan] Anders N. Jensen. Gfan, a software system for Gröbner fans and tropical

varieties. http://home.imf.au.dk/jensen/software/gfan/gfan.

html.

[gfanlib] Yue Ren, Anders Nedergaard Jensen, and Frank Seelisch. gfanlib.so.

A SINGULAR 4-0-2 library to access polymake on singular interpreter level.

http://www.singular.uni-kl.de. 2015.

[Jen07] A.N. Jensen. Algorithmic Aspects of Gröbner Fans and Tropical Varieties:

Ph.D. Dissertation. Department of Mathematical Sciences, University of Aarhus,

2007.

[JMM08] Anders Nedergaard Jensen, Hannah Markwig, and Thomas Markwig. “An

Algorithm for Lifting Points in a Tropical Variety”. In: Collect. Math. (2008).

[Kru] Sven O. Krumke. “Polyhedral Theory and Integer Programming - Chapter 3:

Polyhedra and Integer Programs”. Lecture Notes (TU Kaiserslautern, winter

term 2013/14), http://www.mathematik.uni-kl.de/fileadmin/AGs/

opt/Lehre/WS1314/IntegerProgramming_WS1314/ip-chapter3_3_

.pdf.

[MS05] Ezra Miller and Bernd Sturmfels. Combinatorial commutative algebra. New

York, NY: Springer, 2005.

[MS15] Diane Maclagan and Bernd Sturmfels. Introduction to Tropical Geometry.

Vol. 161. Graduate Studies in Mathematics. American Mathematical Society,

Providence, RI, 2015, pp. vii+359.

[Mus13] Sebastian Muskalla. “Solving Integer Programs using the Algorithm of Hosten

and Sturmfels”. Bachelor thesis. TU Kaiserslautern, 2013.

[Sing] Wolfram Decker et al. SINGULAR 4-0-2 — A computer algebra system for

polynomial computations. http://www.singular.uni-kl.de. 2015.

[Stu93] Bernd Sturmfels. Algorithms in invariant theory. Springer, 1993.

http://www.mathematik.uni-kl.de/~boehm/lehre/1213_CA/ca.pdf
http://www.mathematik.uni-kl.de/~boehm/lehre/1213_CA/ca.pdf
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://home.imf.au.dk/jensen/software/gfan/gfan.html
http://www.singular.uni-kl.de
http://www.mathematik.uni-kl.de/fileadmin/AGs/opt/Lehre/WS1314/IntegerProgramming_WS1314/ip-chapter3_3_.pdf
http://www.mathematik.uni-kl.de/fileadmin/AGs/opt/Lehre/WS1314/IntegerProgramming_WS1314/ip-chapter3_3_.pdf
http://www.mathematik.uni-kl.de/fileadmin/AGs/opt/Lehre/WS1314/IntegerProgramming_WS1314/ip-chapter3_3_.pdf
http://www.singular.uni-kl.de

Declaration of academic honesty

I hereby declare that this master thesis is my own work and has not been submitted in

any form for any other degree or diploma at any university or other institute.

Information derived from the work of others has been acknowledged in the text and a list

of references is given in the bibliography.

Signature Place, Date

	I Introduction
	1 Abstract
	2 Structure

	II The Grassmanian
	3 The Grassmanian

	III Introduction to tropicalizations
	4 Tropicalizations using the tropical semiring
	5 Tropicalizations using initial forms
	6 Tropicalizations using Puiseux series
	7 Structural results about tropical varieties

	IV Computing the boundary
	8 Computing the boundary via elimination
	9 Computing the boundary via projection
	10 The correspondence between elimination and projection

	V Appendix: Singular code
	A grassmanian.lib
	B tropicalboundaries.lib
	C test_tropicalboundaries.c
	D Examples
	Bibliography
	Declaration of academic honesty

