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Abstract

The inclusion of probabilistic aspects into systems, models and algorithms has become
more and more common in recent days. Stochastic learning is used in the training of
neural networks, randomized incremental constructions are found in the area of compu-
tational geometry and Markov decision processes are a frequently used model in control
theory. These stochastic aspects are also found in probabilistic programming, an extension
of classical programming. Along with programming comes the natural arising problem of
verification of programs, that is, the problem of deciding certain properties about pro-
grams. Stochastic systems are much harder to verify and deciding qualitative properties
such as safety and liveness requires more care. Unlike their deterministic counterpart,
stochastic systems can also be analyzed in a quantitative manner by finding or approx-
imating the probability that the system has certain properties. This thesis aims to give
an overview over so called martingale-based methods which can be used to verify qualita-
tive properties such as almost sure termination, but also to compute quantitative bounds
like reachability probabilities. The models under consideration are probabilistic programs
with nondeterminism. We look at the theory of martingale-based verification from two
viewpoints, the probabilistic viewpoint via martingale theory and the order-theoretic view-
point via fixed-point theory. We show the strong similarity between both viewpoints by
redeveloping various martingale-based methods in both frameworks. These include mar-
tingales for deciding almost sure reachability, but also martingales for bounding reacha-
bility and recurrence probabilities. Lastly, we explain the idea of template-based synthesis
to automatically find various martingales for program verification by using optimization
techniques. Linear and polynomial templates are considered and experiments are done
for the former. The results show that while linear template synthesis is a sound technique,
it tends to give trivial or very bad approximations of probability bounds in many cases.
In contrast, for establishing the quantitative property of positive almost sure termination,
even linear templates can be useful.
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1 Introduction

The analysis and study of systems and their runtime behavior is an important research
topic in the field of computer science. There are a variety of difterent systems and models
to describe them, but the most well-known and powerful ones include Turing machines
and standard computer programs written in a programming language such as C, Java or
Haskell. These systems are sequential, that is, they start from some starting state and then
evolve through repeated transitions to successor states. The state space may be described
as a set S and the evolution as a sequence of states S“, the runs of the system. An often
asked question is whether the runs of a given program exhibit a certain property such as
guaranteed termination, safety or liveliness. This decision of program properties is known
as verification. Termination, however, is known to be an undecidable property since com-
puter programs are known to be theoretically as powerful as Turing machines for which the
so called Halting problem is undecidable. So instead of looking at arbitrary, unrestricted
systems, more practical approaches have been adopted. One is to restrict the system, such
as the memory size of a program or the allowed actions of the system. While these restric-
tions can make many problems solvable, real life software may or may not adhere to any of’
the restricted models.

Another approach to deal with these kind of problems is to forgo the need to find an
exact solution but to settle with incomplete but sound methods such as system behavior
approximations. A common technique used to prove termination in term-rewriting sys-
tems is by finding a well-ordering on the terms which decreases as rewriting rules are ap-
plied. If such an ordering exists, then only finitely many rewrites can be performed before
the system eventually can not perform any more rewrites|1, 2]. For deterministic programs,
termination can be shown by finding so called ranking functions[3]. A ranking function can
be seen as a kind of potential which decreases as the system evolves and guarantees that
the system terminates as soon the potential goes below a certain threshold. In this sense,
it induces a well-ordering on the state space of the system. A ranking function f roughly
satisfies two properties:

1. f(s) > f(s') + 1 for all transitions s — ¢/,
2. f(s) <b = sis terminating state (where b is some threshold value)

Intuitively, the function assigns to each state the distance towards the terminating state
and since it decreases over time (over transitions), it witnesses the fact that the system gets
closer to termination as time progresses. A similar idea is used in systems modeled by
ordinary differential equations (ODEs) where stability can be shown using so called Lya-
punov functions [4, 5]. In either case, a system may be stable or may be terminating but a
ranking function to witness it might not exist or might not be computable. Hence, finding
a ranking function is generally a sound but incomplete method.

Another type of system where this approach is adopted are stochastic systems such as
probabilistic rewriting systems|[6, 7] and probabilistic programs. A probabilistic program,



in contrast to usual deterministic programs, can also model stochastic behavior by e.g.
sampling from distributions or branching in a probabilistic manner. Thus, probabilis-
tic programs exhibit strictly more behavior than their deterministic counterpart, making
problems such as sure termination even harder to handle. Concretely, the notion of ter-
mination is replaced by the notion of almost sure termination, asking whether the system
terminates with probability 1.

Ranking functions as described before are insufficient to witness almost sure termina-
tion. The problem is that many stochastic systems, even when terminating almost surely,
occasionally move away from the terminating state caused by their stochastic behavior.
So instead of a function which witnesses the systems guaranteed evolution towards ter-
mination along all transitions, a function which witnesses an expected evolution towards
termination is more appropriate. For this purpose, so called probabilistic ranking func-
tions (also sometimes called Lyapunov-style ranking functions) are used[8, 9, 10, 8, 11, 12].
Intuitively, they model the expected distance (expected number of steps/transitions) to the
terminating state instead of the real distance.

1. f(s) > Eg(f(s') | s —s') + 1 for all states s,
2. f(s) <b = sisterminating state (where b is some threshold value)

These probabilistic ranking functions turn out to have supermartingale behavior, which is
a special kind of behavior of stochastic processes whose expected value is non-increasing
over time. This allows the analysis via martingale theory and makes so called martin-
gale concentration inequalities like AzumaHoeftding’s inequality applicable, giving certain
bounds on the systems stochastic evolution.

Instead of looking at the termination problem in a qualitative, boolean way, the notion of
termination probabilities becomes also available. Obviously, determining the exact prob-
abilities encompasses the Halting problem for deterministic systems, making it generally
undecidable. However, the problem of computing probabilities as real values allows a natu-
ral relaxation, namely, approximation instead of exact computation. Probabilistic ranking
functions are not directly applicable in this quantitative setting, but it turns out that the
underlying notion of supermartingales (and also submartingales) is able to be extended
to witness probability bounds. Difference-bounded repulsing supermartingales are a vari-
ation of supermartingale processes that are capable of overapproximating the termina-
tion or reachability probability, that is, they give quantitative bounds instead of qualitative
assertions|12, 13]. These make use Azuma-Hoeffding’s inequality to derive their bounds.

The goal of this thesis is to give a solid understanding on how martingale-based methods
can be used to tackle problems such as deciding (almost sure) termination of probabilistic
programs, or finding bounds on the termination probability. Furthermore, they can also
be used in a variety of other problems such as reachability, bounded reachability and tail
reachability. We consider various different notions of martingales for different purposes
such as

m Additive ranking supermartingales for almost sure reachability[12, 13]

m Higher order ranking supermartingales for bounding tail probabilities[14]
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m Nonnegative repulsing supermartingales for overapproximation of reachability prob-
abilities [11, 13]

m Nonnegative repulsing J-supermartingales for overapproximation of bounded reach-
ability probabilities[11]

m y-Scaled submartingles for underapproximation of reachability probabilities[11, 15]
m A combination of super- and submartingale for recurrence probabilities

We develop the necessary theory from two different viewpoints, namely, once from the
viewpoint of probabilistic martingale theory and once from the viewpoint of fixed point
theory. From the former one, we derive soundness and completeness results by using the
well-known Optional Stopping Theorem for martingales. We remark that we do not use any
martingale concentration inequalities at all and solely rely on the Optional Stopping The-
orem. From the fixed point theoretic point of view we derive the same results in a purely
fixed point theoretic manner and establish the connection between martingales and fixed
points. The extensive use of fixed point theory in this probabilistic martingale setting has
recently been made by Takisaka et al.[11] and Kura et al.[14]. We build upon their work and
extend it by providing the link between the commonly used pure martingale theoretic ap-
proaches and their new fixed point theoretic approaches. Our notation is in the remainder
of this work is heavily influenced by Takisaka’s and Kura’s work.

Our setting is probabilistic programs with nondeterminism; an extension of probabilistic
programs with nondeterministic assignments and branchings. In the presence of nonde-
terminism, the goal is to analyze the program under angelic and demonic behavior, i.e. to
give probability bounds for the worst case and best case behaviors.

Martingale methods are applicable to infinite state systems such as those induced by
probabilistic programs and in some cases even when non-deterministic behavior is present.
Remarkably, martingales are effective in the sense that they can be computed - under some
restrictions - automatically using template-based optimization[12, 13, 11, 14]. We give a sim-
ple description on how linear and polynomial templates can be used to compute martin-
gales automatically via linear programming (LP) or semi-definite programming (SDP) and
apply the linear template method experimentally.

Remark. For ease of presentation, the word martingale is often used to include the notions
of supermartingales and submartingales although they are technically no martingales in
the formal sense. In fact, none of the presented methods in this thesis use a strict martin-
gale but always one of its relaxations.

The thesis is structured as follows:

1. Chapter 2 revises the basic theories of probability, measurability and martingales in
Section 2.1. Section 2.2 revises order theory with a focus on lattices and fixed points.

2. Chapter 3 presents the main theory of this thesis showing how martingale-based
methods can be used in program verification. Section 3.1 introduces probabilistic
programs (with nondeterminism) syntactically and gives their semantics in terms
of probabilistic control flow graphs (pCFGs) and Markov decision processes (MDPs).



Section 3.2 introduces different concrete super- and submartingales which have been
used to verify programs. Each type of martingale has its own dedicated subsection.

. Chapter 4 explains how different martingales can be automatically synthesized using
template based optimization. Section 4.1 shows that martingale constraints for lin-
ear templates can be reduced to a linear programming problem. Section 4.2 shows
that polynomial template synthesis also works by using semidefinite programming
instead. Lastly, Section 4.3 demonstrates linear template-based synthesis by applying
it to various programs.



2 Background

This chapter explains the basic concepts, notions and definitions used throughout this the-
sis. In particular, it revises the basic ideas of probabilistic theory and order theory with an
explicit focus on their specialized theories of martingales, measurability and fixed points.
Both of these theories are fundamental, and hence, crucial to the understanding of the re-
mainder of this thesis. If the reader is familiar with these topics he may directly skip to
Chapter 3 and come back to this chapter when necessary.

2.1 Probability Theory

This section revises the basics of probabilistic theory needed to understand the main con-
tent of this paper. A special focus lies on measure theory and martingale theory which both
are presented in their own subsections.

Definition 2.1.1 (Probability space). A probability space is a triple (Q, F, t) consisting of
1. a set () called the sample space,
2. afamily F C P(Q) of subsets of () forming a o-Algebra,
3. a probability measure u : F — [0, 1].

The elements of F are called measurable sets, measurable events or simply just events. A set
E which is not contained in F is called non-measurable. A o-Algebra, in short, is a family of
subsets which contains the whole space () and is closed under countable unions, countable
intersections and complements. The probability measure y simply assigns to each event
the probability that that event occurs. It does so in a reasonable manner, given by the
following axioms:

= u(Q) =1,

m u( U E) = ¥ u(E;) for countable collections of disjoint events E;.
icIN icIN

The second property of j is also called -additivity or countable additivity. It is easy to
see that u is monotone, i.e. #(A) < u(B) for A C B. The reason why one restricts to
a subset F C P(Q)) of measurable events is discussed in Subsection 2.1.1 in more detail.
Broadly speaking, it is by no means easy to assign probabilities to arbitrary subsets of ()
because of rather complicated, pathological subsets (e.g. the Vitali sets in R). The definition
of o-Algebra and measurability is also discussed there.

Definition 2.1.2 (Random variable). A random variable X : () — Y is a measurable func-
tion! between the probability space (Q, F, 1) and the measurable space (Y, X).

!Measurability is defined in the following subsection
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In most cases the target measurable space is (R, B(R)) or (R, B(R)) where B denotes
the Borel o-Algebra and R = R U {4-c0} the extended reals, then X is called a (extended)
real-valued random variable. The probability measure y on (Q), F) defines a push-forward
measure yx : X — [0,1] on (Y, X) by assigning to each S € X the probability

nx(S) :=Pr(X € 8) = p({w € Q| X(w) € S}) = u(X1(8)).
For real-valued random variables the concept of integration is definable.

Definition 2.1.3 (Integration). Let X : () — [0, 00| be a nonnegative, real-valued random
variable. Then the integral of X with respect to a measure y can be defined as

[ xdn = [ X(@n(dw)
= sup{Zinf{X(aJ) | w e A;}u(A;) | {A;} is a finite partition of QO }.

X is said to be integrable if [ Xdyu < oo holds.

This definition may be extended to real-valued random variables X : O — R by splitting
X into its positive and negative parts and integrating them separately:

Xd ::/X*d —/X—d,

where X' := max{0, X} and X~ := max{0, —X}. This integral is only defined if either of
the right-hand side integrals takes a finite value. X is then said to be integrable if | X| :=
X 4 X~ is integrable, that is, both integrals are finite.

Using the push-forward measure uy of a random variable X : ) — R one may alterna-
tively integrate over R instead of () via the identity

Xd:/d :/ dx).
/Q w= | xdux ﬁxﬂx( x)

An important theorem related to integration is the so called Monotone Convergence Theo-
rem which shows the exchangability of taking the monotone limit and integration.

Theorem 2.1.1 (Monotone Convergence Theorem). [16, Theorem 2.146] Let {X,, } e be a
monotonically increasing sequence of nonnegative random variables that converges point-wise to a
random variable X. Then the limit operation and the integration operation commute:

n—o00

lim [ X,du = / lim X,dy = /Xdy.
n o0

Definition 2.1.4 (Moments). The k-th moment of a real-valued random variable X is given

by
E(Xx* :——/ x*du.
(X) o H
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The first moment [E(X) is also called the expectation of X. The second moment of the
random variable (X — [E(X)) is also known as the variance of X.

In Section 3.1 the notion of probabilistic programs over real-valued variables is introduced.
The objects of interest are the possible runs of the system, that is, the sample space is the
set ofall sequences of program configurations. A typical quantity to analyze is the expected
termination time. The termination time may be given by a random variable T which assigns
to each run the time it takes to enter a terminating state or cc if it does not terminate, then
the problem of deciding positive? almost sure termination is reduced to computing E(T).

2.1.1 Measurability

Many results about measurability in this section apply to general measurable spaces and
are not unique to probability spaces. Accordingly, most results about measurability are
stated with respect to arbitrary measurable spaces.

The goal of measure theory is to measure objects (subsets) and assign them some kind of
real value indicating mass, size or probability. Consider for example the 2d-plane R2. A
reasonable measure in this setting is the measure of area. For many geometric objects like
rectangles, disks or arbitrary polygons, elementary formulas are known which give the area
of such objects. An immediately arising question is how one measures more complex ob-
jects or even arbitrary subsets of for example R?. Measure theory tries to give an answer
to this question. It turns out that assigning lengths, areas or volumes to arbitrary subsets
of R" is not easy at all. Indeed, the well known Vitali sets discovered by Giuseppe Vitali
give an example of subsets of R which cannot be assigned a geometric length in a consis-
tent manner. Hence, the Vitali sets are said to be non-measurable. Another example is the
Banach-Tarski paradox which shows that a ball can be decomposed into multiple parts and
then reassembled into two balls of the same size as the original, effectively doubling the
original ball. This decomposition is non-trivial and needs the Axiom of Choice (so do the
Vitali sets). The Banach-Tarski paradox shows that the parts obtained in the decomposition
are in a sense so complexly or oddly shaped that the concept of geometric size fails to apply.
In both cases, it was assumed that a reasonable geometric measure shall be invariant under
translation and rotation. This shows that under these simple geometric conditions we are
forced to somehow restrict the objects to be measured. These kind of problems also arise
when trying to assign a probability to events instead of a geometric size to geometric object.
To circumvent such problems, instead of trying to measure arbitrary subsets, one restricts
to a family of so called measurable subsets which are given in the form of'a o-Algebra.

Definition 2.1.5 (0-Algebra). A o-Algebra ¥ of'a set X is a family of subsets which
m contains the whole set X € X,
m is closed under countable unions: (J;cpy A; € Z for A; € X,

m and is closed under complementation: A € ¥ — (X \ A) € %.

2Positive a.s. termination means finite termination time, while (standard) a.s. termination refers to the
probability of termination to be 1. The former implies the latter, but not vice versa.
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The empty set @ = X \ X € X is also contained in X and by De Morgan’s laws, X. is also
closed under countable intersections.

Intuitively, one expects that if some finite set of objects are measurable then surely their
union, intersection and complement can be measured as well. By applying limit proce-
dures, this concept of measurability can then be extended to countable unions and inter-
sections as well. This intuition leads to the idea to actually construct a c-Algebra from a set
of simple measurable objects. Assume that there is a family of subsets for which it is easy
to define some kind of measure, e.g. consider the real line R and its open intervals (a, b). It
is straightforward to assign a size to intervals (a, b), namely the length b — a. Starting from
these open intervals, one can construct a -Algebra by finding the closure with respect to
countable unions and complements. This specific o-Algebra which is generated from the
open intervals is the so called Borel o-Algebra. It will be formally introduced later in this
section. Although defining this generated o-Algebra is straightforward, extending the mea-
sure on the simple intervals to the whole o-Algebra is not. Some more assumptions on the
measure and the generating set are needed to make it work as expected.

Borel o-Algebras are the most important o-Algebras in measure theory, and the most
commonly analyzed o-Algebras are either the Borel o-Algebras themselves or some larger
o-Algebra containing it. Before further going into this specific o-Algebra, we first formalize
the previously mentioned idea of constructing o-Algebras.

Definition 2.1.6 (Generated c-Algebra). Let A be a family of subsets of a ground set X.
Define 0(.A) to be the smallest o-Algebra containing .A. It is formally given by

o(A)=()Z
Acy,

where the intersection ranges over all possible -Algebras X containing .A. This intersec-
tion is well defined, because the family of c-Algebras is closed under arbitrary intersections
and it is nonempty because it contains a largest element P (X) which always contains .A.

Remark. A pre-measure defined on a family of subsets can in generally not be extended to a
measure on its generated o-Algebra. The generating set has to satisfy some extra properties
in order for this to work. Carathéodory’s extension theorem[17] states that if the generating
set forms a ring, then the pre-measure on this ring can be extended to a measure on the
generated o-Algebra. If the pre-measure is o-additive, then this extension is unique.

Now we are ready to define the object of interest, namely measurable spaces.
Definition 2.1.7 (Measurable space). A measurable space is a tuple (X, X) where
m X is a set,
m and X is a o-Algebra over X.
The elements of 2. are said to be measurable.

As the name suggests, a measurable space can be measured by additionally defining a
function y, the so called measure, which assigns a nonnegative value to each measurable set
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S € X. Depending on the context, this value can then be interpreted as a size, mass or even
probability. Generally, there are many ways to choose y but once a choice has been fixed,
one has a measure space.

Definition 2.1.8 (Measure space). A measure space is a tuple (X, X, u) where
m the tuple (X, X) is a measurable space,

m the measure u : ¥ — [0, 00] is a o-additive function satisfying y (@) = 0. o-additivity
of u means that for any countable collection E, € X of disjoint sets, the equality

1(Uy En) = ¥, u(E,,) is satisfied.

p is called finite if y(X) < oo. It is o-finite if X is the countable union of measurable sets
with each having finite measure.

If we denote the Borel o-Algebra of R by B(IR), then (IR, B(R), 1) is the typical measure
space associated with IR, where y is the unique measure that assigns to an open interval
(a,b) its length b — a. This measure is o-finite since R is the countable union of the inter-
vals I, = (—n,n) (n € N), each of which has a finite measure u(I,) = 2n < co. Another
more simple example is a discrete set S with the counting measure y = # on the power
set P(S) of S. The counting measure simply assigns to each set the number of elements
in that set or co if the set is infinite. Again, # is o-finite if' S is countable infinite and even
finite if'S is finite.

A probability space as defined before is nothing but a special kind of measure space,
namely one, where the measure is a probability measure and assigns mass 1 to the whole
space. In particular, probability spaces are finite measure spaces and every finite measure
space (except the trivial constant 0 measure space) is equivalent to a probability space by
simply normalizing the measure, that is, by setting u’(A) = u(A)/u(X). Even o-finite
measure spaces can be transformed to probability spaces by making use of a countable
partition into finite measure sets. For example, consider throwing a six-sided dice. A pos-
sible measure space is (X, P(X), #) where X = {1,2,3,4,5,6} and # is the counting mea-
sure. Since #(X) = 6, this space is no probability space but it is possible to construct the
following probability space (X, P(X), i) where u(A) = #(A)/#(X) = #(A)/6. In this
space every possible outcome has equal probability of 1/6. Note that the original finite
measure space and the derived probability space differ only in the associated measure. It is
quite common to have different measures on the same ground set and o-Algebra, especially
when dealing with probability spaces. This gives reason to the notion of measurable spaces
(X, %) where no specific measure is fixed. Also note that the question whether a particu-
lar set A is measurable is independent of the actual measure and solely depends on the
o-Algebra. Hence, it is enough to consider measurable spaces instead of measure spaces
to decide measurability in many cases. The focus of this subsection lies on the aspect of’
measurability therefore it is mostly concerned with measurable spaces.

The definition of Borel sets and Borel o-Algebras heavily rely on the idea of openness
and closedness of sets. While both ofthese concepts are familiar in the setting of euclidean
spaces IR"”, for more complex or even more simple spaces like discrete ones, these concepts
might be obscure. First, let us define openness in a more general setting,
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Definition 2.1.9 (Topological space). A tuple (X, 7) is called a topological space if X is a set
and 7 is a family of subsets of X satisfying:

mPcTtand X € 1,
m 7 is closed under arbitrary unions,
m 7 is closed under finite intersections.
T is then called an open topology on X and its elements are called open sets.

An alternative definition requires closure under finite unions and arbitrary intersections,
in which case it is referred to as closed topology and its elements are closed sets. Both defini-
tions are in a sense equivalent and both induce the same Borel structure. Because of this,
every mentioning of topologies in the following sections implicitly refers to open topolo-
gies as defined above unless otherwise specified. Analoguous to the euclidean case, a set is
said to be closed iff its complement is open, i.e. element of the topology. The ground set X
is always open and closed (clopen), so is the empty set. Generally, for every open topology
one can construct a closed topology by complementing each set in the open topology.

The standard example of a topological space (with open topology) is again the real num-
ber line R together with its open sets as the topology 7. In the reals, a subset A C R is
considered open if and only if for every point a € A there exists an interval I(a,7) = {x €
R | |x —a|] < r} centered at a with a radius r > 0 which is fully contained in A. These
intervals themselves are open and are also called open neighborhoods of a. It is easy to check
that these usual open sets of R indeed satisfy the necessary properties of an open topology.
Interestingly, it is enough to start from the open intervals of IR and then find the smallest
topology which contains all open intervals to get the open topology T of R. Here it makes
sense to speak of the smallest topology because the family of topologies is closed under
arbitrary intersections, hence one can intersect all topologies which contain the open in-
tervals and get a smallest topology w.r.t. set inclusion. In this case we say that the open
intervals generate T. In general euclidean spaces R”, the standard topology is generated by
the open balls B(a,7) = {x € R" | d(x,a) < r} where d is the usual euclidean distance.
This topology is naturally defined on R” by its metric d. Indeed, for any metric space,
i.e. a space equipped with a distance function, there is always a naturally corresponding
topology generated via the distance function.

A discrete set S can be endowed with its power set P(S) to form a topological space. In
this case, every subset of S is considered open, in particular, all singletons {s} C S are
open. This topology is called the discrete topology. In contrast there also exists the indiscrete
or trivial topology which only contains the whole set and the empty set.

Definition 2.1.10 (Continuous function). Let (X, 7) and (Y, ') be two topological spaces.
A function f : X — Y is called continuous if for every open set B € 7/ in Y the preimage
f~Y(B) is open in X, that is, f"!(B) € T, or equivalently if f~1(7') C 7 holds.

Remark. For the real number line R with its usual topology, a function f on R is topologi-
cally continuous iffit is continuous in the usual sense. In other words, the above definition
is a generalization of the known notion of continuity of real functions.
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Topological spaces themselves are a big research topic in mathematics, however, we are
mainly interested in o-Algebras and measurability. Having this in mind, we are now ready
to formally define the notion of Borel sets and the Borel o-Algebra which are fundamental
to measure theory.

Definition 2.1.11 (Borel o-Algebra). Let (X, 7) be a topological space. Let B(X, T) be the
smallest o-Algebra which contains the topology t. This o-Algebra is called the Borel o-
Algebra of X and if the topology is clear from context, we simply write B(X) instead. Its
elements are called Borel sets. Formally,

B(X,t)=0(7)
is simply the o-Algebra generated by 7.

Sometimes we say that a Borel o-Algebra is generated by some family of open sets A,
like the open balls in R”. This means that .4 generates a topology T = 7(.A) and from
that topology we generate B(X) = o(7) which is generally different from the o-Algebra
o(A) generated by A directly. The reason is that topologies are closed under arbitrary
unions while o-Algebras are only closed under countable unions. In cases where uncount-
able unions of a generating set .A can be different from countable unions, we have 0 (A) #
o(t(A)). Consider for example all singleton sets of R as a generating set. Every subset
of R can be expressed as an uncountable union of all its elements, hence the generated
topology is P(IR). On the other hand, the generated o-Algebra has only countable unions
and hence only consists of all countable subsets of R and its complements (co-countable
sets). However, in many practical cases such as euclidean spaces with the open topology
0(A) and 0(7(.A)) do indeed coincide.

Since o-Algebras are closed under complements, starting from a closed topology (e.g.
the one generated by the closed intervals on RR) yields the same Borel o-Algebra, making
differentiation between closed and open topologies unnecessary in this setting. Generally,
the Borel o-Algebra contains all open and closed sets, meaning all closed and open sets are
measurable with respect to that o-Algebra.

Definition 2.1.12 (Measurable function). Let (X, %) and (Y, X’) be two measurable spaces. A
function f : X — Y is said to be measurable if the preimage f ~!(B) of every measurable set
B C Y in Y is measurable in X. Formally, f~!(B) € X holds for all B € ¥/, or equivalently
i) cs

Measurable functions, just like continuous functions, are closed under composition. Of-
tentimes the topology of a given set X is implied or clear by context. In those cases, the
associated Borel o-Algebra B(X) is implied as well and is not specifically mentioned. We
then call a function f : X — Y Borel measurable, if f is a measurable function from
(X, B(X)) to (Y, B(Y)). The set of all Borel measurable functions from X to Y is denoted
by B(X,Y).

By the definition of measurability of a function f one needs to check that all preimages
f~1(A) of measurable A C Y are also measurable in X. As those sets A can generally be of
complicated shape, this task can be difficult. However, it actually suffices to consider only
the preimages of a generating set of the o-Algebra in the codomain. The following lemma
makes this precise.
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Lemma 2.1.2. Let (X,X) and (Y,%’) be two measurable spaces and let ¥’ = o(.A) be generated
by some family of sets A. A function f : X — Y is measurable iff f ~1(A) is measurable in X for
all A inA, or equivalently, iff f~1(A) C X.

Proof. The implication from left to right is immediate. First observe that measurability of
f is equivalent to the inclusion f~!(X’) C X and that the statement we need to show is
equivalent to f~1(A) C Z. Since A C ¥/ we see that f~1(A) C f~1(X') C = holds.

For the other direction, note that inverse images preserve arbitrary unions, intersections
and complements. Because of this, we see that the equality f ' (c(A)) = ¢(f ~'(.A)) holds.
Now it follows that f~1(Z') = f~1(c(A)) = o(f1(A)) C ¢(X) = Z, where the inclusion
holds because of the premise and the last equality holds because X is already a -Algebra
and thus the smallest one containing itself: O

Corollary 2.1.2.1. Let f : X — Y be a continuous function between two topological spaces, then f
is Borel measurable.

Proof. The Borel o-Algebra B(Y) of Y is generated by the open sets of Y’s topology. From
the previous lemma it suffices to show that the f-preimages of these open sets are mea-
surable in X. Since f is continuous, the preimages of open sets in Y are open in X. By
definition of B(X) all open sets are measurable. O

Remark. The Borel o-Algebra on X is actually the smallest o-Algebra which makes all con-
tinuous functions f : X — X measurable. Notice that the identity function id : X — X
is continuous. Therefore all open subsets A = id~!(A) must be measurable but B(X) is
precisely the smallest o-Algebra that makes all open sets measurable.

It is often desirable to have larger o-Algebras to make more functions measurable and
hence allow better analysis of the measure spaces involved. But as mentioned in the in-
troductory example, choosing too large o-Algebras such as the power set P may introduce
problems in finding actual measures on the measurable space. Therefore, one approaches
the problem from the other side and starts with a smaller family of sets which is easily mea-
sured, such as the open balls, and then constructs a c-Algebra accordingly. This approach
has given us the Borel o-Algebra so far. However, it is possible to extend this o-Algebra
even further in natural ways.

One such way is the so called completion of measure spaces. The idea is to add null sets,
i.e. sets which have measure 0, to the family of measurable sets. Unlike before, this con-
struction explicitly relies on the given measure.

Definition 2.1.13 (Complete measure space). A measure space (X, %, ) is said to be complete
if every subset N C A of anull set A € %, i.e. a set satisfying u(A) = 0, is measurable:

NCAecXandu(A)=0 = NeX

Given an incomplete measure space (X, X, i) one can construct its completion (X, %, u*)
in the following way:

1 Find N = {NCX|3A€X:NCAAu(A) =0},
2. define ¥, = c(ZUN),
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3. let u*(A) = inf{u(B) | AC BeX}.

p* is called the outer measure and in case y is o-finite, this p* is the unique extension of u
to X [17].

Going back to the example of R and its Borel o-Algebra generated by the open intervals,
the standard measure can be defined as the unique measure that satisfies u((a,b)) = b —
a. This measure space, however, is not complete. It can be shown that the Cantor set C
has measure zero so all of its subsets should be included in a complete measure space.
A counting argument shows that B(R) has cardinality of the continuum and so does the
Cantor set C. Therefore the power set P(C) is strictly larger than the continuum. That
means there must exist sets in P(C) which are not contained in B(IR), however, all those
sets are subsets of anull set and hence B(IR) is not complete with respect to y. Interestingly,
this also shows that the completion B(IR), is strictly larger than B(X) in cardinality The
associated measure y* can be identified as the Lebesgue measure known from integration
theory.

The obvious disadvantage of completion is the explicit dependency on the measure p.
In Section 3.2 we are interested in analyzing runtime behavior of stochastic systems, in
particular, of probabilistic programs. In that case we define a measure on the set of runs (i.e.
sequences of program configurations) but this measure will depend on the initial state of
the system. Because we also consider nondeterministic behavior, the probability measure
will also be dependent on the way in which nondeterminism gets resolved. Through this
dependencies, it is not possible to fix any completion of the associated o-Algebra a priori.
Rather, we want to measure runs independent of the concrete completion, i.e. we want to
have sets which are measurable with respect to every possible completion. Obviously, the
o-Algebra of the original, uncompleted measure space satisfies this condition but there
actually exists a larger o-Algebra satisfying it.

Definition 2.1.14 (Universal completion). Let (X,X) be a measurable space. The universal
completion ¥* is defined by
> =2,
I3

where p ranges over all o-finite measures on X. A set A € X* is said to be universally
measurable.

If ¥ = B(X) is a Borel -Algebra, then we write U/ (X) as the universal completion of
B(X),ieU(X) = B(X)*. Itis notimmediately clear that the universal completion is larger
than the Borel o-Algebra, but it can be shown that it indeed is in many cases. Specifically,
for the real numbers R the Borel o-Algebra B(IR) is strictly contained in its universal com-
pletion /(IR )[18, Appendix B.3]. Similarly to Borel measurable functions, we say a function
f : X — Y is universally measurable if f is measurable from (X,U(X)) to (Y, U(Y)). The
set of all universally functions from X to Y is denoted by U (X, Y). The following lemma
gives a characterization of universal measurability.

Lemma 2.1.3. [18, Proposition 7.44, Corollary 7.44.1] A function f : X — Y is universally measur-
able iff f is measurable from (X, U (X)) to (Y, B(X)).

To determine universal measurability, it suffices to look at preimages of Borel sets.
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Corollary 2.1.3.1. Every Borel measurable function f : X — Y is universally measurable.

For the analysis of systems, one needs to analyze sequences of states or configurations,
i.e. if' S denotes the state space then one is interested in the set of finite runs S* or infinite
runs S¢. It is possible to construct appropriate measurable spaces for either of those cases
if a measurable space for S is known. This is done by defining a product operation on
o-Algebras such that one can construct a c-Algebra for e.g. X X Y from ones on X and Y.

Definition 2.1.15 (Product measurable space). Let I be an index set and (X;, %;) a family of
measurable spaces indexed by i € I. The product space (X, %) is defined such that

X=]]xX

i€l
m X is the smallest o-Algebra such that all the projections 77; : X — X; are measurable.

For countable products, the second condition that all the projections are measurable
can be stated in a different manner. The o-Algebra X can equivalently be expressed as the
o-Algebra generated by the rectangles

{A1><A2><---><Ai><---|An€Zn}.

To see this, let A = A; X Ay x ... be a rectangle. Since A, is measurable in X,, and
the projection 71, is a measurable function, the preimage 7,1 (A,) = X; X -+ x X,,_1 X
Ay X Xpy1 X ... is measurable in the product space X. Now A = (,en 7T, ' (Ay) is the
countable intersection of measurable sets and hence measurable itself.

Conversely, if all rectangles are measurable then in particular also the rectangle X; x
oo X X1 X Ay X Xyq1 X - = 71, (Ay), hence 7, is a measurable function for all n €
IN.

For uncountable products, a rectangle can no longer be expressed as a countable inter-
section so the first part of the proof fails. In fact, the product o-Algebra is then smaller
than the o-Algebra generated by the rectangles.

Yet another way to construct the product o-Algebra for countable products is by consid-
ering cylinder sets of the form C, (A1, Ay, ..., Ap) = A1 X Ap X -+ - X Ay X [ s, X; where
all the A; are measurable in X;. These cylinder sets generate the cylindrical c-Algebra which
coincides with the product o-Algebra for countable products. This is easy to see, since ev-
ery cylinder is a rectangle and every rectangle can be expressed as a countable intersection
of cylinder sets.

Cylinder sets are a natural way to represent runtime behavior of infinite state systems.
Consider again a system with some countable state space S which runs indefinitely. A
run or execution of the system then corresponds to an element in S“. A cylinder set
Chn = A1 X Ay X -+ X Ay X [];>, S distinguishes runs solely on the finite prefixes of
length n and thus containment of a run can be verified after finitely many steps. Many
interesting sets such as the set of terminating runs can be expressed in terms of cylinder
sets as well. A particularly useful property however, is the fact that a (cylinder) measure on
the cylinder sets can be extended to a measure on the infinite runs S“. For probabilistic
systems, defining a probability on the cylinders then naturally gives rise to a probability
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measure on the set of infinite runs (e.g. via Kolmogorov’s Extension Theorem[17, Theorem
7.7.1]). We make use of this in the main part of this thesis where we define a measure exactly
on the cylinder sets and extend it to all infinite runs.
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2.1.2 Martingale Theory

A martingale in probabilistic theory is a special kind of stochastic process, that is, a se-
quence of random variables for which the expected value at some time ¢ + 1 equals the
current value at time ¢ given all previously observed values. In other words, if one stops
the process at some point of time t and observes a current value of m; then the value m;
in the next step is expected to stay at the current value on average. For example, consider
a simple coin tossing game where the player bets one dollar on head every round. As-
suming the player can play as long as he wants and is only forced to stop when he goes
broke, this game constitutes a martingale. If at any point in time the player has a pos-
itive amount m; of money, then after playing one more round his expected earning is
E(m;yq1) = 0.5(m; + 1) +0.5(m; — 1) = m;. One can derive the result that the expected
earnings over multiple rounds does not change either. In particular, if the player starts
with an initial wealth m, then the expected earnings after t more rounds stays at value my.
The player neither gains nor loses money on average no matter how long he decides to play
the game.

Now consider the same game but with a different betting strategy. Instead of constantly
betting a single dollar, the player doubles his bet every time he loses until he wins once.
The player’s idea is to make up all his losses in a single win. Ifhe starts with an initial bet my
then after 1 losses in a row he will have lost & 12"~ = m((2" — 1) dollars, assuming he
does not go broke in between rounds. If he wins on the (1 4 1)-th round he gains m - 2"
dollars back giving him a total earning of mg - 2" — m(2" — 1) = mg dollars. Since the
probability to permanently lose goes towards 0, the player hopes to eventually win once
and make a profit. This type of betting system, where the player tries to make up for all
the losses by constantly increasing his bet, is also known as a martingale betting system. It
is easy to see that this betting strategy is still a martingale since in every round the player
either wins or loses the bet with probability 1/2 each, which averages out to a winning of
zero dollars per round. In contrast to naive intuition, Martingale theory then predicts that
for any initial bet m( and total wealth w, the player will not make any winnings on average
despite his clever betting strategy. Only if the player has unbounded wealth, time and bets,
his betting strategy can be considered a winning strategy.

Definition 2.1.16 (Simple martingale). A martingale is a stochastic random process { X } e
such that the conditional expectations exist and satisfy

E(Xit1 | Xe =x0, X401 = x4-1,..., X0 = X0) = x4

for all t > 0. The X; are real-valued random variables. The existence of the conditional
expectation will be discussed later.

The equality above formalizes the previously given idea of a game where the expected
winnings do not change after playing one more round. A more general definition of mar-
tingales is given later in this section; in particular the meaning of conditional expectation is
explained then. Related to martingales are the two concepts of super- and submartingales
whose definitions are obtained by relaxing the equality on the conditional expectation.
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Definition 2.1.17 (Super- and submartingales). A random process { X; };cn is called a super-
martingale if it satisfies

E(Xes1 | Xe = xp, Xe1 = xp-1,..., Xo = X0) < x,
and a submartingale if it satisfies
E(Xes1 | Xe = xp, Xem1 = xp-1,..., Xo = X0) = xp.

A martingale can then alternatively be defined to simultaneously be a supermartingale
as well as a submartingale. While martingales describe, in a sense, a stable process, super-
martingales describe a process whose value decreases over time. Consider for example a
roulette game where the player constantly bets on the same color red and gets twice his
bet on winning or loses it otherwise. If half of the roulette was red, this gambling process
could be considered a martingale. However, casino roulettes also have a green field mak-
ing strictly less than half of the roulette red. In expectation the player loses money every
round while the casino makes money. The player process is thus a supermartingale and
the casino process can be considered a submartingale.

The examples of martingales given so far were processes where a player repeatedly gam-
bles until he either decides to stop playing or loses all his money. These points of time
where the process is or gets stopped are called stopping times. Stopping times are crucial in
the analysis of martingales as seen in the Optional Stopping Theorem. Informally, a stopping
time is usually given by a stopping rule such as "play until you run out of money" or "play 100
rounds or until you doubled your money". However, these rules cannot be arbitrary and need to
satisfy an essential property. The decision on whether to stop at a point f in time must be
made solely from past and current information. For example, the rule "stop as soon as you
reach the maximum winning you will ever earn" is not a stopping rule because it inquires infor-
mation about the future of the process. To formally define these restrictions, the notions
of adapted processes and filtrations are needed.

Remark. Some authors require a stopping rule to be finite almost surely, meaning that it
will be satisfied after finite time with probability 1. We do not impose this restriction here.

Definition 2.1.18 (Filtered probability space). Let ((), F, i) be a probability space. A filtra-
tion is an increasing sequence IF = {F };c of sub-c-Algebras of F. The tuple (Q, F,F, )
is then called a filtered probability space.

The idea of a filtration is to restrict the accessible information for random processes at
any given time in such a way that the available information increases over time. Ifa random
process { X; }+en at time £ only depends on the information available in 7, that is, its value
X} can be determined given the information in F;, then the process is said to be adapted to
the filtration {F; }seN-

Definition 2.1.19 (Adapted process). Let (Q), F,IF, u) be a filtered probability space where
F = {F};en is a filtration. A stochastic process { X; };c is adapted to TF iff:

Vt € IN : X; is F;-measurable.
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The measurability condition expresses the fact that the value of X; is determined only
by information available at time ¢. Consider a repeated coin tossing process where X;
takes values in {H, T} depending on the outcome of the ¢-th coin toss. Assume the coin
is tossed a total of n times, then the associated sample space is Q = {H, T}" and the
o-Algebra is its power set P(Q)). The probability measure does not matter for the ex-
ample but we can assume a uniform distribution, meaning that every outcome is equally
likely. Now we want to model the fact that at some time ¢ we have only information about
previous results. Consider the filtration defined by 7y = {@,Q}, F; = ¢({C1 x Ca X
- x Cx {H,T}""t | C; € {H,T}}). The o-Algebra F; is generated by cylinder sets
of bounded length t. This filtration captures the idea that at time ¢ we only have infor-
mation about the first f coin tosses. To see this, take some event E € F;. E can be ex-
pressed in terms of the generating sets. For simplicity assume E is one of the generat-
ing sets, then it has the form E = C;C,Cs...Ci{H, T}""!. E contains exact information
about the first ¢ outcomes but only has the trivial information that the last n — t tosses
are either head or tail. Also note that the sequence of o-Algebras is indeed increasing be-
cause a generating set C1C,...C;_1{H, T}”_(t_l) € Fi_1 of F;_1 can be expressed as the
union C1C,...C; 1H{H, T}" 'UCCy...C; 1T{H, T}" ! of events in F;. Now consider
the process {X;};—1 ., mentioned above. To show that the process is indeed adapted to
the filtration, we need to show measurability of the random variable X; with respect to
Fi, i.e. we need to show that the preimages X; !(H) and X, !(T) are contained in J;. We
have X; 1(H) = {C1C,...C, € {H,T}" | G = H} = U{C1Cy...C 1H{H, T} |
C; € {H,T}} € F;. Similarly, we have X; (T) = {C1C;...C, € {H,T}" | C; = T} =
U{C1Ca...C,1T{H, T}" ! | C; € {H,T}} € F. The second part also follows from the
facts that T is the complement of H, c-algebras are closed under complementation and
preimages preserve complements. Now we are ready to define stopping times formally.

Definition 2.1.20 (Stopping time). Let (Q), F,F, ) be a filtered probability space where
F = {Fi}ten is a filtration. A stopping time T : () — IN U {co} is a random variable such
that the events {T = t} are F;-measurable:

Vie NU{oo}: {T =t} € F

where Foo = 0(Ujen Ft)- Alternatively, T is a stopping time if the process {X;}ien de-
fined by

LT <t
a 0, otherwise

is adapted to .

The notation {T = t} here is a shorthand for the set {w € Q | T(w) = t}. Again,
the measurability constraint makes sure that the stopping rule only uses current and past
information to decide whether to stop. Note that because F; is a 0-Algebra, measurability
of {T = t} is equivalent to the measurability of {T < t} or {T > t}.

Notable examples of stopping times include the termination time of a process or the
first hitting time of some target state in a state-based system. Clearly, these can be related
to termination of programs and reachability in programs respectively, making stopping
times a valuable tool in analyzing probabilistic programs.
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Stopping times have been introduced as some sort of rule to decide when to stop a given
process like a gambling game, however, no formal definition on what stopping a process
actually means is given thus far. We define it now.

Definition 2.1.21 (Stopped process). Let {X;};en be a random process adapted to a fil-
tered probability space (Q), F, { Fi }ten, #) and let T be a stopping time. The stopped process
{XT}ien is defined by

XlT = Xmin{T,t}'
Some important properties of stopping times and stopped processes include

1. If {X; }teN is a martingale, then so is the stopped process { X/ };cN. Analogous re-
sults hold for super- and submartingales.

2. The minimum T A S of two stopping times T and S is again a stopping time. So
are the maximum S V T and the sum S + T. The difference S — T, however, is no
stopping time.

3. The constant stopping time k : w > k is a stopping time for all natural numbers
k € IN.

Theorem 2.1.4 (Optional stopping theorem[19]). Let (Q), F, {F;}ten, 1) be a filtered proba-
bility space and let { X;};cN be an adapted martingale. If T is a stopping time and one of the three
following conditions holds:

(a) T is almost surely bounded, i.e. T < c holds with probability 1 for some ¢ € R.

(b) The expectation of T is finite (E(T) < co) and the conditional expected change of the mar-
tingale is almost surely bounded, i.e. [E(|X;11 — X¢| | Ft) < c holds almost surely for a
constant c.3

(c) The stopped process X[ is almost surely bounded for all t, i.e. | X[| = | Xmingt,y| < c for
some constant ¢ holds almost surely.

Then the equality E(Xt) = E(Xp) holds. If { X; }+eN is a supermartingale instead then E(Xt) <
E(Xo) holds, and if it is a submartingale then E(X7) > IE(X) holds instead.

The Optional Stopping Theorem states that, under any of the specified conditions, no
matter the gambling strategy (stopping time), the gambler neither makes nor loses money
on average in a martingale game. Let us reconsider the example of'a gambler who plays a
roulette game and repeatedly bets on red but doubles his bet every time he loses the bet.
We already noticed that this game is a martingale if no green field is on the roulette, so
for an appropriate stopping time, the above theorem can be applied. Let us look at every
one of the three conditions in this context. The first condition states that the number of
rounds the gambler can play before he stops (or is forced to stop) is bounded. Examples of
such bounds are (1) the bounded life time of the gambler or (2) the bounded opening times
of the casino. The second condition states that the gambler will eventually stop playing

3this notion of conditional expectation is introduced in the following,
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and the casino has a limit on the allowed bets. A limit on bets would disallow the strategy
of repeatedly doubling bets. The third condition states that the amount of money he can
win or lose in total is bounded because for example either he goes broke and has to stop
playing or the casino goes broke and can not pay him out anymore. In any of those three
cases, the Optional Stopping Theorem says that the gambler will neither make nor lose any
money in expectation. And if a green field is included on the roulette, the gambler will lose
money while the casino will make money over time.

For the main part of thesis, we actually need a more general definition of martingales us-
ing the so called conditional expectation. We already made use of it in part (b) of the Optional
Stopping Theorem.

Definition 2.1.22 (Conditional expectation). Let (), F, it) be a probability space and H C
F a sub-c-Algebra. The conditional expectation E(X | H) of a random variable X with
respect to H is any H-measurable function that satisfies almost surely

E(X ”de-—/Xdy
forall H € H.

The definition is quite hard to understand, but it is worth noting that the conditional
expectation itself'is a random variable and not a single value. Intuitively, the conditional
expectation [E(X | H) gives the expected value of X given that we know all outcomings of
events in H. It can be thought of as having some certain fixed information about X and the
expectation is only taken with respect to the remaining uncertain information. We give a
slightly different and more easily to understand view on it later.

Usually, the conditional expectation assumes integrability of X so that the defining inte-
grals are well-defined and the existence can be proven by Radon-Nikodym’s Theorem. But
this requirement is not necessary. It is for example possible to extend the above defini-
tion to arbitrary positive random variables by considering X as the limit of the sequence
(X A n). Every (X A n) is integrable and hence its conditional expectation E(X An | H)
exists. Using the Monotone Convergence Theorem, we get IE(X | H) as the limit of the
increasing sequence [E(X A n | H). This naturally extends to any lower bounded random
variable X with lower bound k € R by considering (X + k) which is a nonnegative random
variable. We do not go further into details but the conditional expectations we consider
in the main section of this thesis are always well defined. Some important properties of
conditional expectation include:

n E(X | {®,Q}) = E(X). If no information (= the trivial sub-c-Algebra) is given, then
it coincides with the unconditional expectation.

m E(X | H) = X, if X is H-measurable. Intuitively, the information in H is enough to
determine the value of X completely; there is no uncertainty.

m (Linearity) E(aX + BY | H) = aE(X | H) + BE(Y | H).
» (Monotonicity) For X <Y we have E(X | H) < E(Y | H).
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m (Law of total expectation) E(E(X | H)) = E(X).

The above equalities and inequalities are taken to hold almost surely. Most properties
of the regular expectation are also satisfied by the conditional expectation. From the first
property, the conditional expectation is easily seen to be a generalization of the regular
expectation. The Monotone Convergence Theorem 2.1.1 does also hold for the conditional
expectation.

Remark. The meaning of "almost sure equality” between two functions means that these
functions are not necessarily equal everywhere, but the set of points where they differ is a
null-set, i.e. a set of measure 0. Such functions, while not identical, are indistinguishable
when integrated. Since conditional expectation is solely defined by its properties when
integrated, there can exist a multitude of almost surely equal random variables that are
candidates for the conditional expectation.

Definition 2.1.23 (General martingale with respect to filtration). Let {Y; };cn be a stochastic
process adapted to a filtration {F; };eN. { Yt }1en is a martingale if

E(Yip1 | Ft) = Vi
holds almost surely for all t € IN. Super- and submartingales are defined similarly.

Definition 2.1.24 (General martingale with respect to another random process). Let { Y} }ten
and { X} } ;e be stochastic processes. Y; is a martingale with respect to X; if for every t € IN
the equality

]E(YtJrl | Xt, thl, ey Xo) = ]E(Yt+1 | .Ft) = Yt

holds almost surely, where F; := o(X;, X;_1, ..., Xo) is the smallest c-Algebra that makes
Xo, ..., Xt measurable. This naturally extends to super- and submartingales as before.

The conditional expectation with respect to another random process has an easy inter-
pretation. E(Y;11 | X¢, Xi—1,...,Xo) is the expected value of Y;;q given that we know
the values of Xy up to X;. The expectation in this case can be thought of as a function
that takes the values x, ..., x; as input and produces the value E(Y;1 | X = x4, X4 1 =
X¢—1...,Xo = Xg), which is the expected value of Y at time (¢ + 1), given that we know the
history of the process X till now. In Section 3.2 we make use of this particular definition
and use the natural random process C; which returns the system state visited at time ¢.
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2.2 Order Theory

This section revises the fundamentals of order theory with a special focus on complete
lattices and fixed points of their monotonous endofunctions. Usual problems in program
verification include reachability (is a certain program state reachable?) and safety (does the
program always stay in a safe region?). Both of these typical problems admit formulations
via fixed points of certain operators. For example, consider a system which has some state
space S. We are interested in the reachability region of that system starting from some
initial state sg. Generally, not all possible system states will be reachable so we are looking
for a true subset R C S. Assume we have a single-step-operation X which computes from
aset A C S all the states X(A) which are reachable in a single step from A. We can then
express the reachability region as a least fixed point of the following monotone operator
A — AUX(A)U{sp}. In a similar manner, safety properties and invariants of a system
or program can be described as greatest fixed points of appropriate operators.

The main topic of this thesis is martingale-based methods for program verification, how-
ever, these methods can also be derived from a purely order theoretic point of view. This
gives two different viewpoints on the same methods and hence allows reasoning via two
different frameworks. While most results can be derived either way, in many cases one of
the viewpoints tends to be easier to reason with. The key theorems here are the well-known
Knaster-Tarski theorem and the Cousot-Cousot theorem (also often known as Kleene fixed-
point theorem). They crucially rely on the concepts of complete partial orders or complete
lattices.

Definition 2.2.1 (Lattice). A lattice is a tuple (L, <) where
m [ is aset,

m <isa partial order on L, that is, a reflexive, transitive and antisymmetric relation on
L,

m every finite subset S C L has a supremum \/ S (join) and an infimum / S (meet) in

=

Ifjoin and meet exist for arbitrary subsets of L, then the lattice is called complete. Complete
lattices always have a least element | = A L (bottom) and a largest element T = \/ @ (top).

An example of a lattice is the interval [0, o0) ordered by the usual ordering on the reals.
The join is given by the maximum function, while the meet is given by the minimum
function. The lattice has a bottom element | = 0 but no top element, hence it is not
complete. If one extends the interval to [0, oo] by including positive infinity, the interval
becomes a complete lattice where join and meet are given by supremum and infimum
instead.

Definition 2.2.2 (Monotone function). A function f : (L, <) — (L/, C) s called monotone if
it preserves order:

a<b = f(a) E f(b).
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Monotonically increasing functions on R are then simply monotone functions on the
lattice (IR, <). Functions into a lattice (L, <) can be ordered by extending the ordering <
point-wise: f C ¢ <= Vx € L: f(x) < g(x). Interestingly, the set of functions with
point-wise ordering C then again forms a lattice. This function lattice is complete if the
codomain lattice is complete.

Lemma 2.2.1. The set of all functions [X — L] into a (complete) lattice (L, <) is a (complete) lattice
ordered by the partial order f C ¢ <= Vx € X : f(x) < g(x).

Proof. Ttis straightforward to see that the ordering on the function lattice is indeed a partial
order. The join and meet of functions is given by point-wise join and meet on their values.
If the codomain is complete then arbitrary point-wise joins and meets exist on the function
lattice, hence it is also complete. O

In Section 3.2 we are mainly interested in fixed points in a function lattice, that is, fixed
points of monotone mappings on that function lattice, so the stated lemma proves very
useful. A powerful theorem which characterizes certain fixed points of monotone endo-
functions is due to Knaster and Tarski.

Theorem 2.2.2 (Knaster-Tarski[20]). Let f : L — L be a monotone endofunction on a complete
lattice, then f has a least and a greatest fixed point denoted by i f and v f respectively. Furthermore,

1 uf =inf{x € L| f(x) < x} = Ag(x)<x ¥ is the least prefixed point, and
2. vf =sup{x € L | x < f(x)} = V,<(x) X is the greatest postfixed point.

Knaster-Tarski’s theorem does not only guarantee the existence ofleast and greatest fixed
points but also gives a way to compute them. Moreover, it provides the following reasoning
principle which is fundamental to this thesis.

Corollary 2.2.2.1. Let f : L — L be a monotone endofunction on a complete lattice, then
1 f(x) <x = uf <x,and
2. x < f(x) = x <vf.

Proof. This follows immediately from Knaster-Tarski’s theorem. y f is the least pre-fixpoint
of f, hence every pre-fixpoint is greater than yf. Similarly, vf is the greatest post-fixpoint
and thus every post-fixpoint is less than v f. O

Section 3.1 demonstrates how pre-fixpoints and post-fixpoints are related to super and
submartingales. This connection allows the study of martingales in a fixed point theoretic
manner. Finding the fixed points exactly is a difficult task so the reasoning principles de-
rived from Knaster-Tarki’s theorem give a useful method to atleast approximate the desired
fixed points. One should note that this reasoning only gives approximations in a single di-
rection and it can not be used to underapproximate least fixed points or overapproximate
greatest fixed points.

Another powerful theorem is by Cousot-Cousot. It characterizes the least and greatest
fixed points as limits of possibly transfinite iterations. Cousot-Cousot’s iteration procedure
is essentially equivalent to the well known Kleene fixed point iteration, however, it gener-
alizes Kleene’s version by considering transfinite sequences, i.e. ones which are indexed by
ordinals instead of usual sequences indexed by natural numbers.
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Theorem 2.2.3 (Cousot-Cousot[21]). Let f : L — L be a monotone endofunction on a complete
lattice (L, <). The supremum \/ f*(_L) of the increasing transfinite sequence f* (L) defined by

1. fO(L) = 1,

2. f N (x) = f(f*(x)),
3. f%(x) = Vpeo fP(x) ifa is a limit ordinal

is the least fixed point yf of f. Dually, starting from T and replacing the supremum in 3. by an
infimum gives a decreasing sequence f*(T ) whose infimum is the greatest fixed point vf.

While Cousot-Cousot’s theorem provides a practical way to actually construct or at least
approximate fixed points, it is mainly used as a reasoning tool in this thesis. The Markov
decision processes induced by probabilistic programs in Section 3.1 generally have infi-
nite state space which makes iteration methods impractical. Indeed, for the purpose of
automated synthesis of martingales, Knaster-Tarski’s theorem gives an effectively usable
characterization of fixed points which is demonstrated in Chapter 4. Interesting is the
asymmetry between Cousot-Cousot’s and Knaster-Tarski’s results. The iteration starting
from L increases to the least fixed point y f, hence underapproximating it. On the other
hand, a pre-fixpoint of f gives an overapproximation of jf according to Knaster-Tarski.

Remark. Both theorems actually give stronger results than presented. However, the weaker
versions presented here are sufficient for the purpose of this thesis.
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This chapter is the main part of this thesis and deals with martingale-based methods in
program verification for probabilistic programs. Although most methods introduced in
this chapter are widely known in this field, we give a unified view via both probabilistic
martingales as well as fixed point theoretic martingales. The close connection between
both approaches is made apparent. Section 3.1 explains the notion of a probabilistic pro-
gram with nondeterminism and defines its syntax and semantics formally. Section 3.2 de-
velops the theory of martingales for probabilistic programs and addresses issues such as
measurability. Concrete martingale-based methods are then explained in individual sub-
sections.

3.1 Probabilistic programming

Probabilistic programs can model stochastic choices such as probabilistic branchings (e.g.
a coin toss) or probabilistic assignments (e.g sampling from a distribution) in addition to
what a standard deterministic program can do. In recent years incorporating stochastics
into programming has become ever so popular. Applications include stochastic optimal
control problems[18, 22], stochastic algorithms|23] and probabilistic machine learning[24].
In the first case, the probabilistic aspect allows to model disturbances on the system such as
inaccuracies in the control or influences from outside. In the second and third case, incor-
porating probabilistic choices into algorithms can give better (expected) runtimes or other
nice properties on the expense of being more hard to analyze and having less guarantees.

3.1.1 Programming Languages APP and PPP

This subsection introduces the two probabilistic programming languages APP and PPP.
APP stands for affine probabilistic programs and PPP for polynomial probabilistic programs. Their
difference lies in the type of assignment they are allowed to use. In APP every assign-
ment and boolean expression is affine linear, i.e. has the form x := ax + fy + - - - + c and
ax + By + - - -+ c > d. In particular, polynomial expressions of degree at least 2 such as
squares are not allowed. PPP in contrast allows arbitrary polynomials as expressions but
cannot handle functions like ¢* or trigonometric functions. While the theory of martingale-
based verification can handle arbitrary measurable functions, the template-based synthesis
introduced in Chapter 4 can only handle affine and polynomial functions.

Definition 3.1.1 (Affine and polynomial probabilistic programs). An affine linear program
(APP) is given by the following grammar.

(stmt) == (assgn)

| skip

| (stmt);(stmt)

| if (ndbexpr) then (stmt) else (stmt) fi
| while (bexpr) do (stmt) od
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(assgn) == (pvar)

| (expr)

| (pvar) = (dist)

| (pvar) := ndet((dom))
expr) == (constant)
pvar)

constant) - (pvar)
expr) + (expr)

expr) - (expr)
(dom) ::= Real

|

|

{
|
|
|
|

Real[(const), (const)]
(dom) or (dom)

(bexpr) == (conjexpr)
| (conjexpr) or (bexpr)

(conjexpr) == (literal)
| (literal) and (conjexpr)

(expr) > (expr)

(literal) == (expr) < (expr)
|
| —(literal)

prob(p)

(ndbexpr) =
|
| (bexpr)

(pvar) == v € V
(dist) == d € D(R)
(const) == c € R

Here the set V is a finite set of variables and D(IR) is the set of distributions over R. The
grammar for PPP is essentially the same but the multiplication rule is extended by multi-
plication of expressions

(expr) == (expr)-(expr).

The intended semantics for all purely deterministic program fragments is as usual. The
non-deterministic branching simply takes one of the two branches non-deterministically
(resolved by a scheduler, which is defined later). The probabilistic branching with param-
eter p € [0, 1] takes the first branch with probability p and the other one with probability
(1 — p). Probabilistic assignments sample from a given distribution. Non-deterministic
assignments pick a value non-deterministically from the reals or from a given set which is
the union of real intervals.
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3.1.2 Semantics of probabilistic programs

The semantics of probabilistic programs are given by probabilistic control flow graphs
(pCFGs). A pCFG is nothing but a Markov Decision Process (MDP) but defined in a way to
more closely resemble the operational semantics of probabilistic programs.

Definition 3.1.2 (pCFGJ11, 14]). A probabilistic control flow graph (pCFG) T = (L,V,—
,Up, Pr, G) consists of

m a finite set of locations L = L4 + Ly + Lp + Lp partitioned into assignment, nondeter-
ministic, probabilistic and deterministic locations,

= a finite set of program variables V = {x1,..., x|y},

m a total transition relation — C L x L on L. Every location / € L has a non-empty set
of successors succ(l) := {l'’ € L | | — I’} with the additional condition that the
successor is unique for assignment locations,

= an update function Up : Ly — V x U where i = B(RY,R) UD(R) U B(R). U is par-
titioned into three parts representing deterministic, probabilistic and nondeterministic
assignments, respectively, and Ly = Lap + Lap + Lan can be partitioned accord-

ingly.

m a function Pr : Lp — D(L) assigning to every probabilistic location / € Lp a dis-
tribution Pr(I) such that supp(Pr(l)) :== {I' € L | Pr(I)(I') > 0} C succ(l). We
sometimes write Pr; instead of Pr().

m a guard function G : Lp x L — B(IRY) assigning to each deterministic location! € Lp
and target location I’ € L a guard G(!,I) such that {G(I,1') }ycucc(r) 1 a partition of

RY for each | € Lp. We write x = G(I,1’) instead of x € G(I,I").

Before going into the concrete semantics, we first give a short explanation of the above
items. The locations can be differentiated into four types where L 4 describes assignments
and Ly, Lp and Lp describe the three different branching types, i.e. nondeterministic,
probabilistic and deterministic branching. Assignment locations have a unique succes-
sor and assign a value to a single program variable x; € V. They can be further divided
into three types corresponding to deterministic assignment L 4p (given by a function in
B(RVY,R)), probabilistic assignment L 4p (given by a distribution in D(IR)) and nondeter-
ministic assignment L 4 (given by a set in B(IR)). Probabilistic branching is given by the
function Pr and the additional condition enforces that only successors I’ € succ(]) of a
location / can have positive probability. The guard function G assigns a subset G(1,1') €
B(RY) of RY to each possible transition I ~ I’. The transition is enabled if the current
valuation x of the program variables is contained in G(/,!’). The condition on G makes
sure that there is always exactly one transition enabled.

A configuration of a pCFG T is a tuple ¢ = (I,x) € L x RY consisting of a program
location I and a valuation of the program variables x. A run of T is an infinite sequence
coct - -+ € (L x RY)% of configurations such that for each pair of successive configurations
¢; = (I,x)and ¢; ;1 = (I',x") we have
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m if] € Lp then x = x’ and !’ is the unique location satisfying x = G(I,1’),
m if] € Lp then x = x" and Pr;(I") > 0,
miflc Lythenx=x"and ! — 1,

m if ] € L4 and Up(l) = (x;,u) then I’ is the unique successor / ~ I’ and
= ifu = f € B(RY,R) then x' = x(x; + f(x)),
= ifu = d € D(R) then X' = x(x; < a) where a € supp(d),
= ifu = A € B(R) then X' = x(xj - a) where a € A.

The support of a distribution d is defined as supp(d) := {s € R | VN C R : N is open A
s € N = d(N) > 0}. It is the set of all values s such that any open neighborhood
containing s has positive measure.

The set of all runs is denoted by Run(T). A finite prefix 7 = cocy...cp € (L x RV)K of
arun is called a path. The set of all paths is denoted by IT = Paths(I"). We use a subscript
to denote the paths which end in a specific type of configuration, e.g. IT4n C IT x (Lan X
R") is the set of all path whose last location is a nondeterministic assignment.

The goal is to analyze the runtime behavior of the system, i.e. computing probabilities
that runs exhibit a certain behavior such as being terminating, being recurrent or always
being safe. In order to do so, one needs to associate a probability space to a pCFG I'. The
sample space Q) will simply be the set of all infinite sequences of configurations (L x RY)%,
Restricting to only the runs is not necessary because we can define a probability measure v
on the sequences such that v(Run(T')) = 1 and no set of non-valid runs has positive prob-
ability. Once a o-Algebra ¥ over L x R is fixed, such as B(L x R"), a natural candidate
for the o-Algebra over (L x R")“ is the product o-Algebra over infinitely many copies of
2. And indeed, the product o-Algebra will be used, however, for ease of analysis we actu-
ally enlarge it. The reason here is twofold. First, larger c-Algebras make more functions
measurable, thus potentially allowing for more properties to be analyzed. Secondly, Borel
sets are missing some nice properties, e.g. the projection of a product Borel measurable
set may fail to be Borel measurable[18, Appendix 3.B]. For these reasons, it is common to go
over to universally measurable sets instead. So the ¢-Algebra in use will be U/ ((L x R")%)
which is obtained by first taking the countable product of Borel o-Algebras B(L x RY) and
then forming its universal completion.

In order to define an appropriate probability measure, one first needs to resolve the
nondeterminism of the system. For this purpose, the notion of a scheduler (also known as
policy or strategy) is defined.

Definition 3.1.3 (Scheduler[11, 14]). Let I' = (L, V,—,Up,Pr, G) be a pCFG. A scheduler
o = (01,0,) is a pair of functions 0} : [Iy — D(L) and 0, : ITyny — D(R) such that for
any path 77 = ¢ocq . .. ¢ with ¢ = (I, x) we have

m if] € Loy and Up(l) = (), A) then supp(oy(7)) C A4,

m if | € Ly then supp(o¢(7t)) C succ(l).
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m Both ¢, and 0} are universally measurable, i.e. they are universally measurable stochas-
tic kernels on R and L given I'l4y and Iy, respectively.

The set of all schedulers associated with I is denoted by Schr.

The component ¢, resolves nondeterministic assignments by defining a probability dis-
tribution on A, essentially replacing it by probabilistic assignments. Similarly, ; replaces
nondeterministic branching by probabilistic branching. Schedulers are in general history-
dependent, meaning they can resolve nondeterminism depending on the past behavior of
the system. For any given history 7t € I1and scheduler o, the scheduler ¢;; with past history
7t is defined such that o (77") = o(77r’) holds.

We enlarge the domain of the schedulers to arbitrary finite, non-empty sequences (L x
RY)" such that for any non-valid path © = cp...c; we have o(71) = 6. That is, the
scheduler will simply loop inside the current configuration.

The measurability condition on the scheduler is important. Consider a system with a
single real valued variable x which takes values in the unit interval [0, 1] uniformly dis-
tributed. If no restriction on the scheduler is assumed, then the scheduler may resolve a
nondeterministic binary branching depending on x such that branch (1) is taken if x is in
a Vitali set A (or any other non-measurable set) and else branch (2). The probability that
the system takes branch (1) is then exactly the probability that x is contained in A which is
given by its Lebesgue-measure y(A) (since x is uniformly chosen). This is not well-defined
since A is not measurable. To prevent this, the measurability condition is needed.

Once a scheduler ¢ € Schr and an initial configuration ¢y € L x R has been fixed, the
system becomes a fully probabilistic system and its behavior can be intuitively described as
follows. The system starts in ¢y and performs deterministic and probabilistic transitions
as seen above. Whenever it reaches a nondeterministic location after a finite, non-empty
sequence 7T = ¢(C1 . . . ¢, of configurations, it invokes the scheduler ¢ via (77) to determine
the next step. For every such finite path 7, one then can define a probability distribution
1% € D(L x RY) over the configuration space, describing the probabilities to reach the
successor configurations in the next step.

Definition 3.1.4 (Stochastic kernel 7). Let o € Schr be a scheduler for a pCFG I'. For each
non-empty, finite sequence 77 = cocy...c_1(I,x) € (L x RY)", define the probability
measure 1% € D(L x RY) such that

m if] € Lp, then u% = &y 5 where I’ is the unique successor satisfying (I, x) = G(1,1'),
m if ] € Lp, then ]/1(771 =Y I Prl(l’)(S(l/IX),
m if | € Ly, then ‘1/1‘77.[ = Zl»—>l’ 0}(7‘[)(1/)(5(11,,()

m if] € Ly, " = succ(l) and Up(l,x) = (xj,u) then
= ifl € Lyp and u = f € B(]RV, ]R), then ‘I/l(;.[ = 5(1’,x(xj<—f(x)))'
w if] € Lypand u = d € D(R), then u is the unique measure that satisfies

VA € B(R) : pr({I'} x ({xa} x -+ x {xj1} x Ax - x{xyy})) = d(A).



30 3.1 PROBABILISTIC PROGRAMMING

» if [ € Ly, then pf is the unique measure that satisfies
VA€ B(R) : u%({I'} x ({x1} x -+ x {xj—1} x Ax - x{xyy})) = oa(7)(A).

17 is a universally measurable stochastic kernel on L x RV given (L x RY)*, that is, for
every sequence 77 € (L x RY)* the function uZ is a probability measure on /(L x R")
and the mapping 17 (U) : (L x RY)* — [0,1], m — u%(U) is universally measurable for
every fixed, universally measurable set U.

17 is defined for arbitrary sequences of 7t € (L x RY)" which need not be actual paths
of the pCFG T'. For any non-empty finite sequence 7t = 711712, the equality % ., = ],1‘77{;1
holds. From this stochastic kernel and a fixed starting configuration cg € L x RV, one can
construct a probability measure on (L x RY)" as follows.

Lemma 3.1.1. [18, Proposition 7.45] Let T be a pCFG, o € Schr be a scheduler and cg € L x RV
be a starting configuration, then there exists for alln € IN'\ {0} a unique probability measure v,
on B((L x RY)") such that

V27 (Cy x Cy X -+ x Cy) = /C ,”go(dcl)/c P’(cjocl (dea)- - /C Vgoq---cn—l (den).
1 2 "

For n = 0 we can define vy"" = ,. These probability measures extend uniquely to a probability

measure v°07 on B((L x RY)%) such that all its marginals on (L x RY)" coincide with v°0“n.

Proof. We refer to Proposition 7.45 in Bertsekas’ Stochastic Optimal Control book[18]. Note
that the measures v,,””” induce a measure on the cylinder sets induced by the n-fold product
of Borel sets C;. This family of measures can then be extended uniquely by Kolmogorov’s
extension theorem to the measure v07. O

The probability measure v°0? from the above lemma may be completed to be a mea-
sure on U ((L x RY)%). From now on we work on different probability spaces in the form
of (L x R)*,U((L x RV)%),v) where the measure depends on a scheduler ¢ and a
starting configuration cy. Note that despite working on a multitude of different probabil-
ity spaces, the underlying measurable space is always the same regardless of the chosen
scheduler and starting configuration.
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3.2 Application of Martingales

With the notion of probabilistic control flow graphs and their semantics at hand, we can
now develop the theory of martingales for program verification. Concrete martingale-
based methods are each introduced in their own subsection, but they all rely on the same
principles and definitions we introduce in the following.

In the introduction we gave a short descriptive idea of so called ranking functions and a
fixed point theoretic characterization of the reachability region. The former relied on the
ability to compute the expected outcome of a ranking function after performing a transi-
tion in the system. The latter can be constructed by starting with a reachable set (e.g. the
starting configuration) and iteratively enlarging it by the set of immediate successors until
it reaches a fixed point. In either case, there is a necessity to make computations about
the (expected) next step of the system. We formalize this in the form of so called nexttime
operators X, X and X. For any given function 7 on the configuration space, these oper-
ators compute the expected value of 1 after performing a transition in the system. The
nexttime operator X performs this transition with respect to a given scheduler, while the
other two nexttime operators try to maximize or minimize the expected value over all pos-
sible available actions. Other authors call these operators pre-expectation (e.g. [13, 12]) but
we use the naming convention by Takisaka et al.[11] which more clearly captures the idea
of performing a single transition step in the transition system underlying the control flow
graph.

Definition 3.2.1 (the “nexttime” operators X, X, X, [14, 11]). Let T be a pCFG, and 7 : (L x
RY) x Schr — K be universally measurable for every ¢ € Schr where K is a closed and
convex proper subset of R U {+o00}. We define the nexttime operator Xy as follows.

— ! o !
Xneo) = [ n(c,oops(ac)
Let ¢ = (I,x) then evaluating the above expression over all possible location types gives the
following case-by-case definition.
m Forl € Lp, (X#)(c,0) = n((I',x),0;) where I is the unique location s.t. x = G(I,1’).
m For!l € Lp, (Xn)(c,0) = Yy Pr;(INn (U, x), 0¢).
m Forl € Ly, (X#)(c,0) =Y ,por(c)(INn((U,x),00).
m Forl € Lg,let Up(l) = (xj,u).
» (X7)(c,0) = n((succ(l),x(xj — f(x)),00)ifu = f € B(L x RY,K) is a
measurable function.
= (X77)(c,0) = fxesupp(s) n((suce(l),x(xj < x)),0c)ds if u = s € D(L x RY) is
a distribution.
= (X17)(c,0) = [rcqupp(s) 1 ((suce(l), x(xj ¢ x)), oc)ds if u = A € B(L x RY) is
a measurable set and s = o(c) € D(A) a distribution.
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Let 77 : L x RV — K be universally measurable. We define the upper nexttime operator X as
follows.

(X)) = sup [ n(e)pf(ac)

o€Schr

Similarly to X, the following case-by-case definition can be made, where ¢ = (I, x).

m For!l € Lp, (X7)(c) = 5(I',x) where I’ is the unique location s.t. x = G(I,1).

m Forl € Lp, (X7)(c) = Yyp Pry(I)n (U, x).
m For! € Ly, (X7)(c) = max;_,; (', x).

m For! € Ly, let Up(l) = (xj,u).

= (X7)(c) = n(succ(l),x(xj + f(x))ifu = f € B(L x RY,K) is a measurable
function.

= (X7)(c) = Jresupp(s) M(suce(l), x(xj <= x))dsifu = s € D(L x RY) is a distri-
bution.

= (X77)(c) = sup,c 4 17(suce(l), x(xj + x)) ifu = A € B(L x RY) is a measur-
able set.

The lower nexttime operator X7 : L x RY — K is defined as above, but replacing max with
min and sup with inf in the respective lines.

These upper and lower nexttime operators are endofunctions on /(L x RY,K) and the
standard nexttime operator is an endofunction on U ((L x RY) x Schr, K). They can be
restricted to a pure invariant I € B(L x RY), i.e. to a transition closed subset of the con-
figuration space. We can see X, X and X as monotone functions on the complete lattices
(U(I,K),C) and (U(I x Schr,K),C) where C is the partial ordering obtained by com-
paring functions pointwise with respect to the standard ordering < on K C R U {£o0}.
These lattices are complete because the codomain K is closed and hence complete with re-
spect to the standard ordering. Monotonicity is easily seen, since integrals are monotone
operators. The restriction of the codomain makes sure that the integrals are well-defined,
that is, they never take the indeterminate form co — co because K is either lower bounded
or upper bounded.

Remark. For scheduler dependent functions 77 : (L x RY) x Schy — L into a complete
lattice L, we sometimes write the parameter ¢ in the subscript, i.e. we write 7, (c) instead
of n7(c, o). Furthermore, we implicitly define the upper and lower versions of the function
by taking the supremum and the infimum over all schedulers. These are then denoted by

7(c) = sup, 110(c) and 77(c) := inf; 74(c), respectively.

If 17, is a function that assigns to each configuration ¢ € L x R of'the system a real value
s(c) € R, then the nexttime operators describe the expected value of 7 after performing a
single transition in the system, e.g. X7 (c,0) = E(1(c,0¢) | ¢ — ¢/, o) is the expected value
of 17(c’, o.) where ¢’ is the successor of ¢ that gets (potentially randomly) chosen under the
scheduler ¢. To properly define the expectation, a scheduler and a starting configuration
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co has to be given (because the underlying measure v is dependent on them). We use the
notation [ » to make the dependencies clear but may drop one or both subscripts if they
are clear from context. Furthermore, we define the upper expectation E., := sup, E,
and the lower expectation E, := inf; E ;. The upper and lower nexttime operators then

satisfy X7 (co) = Ec,(17(c1) | co = ¢1) and X#(co) = E, (17(c1) | co — c1), respectively.

_CO
These various types of expectation give rise to various martingale notions.

Definition 3.2.2 (0-martingales). A stochastic process {X};cn where X; : (L x RV)¢ — K
for some closed, convex proper subset K C R U {+o0} is called a o-martingale at ¢y €
L x RV ifit satisfies

Ecpo(Xiz1 | Ci,Cizt,..., Co) = X;

for a fixed scheduler o, where C; : (L x RY)¥ — L xRV, cocy...c;- - - > c; is the canoni-
cal process. The subscript ¢y from the expectation is usually dropped since Cy = cg is given
in the conditions. Similarly, it is an upper martingale if

E(Xit1|Ci,Ci1,...,Co) = X;
and a lower martingale if
E(Xiy1|Ci,Cioy,...,Co) = X;

holds. Super and supmartingales are defined accordingly. The restriction to a closed, con-

vex and proper subset of the extended reals makes sure that the conditional expectation is
well-defined.

A reason why we deal with universally measurable functions instead of Borel measur-
able ones comes from the supremizing and infimizing upper and lower nexttime opera-
tors. While the regular nexttime operator preserves Borel measurability if we only consider
Borel schedulers, the extremizing ones do not. A well known fact about Borel measurable
sets is that they are not closed under projection, i.e. projecting a product measurable set
D € B(R)B(R) onto its first component may yield a set that fails to be Borel measurable.
However, it is known that such a projection is universally measurable (actually analytic,
and hence universally measurable[18, Corollary 7.42.1]). Extremization and projections are
closely related, in fact, if f : X x A — R is a function, then for any ¢ € R we have

{xe X| aiggf(x,a) < c} =projy{(x,a) € X x A| f(x,a) <c}.

If the function f is Borel measurable, then so is the set {(x,a) € X x A | f(x,4) <
c} defined by f, but its projection is generally non-Borel. The left-hand side set defined
by the infimization thus may fail to be Borel, making the infimization itself a non-Borel
measurable function. However, it is universally measurable. This shows the reason why we
work on universally measurable functions instead of Borel measurable ones.

Remark. An analytic set is defined to be the continuous image of a Borel set of a Polish
space (a separable, completely metrizable topological space). All spaces we consider in this
thesis are Polish spaces. It may seem like it is sufficient to work on analytic sets instead
of universally measurable ones, but the analytic sets have two problems. First, they do
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not form a o-Algebra by themselves since they are not closed under complementation.
Secondly, if one computes the smallest o-Algebra containing them, and then defines the
appropriate notion of analytically measurable function, it turns out that these functions are
not closed under composition. The universal c-Algebra, however, contains all analytic sets
and its measurable functions are closed under composition, making it a reasonable choice
for our analysis. There does actually exist a smaller o-Algebra called the limit o-Algebra[18,
Appendix] that does satisfy these two requirements as well but it is not widely used.

An example of such a function is the reachability probability I[’rce/?fh(c) which gives the

probability to reach a region C € B(L x RY) when starting from configuration ¢ € L x
R" under scheduler ¢. Using LTL, this can be stated as IPreaCh( ) = Pry(c = OC). The

nexttime operator X then corresponds to the LTL next operator (), e.g. X]PreaCh( ) =
Pry(c E OOC). While lPrCe"j‘fh is Borel measurable if ¢ is a Borel measurable scheduler,

the infimization PX2" is generally not Borel measurable. It can be shown to be lower
semianalytic and hence universally measurable[18].

Lemma 3.2.1 (Continuity of X and X). _The operators X and X are w-continuous and w°P-
continuous, respectively. This means that X preserves suprema of ascending w-chains, while X
preserves infima of descending w-chains.

Proof. We prove the w-continuity of X. Let 79 C 71 C ... be an ascending chain and let
11 = sup,.p 1 be its supremum. Then,

sup X (77;)(c) = sup sup i(c)pg (de”)
ieN ieN o JLxR

— A d /
sup sup gy (€ (de)

= sup LvaE}\?”’( c")ug (dc’)

=sup [ n(e)pE(d) = X (o)

In the second line we exchange the order of suprema. In the second to last line, we use the
Monotone Convergence Theorem. The proof for X and descending chains is similar, but
we exchange two infima instead. O

The nexttime operator X is both w-continuous as well as w°Pcontinuous which follows
directly from the Monotone Convergence Theorem. - o

A naturally arising question is whether the equalities X77 = X and Xy = X hold.
This is generally not the case, but the following inequalities X7 J X7 and Xn £ Xy are
easily seen to be true. For equality to hold, the existence of so called e-optimal schedulers
is needed.

Definition 3.2.3 (e-optimal schedulers). Let I be a pCFG and let 77 : (L x RY) x Schy —
R be a scheduler-dependent function. A scheduler ¢’ is called upper e-optimal if for all
¢ € (L x RY) it holds that 57(c,¢’) > 77(c) — € when 77(c) < -+o0 and 77(c,0’) > 1 when
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7(c) = +oo. Similarly, a scheduler ¢ is called lower e-optimal if (c,0”) < 5(c) + € when
1(c) > —coand 5(c,0’) < —1 when 77(c) = —c.

By definition of 77 there always exists a scheduler ¢ for every ¢ € L x R such that ¢*
is e-optimal at c. In contrast to this, an e-optimal scheduler is e-optimal for every input
¢ € L x RY simultaneously. Such schedulers may not exist in general.

Lemma 3.2.2. Let 7 : (L x RY) x Schr — K be a scheduler dependent function where K is a
closed and convex proper subset of R. If there exist upper e-optimal schedulers for all € > 0, then the
equality X77 = X1 holds. Analogously, if lower e-schedulers exists, then X = X1 holds.

Proof. We prove the case of upper e-optimal schedulers. The other case is analogous. The
direction X7 C X7 is easily seen to be true. For the other direction, let (0"),cN be a
sequence of : -optimal schedulers such that 77(+, o¥) C 7 (-, p") for k < n. For any scheduler
o, define schedulers o such that ¢ (c) = ¢(c), and 0" (c7t) = p"*(7r). We have u7 = u?"
(see definition 3.1.4 of %) and o = p".

= sup/ supn ¢, p)pd (dc’)

= sup/LXW lim 77(¢’, 0" g (de”)

— 3 PN AP /
=suplim | (e PNHe(de)

— li 1m0 /
sup lim | o 1(e00)pe (de)

<sup [ n(e o (d)
LxRV

— sup Xy (c,0) = Xi7(c)
(o

From the second to third line, we use the Monotone Convergence Theorem. We then use
the properties of " in line four. O

In the above proof, the existence of e-optimal schedulers is important. If this is not given,
then in line two one has maximizing scheduler sequences of the form p" which specifi-
cally depend on the successor ¢’ of c. Despite that, it is still possible to define the combined
scheduler ¢ as above but with a slight modification such that ¢ (cc/7r) = p™¢' (¢/7r). This
scheduler would simultaneously maximize the integrand for all ¢’ and the integral itself'to
yield the desired result. However, the schedulers ¢” defined like this are a combination of
potentially uncountably many schedulers (since there can be uncountably many successors
¢’) and may fail to be universally measurable.

To any measurable function 77 : (L x RY) x Schy — K and scheduler ¢ we can naturally
associate a stochastic process as follows.
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Definition 3.2.4 (Stochastic process Y;). Let T be a pCFG, 17 : (L x R) x Schr — K be
a universally measurable function and o € Schr be a scheduler. The stochastic process
{Y;}iew of random variables Y; : (L x RY)“ — K is defined by

Yi(Coclcz . .. ) = H(Ci, Ucocl‘..ci_l)-

Similarly, the upper and lower versions are defined as

YZ'(C()CjCz Ce ) = ﬁ(Cl‘),

and
Yi(cocrca...) = 1(ci).

We analyze the process {Y;};en with respect to the martingale conditions and get the
following result.

Lemma 3.2.3. The stochastic process {Y; }icy is a o-martingale (with respect to the canonical pro-
cess C; : cocq - - - — ¢;), iff the equality 1 (c, o) = X#(c, o) holds for all paths tc = co...c. It
is a o-supermartingale iff (¢, o) 2 Xy (c, o), and a o-submartingale iffy (c, o) T X#(c, o)
holds. Similarly, {Y;};cn is an upper martingale iff the respective equalities and inequalities hold
with 77 and X replacing 17 and X. An analogous results holds for {Y;}icn as well.

Proof. We prove the case when 7(c, o) = X7 (c, o) holds.

IE"(T(Yi+1 | Ci/ Ci*l/ R C ) ( (C1+1,0'C0C1 ) ’ Ci/ Ci*l/ ceey CO)

- / (Civ1,0¢0y...c)HCcy...c, (ACit1)
Yo
v (it 0ccr.c )t (dCig)

= Xn(Ci,0¢,c,..ciy) = 1(Ci,0cycy..c ) = Vi

For the super- and submartingale cases the second to last equality simply becomes the
respective inequality. The proof for the upper and lower case are almost identical. We
prove the case of 7(c) = X7(c).

E(Yl'Jrl ’ Ci/ Ci*]/' . -/CO) - E( l+1) ‘ Cl/ CZ 1r-- ~/C0)

= SUP/ Cit1 P‘coc1 e (dCit1)
0CyCy...Ci
= sup LxRV’?(CzH)VciO FH(dCiga)

=sup [ W(Ci)HE (dCin)

Xﬂ(C) 7(C) =Y,
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From now on we simply call # a (upper/lower) martingale or a super/submartingale if it
satisfies the conditions in the above Lemma 3.2.3. That is, if the induced process {Y;}icn
has the respective martingale properties. This notion extends to scheduler-independent
functions 7 : L x RV — K by simply defining #’(c,c) = 7(c) for all schedulers ¢ and
then considering 1’ instead. By abuse of notation we simply write 77(¢c, o) = 7(c) for such
functions and do not consider 7’ explicitly.

3.2.1 Additive Ranking Supermartingales

Ranking supermartingales are probably the most well-known supermartingales used in the
analysis of probabilistic systems. A ranking supermartingale # assigns real values to each
configuration of the system such that two properties hold;

m [t is nonnegative on all (reachable) configurations.

m Tts expected value after a single transition decreases by at least some fixed valuee > 0
outside of some target region C.

If such a function on the configuration space exists, then it witnesses the fact that the
system will eventually reach the region C after finitely many steps, i.e. the system reaches C
positive almost surely. The intuitive reason being, that from any starting configuration cy,
the value of 57 decreases in expectation by at least € per step and after 17(cp) /€ many steps,
the expectation reaches zero. When it reaches zero, the function can no longer decrease
because of the nonnegativity condition, hence it must have entered the target region C.
Not only does it witness positive a.s. reachability but it also gives upper bounds on the
expected number of steps, namely #7(cg) /€ > "expected reaching time of C".

Instead of having an additive decrease per step, one can also have a multiplicative de-
crease instead. The positivity condition then gets replaced by the condition #(c) > 1 out-
side of the target region. This gives a so called multiplicative ranking supermartingale. The
idea remains the same and, in fact, by using the exponential function one can transform
both types of martingales into each other. So our focus here will be on the additive version.

Definition 3.2.5 (Additive ranking supermartingle). Let I' be a pCFG, ¢y € L x R" astarting
configuration, I = I, € B(L x RY) aninvariant given cy (i.e. all runs starting from ¢ reach
only configurations in I) and C € B(I) be a target region. Let o € Schr be a scheduler,
then a universally measurable function # : I x Schyr — [0, 00| is called an additive ranking
o-supermartingale (c-ARnkSupM) at cg for C supported by I if’it satisfies

n(c,on) > 1+ Xn(c,0r) forallc € I\ C and all paths tc = ¢p...c.

Similarly, a universally measurable function # : I — [0, 00| is called an upper additive
ranking supermartingale (UARnkSupM) if

17(c) >1+Xp(c) forallc € I\ Candall paths tc = ¢g ... c

holds. A lower additive ranking supermartingale (LARnkSupM) is defined analogously by re-
placing the upper nexttime operator by the lower nexttime operator.
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There are variations of this definition. For example, instead of forcing a decrease of at
least 1 per transition, one can instead assume a decrease of some € > 0. By rescaling, both
definitions are equivalent. Another commonly used formulation is using the drift operator
An =1 — X# and then formulate the ranking supermartingale condition to be a negative
drift, e.g. An(c,07) < —e ([6] uses this kind of formulation).

Despite its name, the associated stochastic process Y; from Lemma 3.2.3 is no super-
martingale. The problem is that an ARnkSupM # may increase in value (and in expecta-
tion) inside the target region since no conditions are enforced there. However, outside the
target region the process is decreasing in expectation, hence, we can define an appropriate
stopping time TC such that the stopped process is indeed a supermartingale.

Lemma 3.2.4. Let 17 be a o-ARnkSupM for some scheduler o and target region C. Let T = TC :
(L x RY)% — [0, 0] be the first hitting time of C, i.e. T(cocy...) = inf{i € N | ¢; € C}. The
first hitting time is indeed a stopping time according to Definition 2.1.20. Then the stopped process
{YT}ien is a o-supermartingale with respect to the canonical process C;.

Proof. The stopped process is defined by Y = min{;,7}- We need to show that IEU(YI.E_1 |

Ci,...,Co) = Xn(Ci,oc,cy..c4) < YT holds. We do a case distinction. Assume i < T,
then C; ¢ C and so

Eo (Y1 | Ciy--.,Co) = Bo(Yig1 | Giy..., Co)
= X#(Ci,0¢,¢,..c. )
=1+X5(Cj,0¢4c,..c; ;) — 1
<n(Ci,oc,cy.c0q) — 1= Y —1<Y].

For the case i > T, we have

Eo(YL,|Ci...,Co) =Eo(Yr | Ci,...,Cr,...,Co)
= Y1 = Yingimy = Vi -

We use the fact that Y7 is measurable with respect to the condition, since its value is deter-
mined by the values of Cy up to Cr.

Note that the case distinction is only valid, because the information whetheri < Tori > T
holds is contained in the given information Cy, ..., C;. Formally, this can be expressed as
the events {i < T} and {i > T} being measurable with respect to the o-Algebra induced
by the canonical process Cy, ..., C;. O

The idea of this supermartingale is as follows. The value of 7 decreases by one in expec-
tation each step until the target region C is reached. When reaching the target region after
expected E »(T) many steps, then the function 7 will have decreased by E,,(T) points
in expectation. Since 7 is nonnegative, we conclude that the starting value #(cg, o) must
have been greater than E.,,(T). So #(co, o) gives an upper bound on the reaching time
Ec,o(T), and if 57(co, o) is finite then so is the expected reaching time and hence the target
region is reached within finite time with probability 1. We prove this idea now.
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Applying the Optional Stopping Theorem (Theorem 2.1.4) directly to Y/ (by using the
constant stopping time i) does not give any useful result. The problem is that the infor-
mation on how much Y/ decreases as i gets larger is not used at all. To make use of that

property, we define the following stochastic process Z; = Y/ + min{i, T} and show that
this is still a o-supermartingale. Consider again the case i < T, then

E¢(Zis1 | Cisoo o, Co) = Eo(Yiga + (i+1) [ Gy ..., Co)
=E;(Yisq1 | Ci...,Co)+(i+1)
= Xn(Ci,0¢,c,..c,,) + (I +1)
=14+ X5(Ci,0¢,c,..c, ;) +i
<n(Ci,ocycy..c;y) Fi
=Y +i=27
and for i > T we have
Eo(ZL11Ci...,Co) =Eo(Yr+T|Ci...,Cr,...,Co)
=Yr+ T = Yiingiry + min{i, T} = Z;.
Using the o-supermartingale Z;, the main theorem of c-ARnkSupMs can be proven.

Theorem 3.2.5. Let 7 be a c-ARnkSupM for a starting configuration co, a scheduler o and a target
region C, and let T = TC be the first hitting time of C. Then n(co, o) > E¢ o (T).

Proof. Consider the previously described stochastic process Z; which is a -supermartingale.
Because Z; is a supermartingale, the inequality E.,,(Zy) > E,+(Z;) holds for all i € IN.
This gives
7(co, ) = Yo = Zo = Bey,e(Zo) > Eeyo(Zi) = Beye (Y + min{i, T})
= Ecp,o(Y]) 4+ Ecy o (min{i, T}) > Ecyo(min{i, T}) = Ego o (T Ad).
The sequence (T A7) of stopping times a.s converges to T asi — co. Because (T Ai) < (T A

(i +1)) trivially holds for all 7, the sequence of stopping times is monotonically converging.
By the Monotone Convergence Theorem, we then immediately get

Beyo(T) = Bego(Iim (T A1) = lim Ee, (T A1) < Yo = (co,0).
0

We can generalize this result to not only hold at the starting configuration cy but along
all paths from c.

Corollary 3.2.5.1. Let 17 be a c-ARnkSupM at cg, then for any path rtc = coc; ... c from g, we
have 1(c,07) > Ecpo, (T).

Proof. Note that if 7 is a 0-ARnkSupM at cy, then it is also a 0;-ARnkSupM at c. To see
this, let 7'¢’ = c...c’ be any path from ¢ to some ¢’ ¢ C, then we have to show that

n(c', (o)) 2 1+ Xn(c', (07) ).
W(C// (Uﬂ)n’) = 77(C// Urmﬂ) > 1+ Xy (C// Unn’) =1+ XW(C// (Uﬂ)n/)

holds because 7t77’ is a path from cg to ¢’ and 7 is a c-ARnkSupM at ¢y. Now we can apply
the previous theorem and get the desired result. O
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Similar theorems hold for UARnkSupMs and under restrictions also for LARnkSupMs.
While the prove of the former is straightforward, the latter does need a extra condition to
be satisfied.

Theorem 3.2.6. Let 17 be an UARnkSupM for a starting configuration co and a target region C. Let
T = T be the first hitting time of C, then 57(co) > B, (T).

Proof. From the definition of a UARnkSupM, we have for all paths 7tc = ¢p...c where
¢ € I'\ C for some invariant I, that 7(c) > 1+ X#(c) > 1+ Xy/(c, ) holds for all sched-
ulers ¢ € Schr. We abuse the notation and see # as a function which takes a scheduler as
parameter but simply ignores it, i.e. 77(c, o) = #(c). By this inequality, 7 is a c-ARnkSupM
for any . Now we apply Theorem 3.2.5 and get

1(co) = 1(co, ) = Ecy o (T).

This holds for all schedulers o, so we take the supremum on both sides and conclude
U(CO) Z IECO(T)' D

We can extend this theorem again to all paths from cy as we did before. This can be done
for all coming martingale-based methods, so we generally just prove the special case for
the starting configuration.

Theorem 3.2.7. Let 17 be an LARnkSupM for a starting configuration co and a target region C
such that X1 admits lower e-optimal schedulers. Let T = TC be the first hitting time of C, then

U(CO) = ECQ(T)‘

Proof. In contrast to the upper version, there does not necessarily exist any scheduler ¢
such that # is a c-ARnkSupM. However, consider a lower e-optimal scheduler ¢ (for X7)
such that n7(c,07) > Xn(c) +1 > X5(c,07) + 1 — € holds for all paths 7w = ¢g . .. ¢ where
c ¢ C. We again abuse notation and define #(c,0) = 7(c). For e € (0,1) we can divide
both sides by (1 — €) and obtain

T_(c,00) > X (L> (c,00) +1

1—-¢€ 1-€
Setting " = 1 we see that 77’ is a c-ARnkSupM. By Theorem 3.2.5 we have
7'(co) =11 (co,0) = Eeo,o (T)

which implies
n(co) 2 (1= €)Beo(T) > (1 - €)Eg,(T).
This holds for all e € (0,1) and in particular for € — 0 we conclude 77(co) > E. (T). O

The extra condition assumed in the above theorem is restrictive but satisfied in many
cases. If 7 is lower semianalytic than such schedulers do exist[18, Proposition 7.50]. In par-
ticular, any Borel measurable and hence also any continuous function is lower semianalytic
and admits e-optimal schedulers.

While additive ranking supermartingales do give sound upper bounds on the reaching
time, it is not clear how tight the bounds are. We wish to address this in the following and
show that there exist supermartingales such that the inequality is actually satisfied with
equality for all three presented versions of ARnkSupMs.
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Lemma 3.2.8. The function ]Eztep * defined as lESCtepS(c, 0) = E¢o(TC) is a c-ARnkSupM for any
scheduler o, any starting configuration co and any invariant I.

Proof. Let cg and o be given. Let C € B(L x R") be a target region. We need to show that
for any path 7tc = cpcy...c with ¢ ¢ C we have ]Escteps(c, o) > XIESCteps(c, o)+ 1. Let
T = TC be the first hitting time of C.

EZP*(c,0) = Eeo, (T) = B, (T | Co = ¢ ¢ C)
— [ Bo (T + V()
B / Eo o (T)p™(dc’) +1
- /]Escteps(c,r‘THC)P‘gﬂ(dC/) +1

= XE&P (¢, 07) + 1

The important equality is from the first line to the second line. Here we use the fact, that
T(cocicz...) = T(cic ... )+ 1holds whenevercy ¢ C. This gives Eqy o (T) = [ Ec, o, (T+

1)y‘§0(dcl). O

Corollary 3.2.8.1. ¢c-additive ranking supermartingales are sound and complete in witnessing pos-
itive almost sure reachability, that is, if IECO,U(TC) < 0o, then there is exists a o-ARnkSupM for cg
witnessing it.

Proof. For completeness we just take IESCtepS as the o-additive ranking supermartingale. For
soundness we use Theorem 3.2.5. O

Lemma 3.2.9. The function lEsCtepS admits lower and upper e-optimal schedulers. Furthermore, they
can be chosen to be history-independent.

Proof. Instead of giving a proof, we refer to Lemma 3.2 by Takisaka et al.[11]. However, we
give a short explanation. A pCFG can be seen as a general Markov Decision Process, which
is a well studied type of system in control theory. A commonly analyzed problem is the ex-
pected reward problem, where to every state and action ofthe system a reward is associated
and the task is to calculate what average reward is accumulated over a run of the system (of-
tentimes discounted or time bounded). It can be shown that if the rewards are positive and
upper bounded, then e-optimal schedulers exist that minimize or maximize the expected
reward. The expected reaching time can be transformed into such a model by associating
a constant reward of 1 to every transition that does not lead the target region, and by mod-
ifying the system to loop inside the target region once reached. Now the expected reaching
time coincides with the average accumulated reward and hence e-optimal schedulers exist.
We use this argument later to argue about the existence of e-optimal schedulers for other
functions as well. A concrete construction from pCFG to the stochastic optimal control
model is given in [11, Lemma 3.2], and the existence of e-optimal schedulers is proven in
[18, Proposition 7.50 and Proposition 9.19]. O
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Corollary 3.2.9.1. UARnkSupM and LARnkSupM are sound and complete in witnessing upper and
lower positive almost sure reachability. With upper and lower positive almost sure reachability we
refer to IE(TC) and IE(TC) being finite.

Proof. By Lemma 3.2.2 and 3.2.9 we have XlEStepS X lEStep and taking the supremum over

all schedulers in the equation lEC P, o) = X]E?eps( ¢,0r)+1(c ¢ Cand 7tc = cpcq ... €)
gives
]Esteps( ) X]Esteps( ) +1> XIEsteps( ) +1.

]EStePS is a UARnkSupM satisfying Eg. ps(co) = E,(T). By the same argument it can be

shown that [E - *P® js a LARnkSupM satisfying Eztep *(co) = E (T). We need to show that

XE?eps adrmts lower e-optimal schedulers to apply Theorem 3.2.7. The proof for this is
quite technical and requires more background in measure theory, analytic sets and selec-
tion theorems. We refer to the excellent book by Bertsekas and Shreve on stochastic optimal

steps

control[18]. According to them [E-™"" is lower semianalytic as the infimization of a lower

semianalytic function IEC Pe, Applymg the nexttime operator to a lower semianalytic func-
tion yields again a lower semianalytic function [18, Corollary 7.48.1]. Lower semianalytic
functions admit e-optimal selections [18, Proposition 7.50]. O

Upper positive almost sure reachability is different from positive almost sure reachability
for all schedulers ¢, that is, it does not witness Vo : E,(T¢) < oo but rather Vo : E,(T¢) <
k for some constant k. On the other hand, lower positive almost sure reachability does
witness 30 : E,(TC) < oo, i.e. the existence of a scheduler which reaches the target almost
surely in finite time.

The following program does terminate in finite time for any scheduler ¢, but this time
can be chosen to be arbitrarily large and as such, [E(T®) is infinite. Termination under all
schedulers is not witnessed by any UARnkSupM.

Listing 3.1: Example: Finite but unbounded termination times
n := ndet(N);
while n > o do
n:=n— 1,

od

The Corollaries 3.2.8.1 and 3.2.9.1 show that IESteps ]ESteps dﬁ?eps are the least functions
satisfying their respective inequalities. Indeed they satisfy their respective ARnkSupM
conditions with equality. Any o/upper/lower additive ranking supermartingale is an over-
approximation of ]EStepS/ ]ESteps/ IESCteps. These properties are reminiscent of least fixed
points and their overapprox1mations via pre-fixpoints. In light of this observation, we
briefly redevelop the obtained results in a fixed point theoretic framework in accordance

to the approach by Takisaka et al.[11].

Theorem 3.2.10. ]EscteloS defined by ]EsctePS (c,0) = E s (TC) is the least fixed point of the monotone
operator
Pc(y) = Ig +1eXy.
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Any pre-fixpoint 1 3 P (1) of D overapproximates ]Ezteps. Here we consider the complete lattice
of functions [(L x RY) x Schr — [0, 0]].

Proof. First we note that IESCteps isindeed a fixed point which was proven in Lemma 3.2.8. We

define ]Esct'sp = IE(T An) where T = T¢ is the first hitting time of C. It is easy to see that

the sequence (lESgepSS”)neN converges monotonically to IEStePs = [E(T) as we have shown

previously using the Monotone Convergence Theorem. We now show that this sequence is

actually the Cousot-Cousot sequence for the least fixed point, that is, ]ESteps<n = ®L(L).
We proceed by induction. For n = 0, both sides equal the constant Zero functlon for

every scheduler 0. We look at the case # + 1 and assume that lESteps<” = ®%(L) holds for
all schedulers ¢. First note that both sides are equal to 0 on C. We con51der c ¢ C. Notice
that (TA (n+1))(coc1...) = (T An)(cicp...)+1foralln € N and ¢y ¢ C. Then we
have

ESP=" (¢, 0) = Beo(TA (1 +1)) = B (TA (n+1) | Co = ¢ & C)
= [ B (T Am) + DpE ()
14 / E, o (T An)pd(dc)
14 / ESPS<" (¢ o) (de') = 1+ XESP=" (¢, )
= Oc(EgP")(c,0) = P (P L)(c,0) = (DL L) (c,0)

steps steps<n

This proves that E. ™ = limy 0 B is the least fixed point of the operator ®¢. By
Knaster-Tarski we have that it is also the least pre-fixpoint and therefore every pre-fixpoint
of ®¢ overapproximates ]ESteps ]
Remark. The arguments of the function ®¢(7) consist of both configuration and sched-
uler so the indicator function that disregards the scheduler is actually 15, o, , but for

notational simplicity we just denote it by 1.

Notice that a pre-fixpoint of @ is a function # satisfying the condition 7 > 1+ Xy
on C, i.e. it satisfies the conditions of a c-ARnkSupM. The tight connection between pre-
fixpoints and supermartingales becomes apparent.

Remarkably, neither martingale theory nor the fact that T is a stopping time is used.

Soundness and completeness follow directly from Knaster-Tarski and Cousot-Cousot. It

is possible to define ]EStep * and lESteps " without directly but rather implicitly relying on

the first hitting time T as shown by Takisaka et al. in [11]. Their approach reduces the use
of probability theory to a minimum. However, they only applied this reasoning to the ex-

tremizations Escteps and Escteps. Furthermore, ranking supermartingales defined this way
are different in the sense that they satisfy the inequality for every scheduler everywhere
(possible restricted to an invariant) and not just along valid paths from some starting con-
figuration cy.

The fixed point characterization of Theorem 3.2.10 is not practically feasible because one
has to compute the nexttime operator with respect to every possible scheduler in each
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iteration. For a more practical approach, it is possible to fix a single history-independent
scheduler ¢ and characterize IESCte(fs as the least fixed point of an adapted operator O,
instead.

Lemma 3.2.11. Let o be a history-independent scheduler, then ]Esctel}D ° defined by IESCtef *(c) =
[E o (TC) is the least fixed point of the monotone operator

De(n) = TIg + 11Xy (-, 0).

where 17 : (L x RY) — [0, 0] is a scheduler-independent function. We set 17(c, o) = n(c) for all
schedulers o to make it compatible with the definition of X.

Proof. Follows by the same arguments as in the proof of Theorem 3.2.10 and using the fact
that o = o holds for all valid paths 7. O

It is possible to generalize this to an arbitrary fixed scheduler. We do not further fol-
low this approach in detail, but give a brief description instead. For a fixed scheduler
o, it is sufficient to store its history v for the fixed point computation. One considers a
history-dependent function 7 : (L x RY) x (L x RY)* — [0,00] and defines the oper-
ator Oc,(17)(c, ) = 1+ [n(c, mc)uc™(dc’) for ¢ ¢ C, and 0 elsewhere. The mapping
(c, ) — IE?EPS(C, o) is then the least fixed point of the operator.

The proof of 3.2.10 can be straightforwardly adapted to UARnkSupM and the operator
®c(17) = 1 + 1X7. One essentially takes all equations presented in the proof and adds
suprema over all schedulers in every line. The desired result is obtained by the fact that
e-optimal schedulers exist, and that ®¢ is w-continuous and hence preserves the chain
supremum of the Cousot-Cousot sequence.

Unfortunately, the proof does not transfer to the case of LARnkSupM. While the first
arguments are straightforwardly adapted to the lower case, the problem is in the conver-
gence of the sequence [ES*®PS<", This sequence is increasing but the operator ® is w°P-
continuous and not w-continuous. The increasing sequence E?elosgn does not necessarily
converge after w steps, and transfinite induction steps are needed. However, under the

assumption that any fixed point 7 of (1) = 15 + 1zX# admits e-optimal schedulers,

it can be shown that Ezteps is indeed the least fixed point. Takisaka et al.[11] construct an
e-optimal scheduler for an arbitrary fixed point to prove this statement but we do not see
any justification as to why their constructed scheduler is measurable in their proof. While
this statement may hold even in the absence of such schedulers, we have no such proofat
hand and as such consider the additional assumption as described above necessary.

Theorem 3.2.12. Escteps is the least fixed point of the monotone operator
Pc(n) = Ie+ 11X
Any pre-fixpoint 1 1 ®c (1) of D¢ overapproximates _scteps.

Proof. Instead of adapting the proofof Theorem 3.2.10, we directly use its result in a similar
fashion as we did in the proof of Theorem 3.2.6. Consider an arbitrary fixed point of 77 of
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®c. By abuse of notation we define #(c,0) = #(c). Now we have = 1z + 1:Xy >

1z + 1=X7. 1 is thus a pre-fixpoint of the operator ®¢ and as such it is larger than IESteps

(from Theorem 3.2.10). We have #(c) = 5(c,0) > IESteps(c o). Since this holds for all

schedulers we conclude > IECep As shown in the proof of Corollary 3.2.9.1 IEC “isa
fixed point and by the previous observation it must be the least one.

The operator ®c is w-continuous which follows from the fact that X is w-continuous
(see Lemma 3.2.1). Using this fact, we see that the least fixed point is reached after at most
w steps in the Cousot-Cousot sequence.

—n+1
Dc(lim Del) = lim Pe(Dcl) = lim ®¢" (1) = lim de(L)
And again, every pre-fixpoint is an overapproximation of Ezteps by Knaster-Tarski. O

For the lower case we consider an extra condition to guarantee that the function [E - SLeps 4

the least fixed point. Namely, we show that this function is the least fixed point among all
functions 7 for which X7 admits e-optimal schedulers. As previously mentioned, this can
be guaranteed for a wide class of functions, namely all lower semianalytic functions and
this includes all Borel measurable functions.

Theorem 3.2.13. Ezteps is the least fixed point of the monotone operator

Qc(17) = Tg + Xy
under the assumption that for any fixed point 17, the function X1 admits lower € -optimal schedulers.
Any pre-fixpoint 1 3 P(17) of D overapproximates E IEStepS
Proof. Let 7 be any fixed point of @ . By assumption there exists for every e > 0 a scheduler
o€ such that X7 + € > Xy/(-,0¢). This scheduler can be chosen to be history-independent
by defining ¢ as o(7tc) = 0°(c). Now we get

= Sc(y) = 1e +1cXy
>N+ 1(Xn (-, 0) —€l) = (1 —e)lg + 1Xy (-, 0).

Dividing both sides by (1 —¢) fore € (0,1) gives

so the function 7' = L is a pre-fixpoint of ®¢ , and by Lemma 3.2.11 it overapproximates

ESPS > ]EStep °. From that it follows that 7 > (1 — (—:)IEStePS foralle € (0,1). Lettinge — 0

Co
gives the desired result 7 > lESteps Escteps itself'is a fixed point of @~ and hence it is the

least fixed point. By Knaster-Tarskl any pre-fixed point is larger than the least fixed point
and therefore overapproximates [E ]ESteps O
Both presented proofs regarding UARnkSupM and LARnkSupM are essentially identi-
cal to the previously shown proofs using martingale theory. The difference is solely in the
invoked theorem for c-ARnkSupM which was once proven via martingale theory (Theo-
rem 3.2.5) and once via fixed point theory (Theorem 3.2.10). This concludes our discussion
about expected reaching times in probabilistic programs. Effective ways to find such su-
permartingales via template-based synthesis methods are presented in Chapter 4.
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3.2.2 Ranking Supermartingales for Higher Order Moments

The ranking supermartingales in Subsection 3.2.1 are used to overapproximate the expected
reaching time and, if it is finite, conclude that the program almost surely reaches the target
region eventually. Instead of overapproximating the expectation (i.e. the first moment),
one can also use supermartingales to get approximations on higher moments. Higher
moments can be used to bound tail probabilities, i.e. the probability that the program
takes at least a certain amount of steps before reaching the target. This is established by
the generalized Markov’s inequality.

Proposition 3.2.14 (Markov’s inequality). Let T be a non-negative, real-valued random variable
and ¢ a non-negative, monotonically increasing function, then for every d > 0 with ¢(d) > 0 it
holds that

E(¢(T))
Pr(T >d) < o)

Corollary 3.2.14.1. Under the assumptions of Proposition 3.2.14, for any d > 0 the inequality

E(T"
Pr(T>d) < (d” )
holds.
Proof. We set ¢(x) = x" for any n € IN and apply Proposition 3.2.14. O

The goal is to find upper bounds on the higher moments [E(T") and use them to bound
the tail probabilities of T. Since the inequality gives a bound on the same tail probability
for any n € N, it can be useful to compute bounds on multiple higher order moments for
various values of 7 and then choose the one which gives the tightest bound.

The ranking supermartingales in Subsection 3.2.1, in a sense, model the change of expec-
tation as time elapses in the system via the nexttime operators. We made use of'the fact that
T(cocy...) = T(cica...) + 1is true for all ¢y which are not already in some target region
C. From this we concluded the relation E¢)o(T | co € C) = [E¢,0, (T +1)pd (de1) =
1+ [Eey 0, (T)pu,(der). Identifying Ec o (T) with the expression 77(c, ) then gives rise to
the fixed point characterization 77(c, o) = 1+ X#/(c, o). However, higher moments of T do
not change linearly with time. Indeed, for the second moment we have

Eeyo (T2 | €0 # C) = [ By, ((T+ 12)py (der)

=142 [ By (T, (der) + [ By (T, (dc).

So to compute the second moment after a transition, knowledge about the first moment
is needed. Generally, to compute the n-th moment this way, knowledge about all lower
moments up to the n-th is needed. This simultaneous computation can be expressed by
defining the n-th order ranking supermartingale to be an n-dimensional vector containing
an entry for each moment. In the case of n = 2, we would consider 7 = (#1,7) and the
(simplified) fixed point equations 771 = 1 + X7 and 17, = 1 4 2X#; + Xi7,. The constant 1
term may also be considered as the 0-th moment, i.e. IE(TV).
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The following results are mainly due to Kura et al.[14]. Unlike the one dimensional case
of ARnkSupMs, a purely martingale theoretic approach to the following results seems more
complicated than the fixed point theoretic approach. We use the advantage of having two
frameworks to work with and, in this case, only use the fixed point theoretic one.

Definition 3.2.6 (Higher order additive ranking supermartingale[14]). Let ¢ € Schr be a
scheduler, C € B(L x RY) a target region and cg be a starting configuration. A universally
measurable vector-valued function 7 : (L x RY) x Schy — [0,0]" is called an n-order
additive ranking o-supermartingale ((n, o)-ARnkSupM) at ¢y if it satisfies for all paths 7rc =
co€q...cwithc ¢ Candk € {1,...,n}:

k(k
(e, 0n) > Z (i)Xni(C,aﬂ) + 1.
i=1

In particular, for k = 1 it reduces to the definition of an ordinary additive ranking o-
supermartingale. As before, for a universally measurable function 77 : L x RV — [0, cc]"
we define n-order upper additive ranking supermartingales (n-UARnkSupM) to satisfy

o= R

under the previous conditions. The lower version is defined analogously.

The domain may be restricted to an invariant [ without any problems, but to reduce
notational overload we consider the trivial invariant I = L x RY only from now on.

The k-th entry of  is associated to the k-th moment of the first hitting time T¢. As a
single elapsing time unit has different effects on the different moments, we introduce an
elapse function which represents this effect.

Definition 3.2.7 (Elapse function El"[14]). The function El" : [0, 00]" — [0, oo]" is defined
as

k
k
EIY (x1, X0, ..., %0) = ) <i)xi+1.

i=1

Using the elapse function and defining Xy = (X1, X7, ..., X1,), the supermartingale
condition can be restated as #7(c, 0r) > X(El" 0 77)(c, o), where the inequality sign > is to
be interpreted componentwise. Note by linearity of the X operator, we can also exchange
X and EI", that is, X(El" o 7) = El" 0 Xy

We are ready to state the main theorem of this section.

Theorem 3.2.15. Let C € B(L x RY) be a target region, o a scheduler andn € IN'\ {0} a positive
natural number. Let 17 be an additive ranking o -supermartingale of order n _for C at cy. Then for all
ke {1,...,n} wehave

Ve e (LxRY) :Vmc=coer...c: (e, 0n) > Eep, (TF)

where T = TC is the first hitting time of C.
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Proof. By monotone convergence it is easy to see that ., ((T A m)*) converges to [E. - (T)
as m — oo. Let 17 be some (1, 0)-ARnkSupM at ¢y. We show by induction that for all m € IN
and k € {1,...,n} we have i (c,07) > E.p ((T A m)k) For m = 0 it holds trivially since
the right-hand side equals 0 everywhere. Assume it holds for all values < m + 1. The right-
hand side E, ., ((T A m)¥) is constantly 0 on C so we only have to consider ¢ ¢ C. For any
k <mnandcy ¢ C, we have

(TA(m+1)*coer...) = (TAm)+1)*(crea...)

k .
=(1+), <I;)(T/\m)l)(clcz...)
i=1
—Ell o ((TAm),(TAm)?,...,(TAm)X, ..., (TAm)")(cica...)

In the following we use the notation E(T)(c,0) = E.(T) to make it compatible with the
nexttime operator X. Taking the expectation ., _over the above equality for ¢ ¢ C then
gives
E((TA (m+1))(c,00) = XE(EL! o ((TAm), (TAm),...,(TAm), ..., (T Am)"))(c,on)
= El! o (XE(T Am)(c,or), XE((T Am)?)(c,07),...,XE(T Am)")(c,07))
< Elf o (Xu1(c,00), Xm2(c,02), ..., Xnn(c,07))
— El} 0 () (c,0x) < e, )
From the first to second line we used the linearity of the expectation and the nexttime
operator. From the second to third we used the induction hypothesis, and in the last line
we used the defining inequality of (n, o)-ARnkSupM.

The above inequality holds forall m € IN, in particular for m — oo we conclude IE(T*)(c, o) <
17k (C/ Uﬂ> ° D

Corollary 3.2.15.1. (E(T),[E(T?),...,E(T")) is a (n,0)-ARnkSupM for all n € IN, scheduler
o and starting configurations c(. Furthermore, it is the least (1, o) -ARnkSupM.

Proof. From the proof of Theorem 3.2.15 we have the equality (for ¢ ¢ C)
E((T A (m+1))%)(c, o)
= EI! o (XE(T Am)(c, o), XE((T Am)?)(c,0%),...,XE(T Am)")(c,0)).
By monotone convergence and w-continuity of X, we get for m — oo
E(T*)(c, o) = EIf o (XE(T)(c, o), XE(T2) (¢, o), . . ., XE(T") (¢, o))

showing that (IE(T), E(T?),...,IE(T")) satisfies the conditions ofa (1, ) -ARnkSupM. From
Theorem 3.2.15 it must be the least one. [

Similar to the one dimensional case of c-ARnkSupM, higher order ARnkSupMs may be
characterized as pre-fixpoints of an appropriate operator. Indeed, the proof of Theorem
3.2.15 implicitly makes use of the Cousot-Cousot sequence given by the stopped processes
(T A m). We shortly formalize this observation in the following theorem.
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Theorem 3.2.16. Let C € B(L x RY) be some target region and let o be some scheduler. For any
n, the tuple E = (E(T),E(T?), ..., E(T")) is the least fixed point of the monotone operator

Py,c () = T(EL" o Xy).
Any pre-fixpoint is an overapproximation of the first n moments of T = TC.

Proof. The second claim follows by Knaster-Tarski if we can show that the tuple of moments
is indeed a least fixed point. Denote by E™ the tuple (E(T A m), E((T Am)?),..., E((T A
m)")) of bounded moments. From the calculations of the proof of Theorem 3.2.15, it is
easily seen that E" 1 = CIDn/C]_E’m holds. From | = [E° we immediately get that the Cousot-
Cousot sequence @77 (L) = [E" converges to [E as m tends towards infinity. N

Next we want to analyze the upper and lower versions, that is, the supremization and
infimization over all schedulers. Unlike the simple ARnkSupM case, the upper version for
higher order ARnkSupM turns out to be sound but not complete, and the lower version
does not even achieve soundness. The reason for this discrepancy is easy to see. Maximiz-
ing a higher order martingale entails maximizing multiple objectives, namely, the various
moments [E(TF). There might not exist a single sequence of schedulers which uniformly
maximizes all moments simultaneously. In other words, for every moment there is gener-
ally a different sequence of'schedulers maximizing that specific moment. The higher order
UARnkSupMs, however, overapproximate all moments simultaneously. By the dependence
of a component on all the components of lower index, once a lower index component is
strictly overapproximating its corresponding moment, all higher index components will
necessarily be strict overapproximations of their respective moments. For the higher or-
der LARnkSupMs this same reasoning shows that higher index components might actually
underapproximate their respective moment, making the method unsound.

Theorem 3.2.17. Let C € B(L x RY) be a target region and n € IN \ {0} a positive natural
number. Let 17 be an upper additive ranking supermartingale of order n for C at co. Then for all
ke{1,...,n} wehave

Ve e (LxRY) : Ve =cocy...c:m(c) > Eo(TF)
where T = TC is the first hitting time of C.

Proof. We abuse notation and define #(c,0) = #(c) for all schedulers ¢. For ¢ € C the
inequality holds trivially. Otherwise we have for all paths 7tc = cpcy...c withc € C:

1(c,07) > ElI" o X(c) > BI" o X(c, 0z).

So 17 is a (11, 0’)-ARnkSupM for any scheduler ¢, and hence we have 7, > E,(T*) by Theo-
rem 3.2.15. Taking the supremum over all schedulers then gives the desired result. O

Remark. It is again possible to view a higher order URnkSupM as a pre-fixpoint of a suitable
operator o o
Py,c(17) = Te(EL o Xiy).

The least fixed point of this operator, however, is in general strictly larger than (E(T),...,E(T")).
This fixed point does not admit a nice and concise description in terms of naturally arising
expectations of suitable random variables.
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To show that the method is incomplete, consider the following example 3.2. The pro-
gram has to choose one of two branches in the beginning. Under branch (a), the program
takes exactly 3 steps to reach the assert (which marks the target region), so [E,(T) = 3 and
[E,(T?) = 9. Under branch (b) there is a probability of p that the program takes only 2
steps, and a probability (1 — p) that it needs 4 steps. The moments associated to that ac-
tion are E,(T) = 2p +4(1 — p) = 4 —2p and E,(T?) = 22p +4%(1 — p) = 16 — 12p.
As previously discussed, we consider a situation where one action maximizes the first mo-
ment while another maximizes the second moment. It turns out that for p = 73 we have
Eq(T) =3 >3 — & = Ey(T) but Eo(T?) = 9 < ¥ = E,(T?). Action (a) maximizes the
first moment while action (b) maximizes the second. Now consider a URnkSupM of order
2 for this program. By Theorem 3.2.17, we have 771 > [E(T) and 7, > [E(T?). From the defi-
nition of 77 we also have 17, > 1+2X#; + X > 1+ 2XE(T) + XIE(T?). From the starting
configuration we can calculate XIE(T)(co) = 2 (by taking branch (a))and XE(T?)(co) = ¥
(by taking branch (b)). It follows that 115(c) > 1+2-2+ % =2 > B = E,(T?)(co) =
E(T?)(co). 17 is strictly larger than E(T?) at cy.

Listing 3.2: Example: Incompleteness of higher order UARnkSupM

if * then
skip; [/ Branch (a)
skip;
else
if prob(x — p) then // Branch (b)
skip;
skip;

fi

fi
assert true;

Taking this exact example also shows that LRnkSupM of order 2 are unsound. If we take
n = (E(T),E(T?)), then it is easy to see that 17, > 14 2X#; + X, = EI3(X#) holds.
By monotonicity of EI? and X, we see that E1>(X#) is also a LRnkSupM of order 2, but
calculating it shows that E13(X#)(co) = 9 — & < 9 = E(T?), contradicting the soundness.
In particular, the tuple # = (IE(T),E(T?)) becomes smaller through the operator 1 +
EI2(X7) and is thus just a pre-fixpoint of the operator but no fixed point. There exists
pre-fixpoints, such as the least fixed point, which are smaller than (IE(T), E(T?)) making
the method unsound.
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3.2.3 Nonnegative Repulsing Supermartingales

In the previous two subsections we introduced supermartingales which give overapprox-
imations of the expected reaching time or higher moments of it. The expected reaching
time can be used to give an qualitative statement about almost sure reachability in the pro-
gram. In this subsection we introduce a notion of supermartingale which gives quantitative
information about reachability, concretely, it overapproximates the reachability probabil-
ity. This can be used to refute almost sure reachability in programs.

Definition 3.2.8 (Nonnegative repulsing supermartingale (NNRepSupM)). Let I be a pCFG,
C € B(L x RY) a target region, c; a starting configuration and ¢ € Schr a scheduler.
A universally measurable function 77 : (L x RY) x Schr — [0,1] is called a nonnegative
repulsing o -supermartingale (c-NNRepSupM) at ¢ if it satisfies

m 7(c,0r) = 1forall c € C and all paths 7rc = cocy .. . ¢,
m 1(c,07) > X1(c, o) for all paths 7r¢c = cpcy ...cwithc & C.

Auniversally measurable function 77 : L x RV — [0, 1] is called an upper nonnegative repulsing
supermartingale (UNNRepSupM) if it satisfies

m 77(c) = 1forall c € C and all paths ¢ = ¢yc; . . . ¢,
m 77(c) > Xy/(c) for all paths 7tc = cocy . ..c with ¢ ¢ C.

A lower nonnegative repulsing supermartingale (LNNRepSupM) is defined by replacing X
with X in the above definition. The domains of these functions may be restricted to an
invariant I containing cy.

We show that NNRepSupMs give a complete and sound overapproximation ofthe reach-
ability probability P%ah (¢, ") = Prq,«(T¢ < o0) by employing martingale theory and
fixed point theory in a similar fashion as we did in Subsection 3.2.1. First we show that the
process Y; = 11(C;, 0¢,. ¢, ,) induced by a c-NNRepSupM is indeed a supermartingale.

Remark. The probablhty measure Pr., on the set of all runs is simply v““ from Lemma
3.1.1. The term T < oo expresses the event {cocy - -+ € (L x RV)% | T¢(cocq...) < oo}

Lemma 3.2.18. Let 17 be a 0-NNRepSupM for C at ¢ for some scheduler o, starting configuration
co and target region C. Then the induced process Y; given by Yi(coc1 ... ) = (i, Ocpeyci_q) 1S @
supermartingale.

Proof. We need to show that E;(Y; 1 | C;,...,Co) < Y; holds. We distinguish two cases.
Either C; € C, then E,(Y;11 | C;,...,Co) < 1 = Y; holds trivially. Otherwise we have for
Cz’ eé C :

Eo(Yig1 | Cir...,Co) = /77 Cit1,0¢,..c)MG,...c;(dCit1)

0Cy--Ci_1

= /’7 Civ1,0¢,..c)mc,” ' (dCit)
= X#(Ci,0¢,.¢c; ;) <n(Ci,o¢,.c; ;) = Yi
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Since the process Y; is bounded by the value 1, the Optional Stopping Theorem may be
applied directly (see condition (c) in Theorem 2.1.4) giving us the following result.

Theorem 3.2.19. Let 77 be a o-NNRepSupM for C at ¢ for some scheduler o, starting configuration
co and target region C. Then we have 17(co, o) > P20 (¢, o).

Proof. Consider the associated stochastic process Y; as before. It is bounded by the constant
1 function, so the Optional Stopping Theorem can be applied directly with respect to the
first reaching time T = TC. We get

77(C0/ (7) =Yy = IECQ,(T(YO) > lEco,a(YT)
= IECQ,(T(YT | T < OO)PI'CO,U(T < oo) —+ IECQ,(T(YT | T = OO)PI‘CO,U(T = oo)
— 1 . PI‘CO/U-(T < OO) + ]:EC(),(T(YT ’ T p— OO)PI'CO,U—(T — OO)

> Pre,o (T < 00) = PN (¢, o)
O

The name repulsing supermartingale is actually derived from a somewhat different def-
inition. One can define a repulsing supermartingale to be a supermartingale that can take
negative values and is guaranteed to be positive inside the target region[13]. If the su-
permartingale is also difference bounded (i.e. each step changes its expected value in a
bounded manner) then it is possible to derive a probability bound on never reaching the
target region if the starting value is negative. The idea here is that the supermartingale has
the tendency to decrease over time and hence it tends to stay negative if'it started negative.
With a bound on the deviation per step and the use of concentration inequalities (such
as Azuma-Hoeffding’s inequality) the probability that it deviates into the positive region
can be bounded. Because of this tendency to move away (being repulsed) from the positive
region and hence the target region, the name repulsing supermartingale is used.

While this definition is usable, it does not admit a direct adaption to a fixed point theo-
retic setting. We opt for a definition that closely relates to the reachability probability, and
for this it necessarily needs to have the same codomain, in particular, it should never be
negative.

Theorem 3.2.20. For any scheduler o, starting configuration cq and target region C, the function
IPreach is g o-NNRepSupM at co.

Proof. Let 7tc = cocy . ..c be any path and T = T¢ the first reaching time of C. If ¢ € C,
then P™"(¢,¢;) = 1. For ¢ ¢ C, note that T(cc’...) < oo ifand onlyif T(c'...) < co.
From this we can conclude forc ¢ C

]PreaCh(C,O'n) - Prc,an(T < OO) = PrC,Uﬂ(T < o0 | ¢ % C)
- / Pres g (T < c0)pg(dc’)

= [ P, e (A = XPE (c,07)
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These two theorems establish soundness and completeness of nonnegative repulsing
supermartingales. The proof of the latter actually shows that the value of lPrCeaCh at con-
figurations outside of C stays fixed under the nexttime operator X. This can be used to
establish the following fixed point characterization of PXach,

Theorem 3.2.21. Let ' be a pCFG and C € B(L x RY) a target region. lPrCeaCh is the least fixed
point of the monotone operator
Felp) = Tc +1eXy.

Proof. From the completeness proofin Theorem 3.2.20, we easily see that PX2h is indeed a
fixed point of ¥ . We need to show that it is the least fixed point. Towards this, consider the

bounded reachability probability ]PéeaChS"(c, o) = Pr.o(T < n). The sequence of events
{T < n} is monotonically increasing, hence we have lim,,_,o Prc (T < n) = Pr. (T <
0) = P%h (¢, o). Now we show that ¥ (IPEeaChS”) = ll’rceaChS”le holds and conclude from
Cousot-Cousot’s Theorem that lPrCeaCh = Y¢ (L) is the least fixed point. For c € C, we have
Tc(ll’rceaChS”)(c, o)=1= ]PEeaChS”H(c, o). Considerc ¢ C,then T(cc’...) < n+1ifand
onlyif T(c'...) < n.

PRt (¢ 5) = Preo (T < n+1|c ¢ C)
- /PrC/’UC(T < n)ul(dc’)

— /]PE%C}K”(C’, oc)u (dc’)

= XPEP="(c,0) = ¥c(PE"=")(c,0)

Note that IPEeaChSO = 1c = Ye(L) # L (unless C is empty). The n-th element of the

Cousot-Cousot sequence actually corresponds to IPEeaChS”_l and not to lPrCeaChS”. The latter
would be the case, if we used a strict inequality to define ]PrceaChS”. O

It is well-known that reachability in deterministic structures like graphs and transi-
tion systems can be characterized as the least fixed point of an operator of the form S —
S UR(S) where S is some state/node set and R(S) is the set of states/nodes immediately
reachable within one step from S. So it is to no surprise that reachability in probabilistic
systems admits an analogous characterization of similar form. It can be interpreted as the
direct extension from boolean reasoning to quantitative reasoning.

Now we want to specialize the previous result to the case of a fixed scheduler, as done
before for ARnkSupM.

Lemma 3.2.22. Let 0 be a history-independent scheduler, then PX3h = Preach(. o) is the least
fixed point of the monotone operator

Yeo(n) =1c +1eXy(:, 0).
where 77 : (L x RY) — [0,1] is a scheduler-independent function.

Proof. Follows by the same arguments as in the proof of Theorem 3.2.21 and applying the
equality o = o for all valid paths 7. O
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Now we again consider the upper and lower versions of NNRepSupM. Similar to the case

of lEZteps, IPr¢ach also admits lower and upper e-optimal schedulers which we shortly state
in a lemma.

Lemma 3.2.23. The functions P2 and lPrCeaChS” admit lower and upper e-optimal schedulers.
These schedulers can be chosen to be history-independent.

Proof. The argument is analogous to the argument in Lemma 3.2.9 and a proofis found in
[11, Lemma 3.2]. A reward function is chosen which gives a reward of 1 when entering the
target region C, and 0 otherwise. The expected reward then coincides with the probability
to reach the target region. O

The results regarding the extremizations of NNRepSupMs are in essence identical to
the results proven in Subsection 3.2.1 about ARnkSupMs. It is again possible to derive
them via either martingale theory or fixed point theory. We limit ourselves to the fixed
point theoretic approach here but stress the fact that either theory may be used in a similar
fashion as done for ARnkSupMs. Handling the lower version via martingale theory is more
difficult, while the upper version follows the same proof principle as shown before.

Theorem 3.2.24. Let T be a pCFG and C € B(L x RY) a target region. ]l_jrcea‘:h is the least fixed
point of the monotone operator

Ye(n) =1 +1:X.

Proof. Let 1 be any fixed point of ¥, then it satisfies 7 = 1c + 1zXy > 1c + 1=Xy =
Yc(#) for all schedulers 0. We write 17(¢c, o) = 7(c). 1 is thus a pre-fixpoint of ¥¢ and by
Knaster-Tarski it is larger than its least fixed point P3" (see Theorem 3.2.21). Taking the

supremum over all schedulers gives > ]l_’EeaCh. We need to show that eraCh itselfis a fixed
point to complete the proof. From the facts that lPrCeaCh =1c+ ﬂgX]PrCeaCh (Theorem 3.2.21)

holds and lPrCeaCh admits upper e-optimal schedulers (Lemma 3.2.23), we can apply Lemma
—treach —reach —treach ) =

32.2and conclude P =1¢ +1XP¢c = ¥ (Pc
To prove the analogous result for lower NNRepSupMs, we again make an additional
assumption on the existence of e-optimal schedulers as we did in Theorem 3.2.13.

Theorem 3.2.25. Let T be a pCFG and C € B(L x RY) a target region. P%3M is a fixed point of
the monotone operator

Ye(n) =1c +1X.

Moreover, if for every fixed point 17 of ¥ - the function X1 admits lower e-optimal schedulers, then
Preach i the least fixed point.

Proof. We first show that ErceaCh is indeed a fixed point. As in the upper case, we use the
fact that ErceaCh admits lower e-optimal schedulers and apply Lemma 3.2.2 to the equality
]Pl(’:ea‘:h =1c+ IIEX]PEeaCh from Theorem 3.2.21 to get the desired result.
Now let # be an arbitrary fixed point of Y. For any € > 0, let 0¢ be a lower e-optimal
e2—I7l
(

scheduler for X#. Construct a universally measurable scheduler o satisfying o (77) = ¢ 7T)
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such that the scheduler ¢ picks an €2~ ("*1)-optimal action for Xy at the n-th step. In par-
ticular, the scheduler o, is lower €2~ (I1+1)_optimal for X7. We show by induction that

]PgeaChS”( or) <+ Zn+||n||+1 €27" holds for all paths 7t and n € IN. For n = 0 we have

= lc < 1¢c + 171Xy = g for all paths 77. Now we consider the case n + 1. For
c € C the inequality holds true. For ¢ ¢ C we have:

reach<0
P C

IPI(‘jeachgi’l-i-l (C, Un’) — XIPI(':eaChSn (C/ Un’)

— [P ) ()
n+| el
/17 "dd)+ Y e2!
i=|mc|+1
(n+1)+|x| '
=Xn(c,o0)+ ), €27
i=|mt|+2
(n+1)+]| 7| .
<Xp(e) +e2 M 4y e
i=|m|+2
(n+1)+| 7| '
=1n(c) + Z €2
i=|m|+1

From the second to third line we use the induction hypothesis and the linearity of the
integral. From the fourth to fifth line we use the fact that o is €2~ (II*1)-optimal. For the
empty path and n — oo we get

Erceach( ) ]Preach(c 0.) — lim H—)reach<n(c 0_ < ;7 + 262_

n—00

Since € > 0 was chosen arbitrarily, we conclude EreaCh(c) <(c). O

The proofactually shows that P! is the least fixed point ;7 of ¥ such that Xz admits
lower e-optimal schedulers. However, we do not have any example of a fixed point which
does not satisfy this property. In particular, we do not have an example where there is a
fixed point smaller than IP%*! that does not admit e-optimal schedulers.

The operators Y and ¥~ make use of Bellman’s principle of optimality for dynamic
programming which is widely applied in the context of optimal control (e.g. [25, 18, 26]). It
states that an optimal policy or strategy for some starting state must remain optimal for the
resulting state after the first transition. These operators may be understood as maximizing
or minimizing the expected rewards of the system as it progresses. Here a reward of 1
is obtained whenever the system enters the target region C. If we assume the system to
stop after entering once (or potentially loop indefinitely in some dummy state afterwards),
then the reward can be obtained only once and the expected reward coincides with the
probability to reach C. A similar viewpoint can be taken on ARnkSupM, where a reward of
1 is accumulated whenever the system performs a step outside of the target region. The
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expected reward is then equivalent to the expected reaching time, assuming the system
does not reenter the target region afterwards. This exact reduction to the expected reward
model is used to prove the existence of e-optimal schedulers in [18].

Before we conclude this subsection, we shortly introduce another use of UNNRepSupM
to underapproximate reachability probability proposed by Chatterjee et al.[13]. Chatterjee
et al. made use of the concept of probabilistic invariants and coupled them with qual-
itative reasoning via ranking supermartingales. The idea is to find a predicate which is
strong enough to infer almost sure reachability but potentially too restrictive to be a pure
invariant. Instead, there is a certain probability that the predicate actually fails to be an
invariant. A case where such reasoning can be useful, is when dealing with unbounded
distributions such as normal distributions. A pure invariant has to consider all possible
outcomes of sampling such a distribution which in generally gives a trivial invariant of the
form —co < x < oo. On the other hand, the probability that a sample from for exam-
ple N(0,1) (normal distribution with mean 0 and variance 1) exceeds the finite value 10 is
around the order of 10724, For qualitative reasoning an invariant such as x < 10 may be
strong enough to show almost sure reachability whereas x < oo may fail to do so. In the
example 3.3 the probabilistic invariant —50 < x < 50 is sufficient to guarantee reachability
under every scheduler but the pure invariant fails to do so for any scheduler.

Listing 3.3: Example: Probabilistic invariants

x := norm(o, 1);

if (x < o) then
X = —X;

fi

z = o;

n ndet(Int[1, 10000]);
while (n > o) do

Z = Z + X;
X = Xx[2;
n:=n + 1;

od

assert z <= 100;

To find such probabilistic invariants, one can consider a candidate invariant P and over-
approximate the probability to reach P via UNNRepSupMs. This gives an upper bound
on the probability that the system fails to satisfy P under any scheduler, or alternatively,
a lower bound on the probability that P is an invariant. This can then be used to lower
bound the reachability probability to some target region C via ranking supermartingales
for C supported by P, since whenever P is in invariant, the system is guaranteed to reach
the target C.
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3.2.4 Nonnegative Repulsing J-Supermartingales

A slight variation of the previously introduced nonnegative repulsing supermartingales
(NNRepSupM) in Subsection 3.2.3 can be used to reason about bounded reachability prob-
abilities, that is, to reason about P(T¢ < n) instead of Pr(T¢ < co). This variation, in a
sense, gives the counterpart to reasoning about tail probabilities via higher order ranking
supermartingales (Subsection 3.2.2). The idea is to relax the conditions on NNRepSupM
which have to strictly decrease in expectation, and allow them to also increase in expecta-
tion but in a bounded manner. The bound is given by a value § > 0.

Definition 3.2.9 (5-NNRepSupM). Let I' be a pCFG, C € B(L x RY) a target region, cg
a starting configuration and ¢ € Schr a scheduler. Let § > 0 be given. A universally
measurable function 77 : (L x RY) x Schr — [0,1] is called a nonnegative 5-repulsing -
supermartingale ((8, 0)-NNRepSupM) at ¢y if it satisfies

m #(c,07) = 1forall c € C and all paths 7rc = ¢ocy .. . ¢,
m 17(c,07) > X#(c,0) — 6 for all paths 7rc = cocy ...c with ¢ ¢ C.

A universally measurable function 7 : L x RV — [0,1] is called an upper nonnegative 6-
repulsing supermartingale (5-UNNRepSupM) if it satisfies

m #(c) = 1forall c € C and all paths 7rc = ¢ocs .. . ¢,
m 77(c) > X#/(c) — 6 for all paths 77c = cocy ... c with ¢ & C.

A lower nonnegative repulsing d-supermartingale (5-LNNRepSupM) is defined by replac-
ing X with X in the above definition. As usual, the domains of these functions may be
restricted to an invariant I containing co.

We want to show that (¢, o) +né > ]PrceaChS” (¢, o) holds for paths 7t = ¢gcy ... c. The
extra summand 76 here gives an uncertainty introduced through the é-relaxation. Smaller
values of ¢ yield better bounds, and in particular for § = 0 we get back the inequality of
a regular NNRepSupM. The purpose of the J-relaxation is to increase the set of functions
satisfying the supermartingale condition. This may give smaller solutions for 77 which
can give tighter bounds for small time horizons. Increasing the set of solutions can be
particularly useful when automatic template synthesis methods are used.

Lemma 3.2.26. Let 17 be a (6, 7)-NNRepSupM at co for some scheduler o. Let Z; = Y; — ¢ - i
define a stochastic process where Y; is the stochastic process induced by 1. The stopped process Z[ is
a supermartingale with respect to the canonical process C;.

Proof. We have to show that E,(Z]; | C;,...,Co) < Z] holds. We do a case distinction on

theevent {T < i+ 1}.If T < i+ 1, then

Es(Zl,|Ci...,Co) =Es(Zr | Ciy...,Cr,...,Co)
=ZT=ZiT
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IfT > i+ 1, then

= Xn(Ci,0¢..c; ;) =6 (i+1)
<n(Ci,ocy.c.,)+6—06-(i+1)
=n(Ciocy.c;,) —0-i=2;=2Z]

O

Note that the process Z; defined as above is not bounded and the Optional Stopping The-
orem may not be applied directly to the stopping time T. However, stopping the process
at any fixed time n € IN, we get the desired result.

Theorem 3.2.27. Let 17 be a (6, 0)-NNRepSupM at co, then 17(co, o) + & - n > Preach=r(cq o),

Proof. Let ZI be the supermartingale from Lemma 3.2.26. For any fixed n € IN, we can
apply the Optional Stopping Theorem to the process Z! stopped at 1 and get

1(co,0) = Zo = Eeyo(Z§) > Eeyo(Zy)
=E¢o(Z1 | T < n)Preyo(T <n)+Eeo(Zy | T > n)Preyo(T > n)
=E;o(Yr—0-T|T <n)Preo(T<n)+E;oe(Yn—06-n|T>n)Preyo(T > n)
=(1—-0-E¢o(T| T <n))Preyo(T <n)+ (Eeo(Yn | T>n)—06-n)Preo(T > n)
> (1—=06-n)Preo(T <n)+(0—0-n)Preo(T > n)
= Preyo (T < 1) —6-n(Preyo(T < n)+ Preyo(T > n))

= Preyo(T <n) —6-n=PRN"(cy,0) — 6.1
]

We now consider the upper version. The result and proof are similar to Theorem 3.2.5
for ARnkSupMs and to Theorem 3.2.19 for NNRepSupMs.

Theorem 3.2.28. Let 17 be a 6-UNNRepSupM at ¢, then n7(co) + 6 -n > PéeaChSn(co)

Proof. We set 7(c,0) = 1(c), then for every path 77¢ = cocy ... ¢ we have 57(c, o) = 11(c) >
X#(c) =& > Xy(c, o) — 6. Hence, 7 is a (6,0)-NNRepSupM for any scheduler ¢ and thus
by Theorem 3.2.27 it satisfies 17(co) + 6 -n > lI)rCeaChgn(CO, o). Taking the supremum over
all schedulers gives the desired result. O

As before, a fixed point theoretic approach can derive similar results. We do not further
develop the fixed point theoretic approach here but instead refer to Takisaka et al.[11] who
give a characterization for the upper and lower version only. The characterization as well
as the proofs are a simple and straightforward adaption of the corresponding proofs for
NNRepSupM in Subsection 3.2.3.
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3.2.5 <y-scaled Submartingales

Reachability is usually seen as a least fixed point of a suitable operator and by employing
Knaster-Tarski one naturally can find overapproximations via pre-fixpoints. In the previ-
ous sections this gave rise to many supermartingale methods which are able to give sound
overapproximations on either reaching times or reachability probabilities. On the other
hand, Cousot-Cousot gives a way to underapproximate least fixed points by constructing
an increasing, infinite sequence that converges to the least fixed point. Such a sequence is
calculated iteratively and is especially hard to compute on infinite state spaces. Further-
more, within finite time it can only give sound but incomplete underapproximations on
most systems. For these reasons, we would like to use Knaster-Tarski instead to obtain
sound underapproximations. Towards this, we need to reframe reachability as a greatest
fixed point such that any post-fixpoint will be a sound underapproximation. Unlike before,
this way we obtain so called submartingales instead of supermartingales. Reachability does
not naturally admit a greatest fixed point characterization, instead, we consider discounted
reachability where longer paths contribute less to the reachability than shorter ones. This
can be achieved by adding a discount factor <y to the natural fixed point characterization of
the reachability probability. It turns out that by adding such a factor, all previously existing
fixed points will get contracted to a single fixed point which is simultaneously the least and
the greatest fixed point, allowing the usage of Knaster-Tarski to obtain overapproximations
as well as underapproximations. However, through the addition of the discount factor, this
method necessarily becomes incomplete.

Definition 3.2.10 (y-scaled Submartingale (y-SclSubM)[11, 15]). Let I be a pCFG, C € B(L x
R") a target region, cg a starting configuration and o € Schr a scheduler. Let v € (0,1) be
a scaling factor. A universally measurable function 77 : (L x RY) x Schr — [0, 1] is called a
7y-scaled o-submartingale (y-Scl-o-SubM) at ¢ if it satisfies

m 77(c,07) = 1forall c € C and all paths 7rc = ¢oc; . . . ¢,
m 17(c,07) < ¥X1(c,05) for all paths 7tc = cpcy ...c with ¢ € C.

A universally measurable function 77 : L x RV — [0, 1] is called an upper «y-scaled submartin-
gale (U-y-SclSubM) if it satisfies

m #(c) = 1forall c € C and all paths 7r¢c = ¢ocs .. . ¢,
m 77(c) < vXy(c) for all paths 7tc = cocy . ..c with ¢ ¢ C.

A lower 7y-scaled submartingale (L--SclSubM) is defined by replacing X with X in the
above definition. The domains of these functions may be restricted to an invariant I con-
taining co.

The above definition is very similar to that of NNRepSupM. There are just two differ-
ences, namely, the scaling factor -y and the direction of the inequality. It is easy to see that
such v scaled submartingale induces a submartingale if stopped at T, simply by the fact
that 7 < 9X# < X7 holds and Lemma 3.2.3. However, we look at the modified stochastic
process Z; = 7'Y; instead.
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Lemma 3.2.29. Let 77 be a y-scaled o-submartingale at ¢ for C for some scaling factor v € (0,1),
scheduler o, starting configuration co and target region C. Let {Y;};cn be the induced process ac-
cording to Definition 3.2.4. The stochastic process Z; = «'Y; stopped at T = T is a submartingale.

Proof. We need to show that E,(Z]; | Cy,...,C;) > Z[ holds. We make a case distinction
based on the event {T < i}. For T < i we have

Eo(ZL4|Co...,Ci)) =Eo(Zr | Coy...,Cr...,C)) = Zr = Z]
For T > i we have

Eo(ZL4 | Co...,Ci) =Ee(Zit1 | Cov.-., C)
=Eo(v""ii1 | Co,..., C) = v Ee(Yigq | Co,..., Ci)
= v'vXn(Ci,0c,,..c. 1) = V'1(Ciocy,..coy) = Z

]

Now we want to apply the Optional Stopping Theorem. The process Z! is obviously

bounded by 0 < Z! < 1, so we may use the Optional Stopping Theorem by condition (c).
This gives the following main theorem.

Theorem 3.2.30. Let 17 be a y-scaled o-submartingale as in Lemma 3.2.29. Then 1(cp,0) <
]PEeaCh(co, o).

Proof. We take the process Z! from Lemma 3.2.29 and apply the Optional Stopping Theo-
rem (by condition (c)). This gives

H(CO, 0-) - ECQ,U’(Zg‘) S ]ECo,O’(ZT) — ]EC(),O’(’)/TYT)
= Ecpo (YY1 | T < 00)Prego(T < 00) +Ec o (7" Yr | T = 00)Prey (T = 0)
= E¢or(77 | T < 00)Prey (T < 00) 4+ 0 < Prey (T < 00)

We note that 97 < 1 holds and for T = oo we get 7' Y7 = 0 since y < 1. [

The above theorem shows two crucial points about 7y-scaled submartingales. First, it is
essential that ¢ < 1 holds. For ¢ = 1, we are not able to conclude E,(y"Yr | T = o) =0
and hence the proof fails. Secondly, since 7y needs to be strictly less than 1, we have E, (¢ |
0 < T < o) < 1, which in generally leads to a gap between 7 and P%" (unless T = 0
holds). The higher the expected reaching time, the larger the approximation gap becomes.
The method is sound but not complete and in particular the function Pr(T < c0) is no
-scaled submartingale.

If put into the framework of the general MDP setting, then <y-SclSubMs correspond to
the expected discounted reward model and may be reframed as such. This discount or scal-
ing factor actually lets all fixed points of the corresponding Bellman optimality equation
coincide. We will later give a fixed point characterization based on this Bellman equation
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and see that the corresponding operator is a contraction on the space of universally mea-
surable functions. By Banach’s fixed point theorem, we see that this operator has a unique
fixed point as we already pointed out in the introduction.

We want to get analogous results for both versions as done for other martingale-based
methods. For supermartingales the upper versions tended to be easier to prove while the
lower versions made use of extra assumptions. For submartingales it is the opposite; the
lower version is the easier one to prove. This discrepancy will appear again in Chapter 4
about automatic synthesis, where only lower submartingales and upper supermartingales
admit straightforward synthesis procedures. Let us consider the lower version first.

Theorem 3.2.31. Let 77 be a lower y-scaled submartingale at ¢ for some target region C and scaling
factor € (0,1). Then 57(co) < P3N (cy) holds.

Proof. For any arbitrary scheduler o and all paths 77¢ = cpcy ... cwehave 57(c,07) = 1(c) <
YX7(c) < vX1n(c,07). Hence, 1 is a y-scaled o-submartingale for any scheduler ¢, and
therefore 17(cp) < P%N(cy, o) holds for all schedulers. Taking the infimum on both sides
proves the statement. O]

We will handle the upper case in the fixed point theoretic framework. First, let us define
the fixed point characterization of 7y-Scl-o-SubM. The proof of Theorem 3.2.30 actually
gives a stronger result than stated, namely, it gives a concrete bound on the largest possible
v-SclSubM. The mapping (c,0) — Eqo (7T | T < 00)Preo(T < ) = E(97) is an upper
bound. We now show that it is indeed the tightest bound by characterizing it as the unique
fixed point of the corresponding fixed point theoretic operator.

Theorem 3.2.32. Let I bea pCFG, C € B(L x RY) a target region and v € (0,1) a scaling factor.
]Prcefiych(c, 0) == Eco(7T) is the unique fixed point of the monotone operator

Y, (1) = 1c + v Xy

Proof. We proceed in two steps. First we show that ]PrceiyCh is indeed a fixed point and then
we show that Y, is a contraction. From Banach’s fixed-point theorem we conclude that
it must be the unique fixed point. First note that for all ¢ € C, we have ]PreaCh(c o) =

Eco(1") = Eee(??) = 1 = ¥, (PEIM)(c,0). Forc ¢ C, note that T(cc ) =
T(c"...) 4+ 1 holds. This gives

]PrCe,E;Ch(C, 0) =Eeoe(7") = EBeolr' [ ¢ € C)
— [ B (ac)
=7 /]E ") (de')
= /]Prceérch(c e ) e (dc’)
= YXPE (¢, 0) = ¥, (PEAT) (¢, 0).

Next we show that the operator is a contraction on the Banach space of universally measur-
able functions into [0, 1] with the supremum norm ||5|| = sup.,#(c, o). It is easy to see
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that this space is indeed a complete metric space, because the functions codomain [0, 1]
is complete and the limit of measurable functions is again measurable. For any two such
functions #; and #;, we have:

[¥eqy (1) — Yo (m2) | = (171X — 12X ||
= Y[X 01 — )| < 71X (71 —12) ||
< llm —n2|l.

Since v < 1, Y¢,, is a contraction. We made use of the fact that X is a linear operator and
the underlying integral is taken over a space with total measure 1. O

This proof does not directly apply to X and X because these operators are not linear but
rather super- and subadditive. However, slight modifications to the proofgive us analogous
results. Before we go into the upper and lower version, we first establish the existence of
e-optimal schedulers.

Lemma 3.2.33. The function lP%e;Ch admits lower and upper e-optimal schedulers.

Proof. As mentioned previously, this function can be expressed in the discounted average
reward model for general MDPs with positive, bounded rewards and as such admits e-
optimal schedulers[18, 11]. A full proofis given in [11, Lemma 3.2]. O

Theorem 3.2.34. Let T be a pCFG, C € B(L x RY) a target region and v € (0,1) a scaling
factor. ErCe;Ch(c) = E.(77) is the unique fixed point of the monotone operator

Ye, () =1c +91:Xy.

Proof: From Theorem 3.2.32 we have ¥ y(lPreaCh) = l1c + 71 X]PreaCh = lPre?YCh From
the existence of e-optimal schedulers and Lemma 3.2.2 we can take the infimum over all
schedulers in the previous equation and get ¥ 7(lPre'a‘Ch) = Ic + 71X ]PreaCh ]Pf:e?;h,
so we have a fixed point. Next we show that the operator is contractive on the space of
universally measurable functions into [0, 1]. Let 1 and 7, be two such functions. We define
the sets Cp = {c € L x RY | Xoj1(c) = Xipp(c) > 0} and Cy = {c € L x RV | Xij1(c) —
X2(c) < 0}. These two sets partition the configuration space. Consider the following
inequality:

¥ (1) = ¥c, ()l = 71X — Y1eXn|| < 7| X — X (31)

We can do a case distinction with respect to the sets Cp and Cy because we have

Y[1X71 — Xia|| = ¥ max({[[1c, (Xn1 — Xn2) |, [[1cy (X1 — X2) ||), (3-2)

since the maximum value of the difference is either taken in Cp or in Cy (or both). First
we consider the second term, i.e. the case of Cy. The difference X771 — X1, is nonpositive,
hence the norm is largest when the difference takes the smallest, negative value. Thus we
have

ey (Xn1 — X)) || < e X (171 — 12) || < M1 — 12
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For the case of Cp, note that ¢ € Cp implies X#2(c) — X#1(c) < 0. Using the same argu-
ment as above, we can conclude

e, (X1 — X)) || = |, (Xiza — Xp1) || < [, X (72 — 7)) || < 2 — 1l = Nl — m2l-

Applying these results to Equations 3.1 and 3.2, we get

1¥c,, () —Y¥e, )| < vllm —n2ll,
hence ¥, is a contraction. ]

Because ¥, is contractive, we also know that its unique fixed point may be computed
via the Cousot-Cousot iteration within w many steps. For LNNRepSupM and LARnkSupM
the convergence after w steps was not guaranteed. Using this convergence property, we
could actually remove the usage of Lemma 3.2.33 and instead define the fixed point as the
limit of the Cousot-Cousot sequence.

Theorem 3.2.35. Let T be a pCFG, C € B(L x RY) a target region and € (0,1) a scaling factor.

—reach

Pc., (c) = Ec(y") is the unique fixed point of the monotone operator

Yoo () = Te + y1eX7.

Proof. The proof follows the same arguments as used in the proof of the lower version in
Theorem 3.2.34. The only argument that changes slightly is the use of the partition into Cp
and Cy. On the set Cp we have || X7 — X7 < ||X(171 — 172)|| and on the set Cy we can
simply consider the difference ||X#, — X7 | and argue as before. O

As mentioned in the introduction, we can simply apply Knaster-Tarski to any of the three

variations of y-scaled submartingales and get that any postfix point is a underapproxima-
—reach —treach

tion of the unique fixed point. Note that P~ < P and Ercefirch < PEh hold, so
every underapproximation via upper or lower y-scaled submartingales is sound. We want
to stress the strong correspondence between submartingales and post-fixpoints, super-
martingales and pre-fixpoints and lastly between martingales and fixed points. This corre-
spondence is the key component making both the fixed point theoretic and the martingale
theoretic approach so similar in appliance and results.



64 3.2 APPLICATION OF MARTINGALES

3.2.6 Martingales for Recurrence

In this section, we introduce a method to characterize recurrence probabilities via fixed
point theoretic martingales. A run of a system is called recurrent with respect to a region
C, if the run visits C infinitely often. Recurrence is also known as liveliness property, which
states that no matter what happens, the system will eventually come back to a safe state. In
LTL this property can be specified via the formula [I)C. Recurrence is known to be a com-
bination of a least fixed point ((C) and a greatest fixed point (J((C)) and we show that in
the demonic case, these two fixed points can be computed/approximated sequentially via
a combination of super- and submartingales. In the angelic case, this sequential computa-
tion is not directly possible.

Definition 3.2.11 (Recurrence probability). Let C € B(L x R") be a measurable target re-
gion. A run cocq ... is said to be C-recurrent, if for all n € N, there is ai > n such that
¢; € C holds. We denote the set of all C-recurrent runs as ITF¢. For any scheduler ¢ and
starting configuration c, we define IPE(c, o) := Prc ,(IT{f°) to be the probability that a run
starting from c under scheduler ¢ is C-recurrent. Naturally, we define the upper and lower
versions by supremizing and infimizing over all schedulers respectively.

Note that the above definition is well-defined only if the set I is measurable. We now
give a characterization of this set as a limit of reachability sets, which also shows its Borel
measurability. We also remind the reader that Pr., is nothing but the path measure v“
from Lemma 3.1.1.

Lemma 3.2.36. Forany C € B(L x RY), the set IT*¢ is equivalent to the set ), HrceaChZ", where

HrceaChZ" = {coc1--- € I1| Ji > n:¢; € C} are delayed reachability sets. Each of these sets is
Borel measurable.

Proof. The following relation is apparent: TT¢ C [T2h="H1 C 122" Every run that
enters C after at least n + 1 steps, also enters it after at least n steps. A C-recurrent run visits
C infinitely often and hence by definition is contained in any of the delayed reachability

sets. We have IT¢ C ), HrceaChZ”. For the other direction, consider a run in cocy - -+ €
Ny, HEeaChZ”. For all n € IN, the run is contained in HzeaChZ”, so there exists an i > n such
that ¢; € C holds. But this is exactly a C-recurrent run.

To see that these sets are measurable, we first denote by Rect,, (C) the measurable rectan-
gle (L x RY)" x C x (L x RY)“. Then we have HrceaChzn = U;>n Rect;(C) is the countable
union of measurable sets and thus measurable itself. The set T_Ircec is then also measurable
as the countable intersection of measurable sets. ]

If we denote the probability Prc,g(H?aChZ”) by ]PrceaChZ" (¢, ), then we want to show that
IPEeaChz” = X”lPrCeaChzO = X"Prah converges to IPC as 1 goes to infinity. This leads to

a sequential fixed point characterization by first computing P& as a least fixed point
(see NNRepSupM) and then seeing P as the greatest fixed point given by the decreasing

Cousot-Cousot sequence (X"IPreach), .

Lemma 3.2.37. For all n € IN we have ]PE‘”’E:‘ChZ”Jr1 = X]P?aChZ”.
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Proof. A path cgcqcp ... is contained in HEeaCthH if and only if the suffix cic; ... is con-
tained in Hf:eaChZ”. From this we get

]Pgeachzn—&—l(cl 0,) _ /]PEeaCth(C/, O'C)]/lg(dcl) _ XPlgaChzn(C, 0,)

]

In terms of LTL, the nexttime operator X can be identified with the LTL next operator
O. We generally have XPr. (77 = ¢) = Pro (7 = Og) for all LTL formulas ¢. The above
lemma corresponds to the equivalence of the LTL formulas (="*! and (){0=". Indeed, in
terms of LTL, the operator (=" is shorthand for ()"¢ which makes the previous claim
trivial. Now we need show that this sequence (X"IP™2h) _; indeed converges to IPX¢, but
this is just an application of Lemmas 3.2.36 and 3.2.37.

Lemma 3.2.38. The sequence (X”ll’rceaCh)neN decreases monotonically and converges to IP{S.

Proof. First of all note that Pr., is a probability measure for all ¢ and ¢ and therefore

reach>n
HC

monotone. The sequence is monotonically decreasing and hence the associated

sequence of probabilities PrC,U(HEeaChZ”) = IPEeaChZ”(c, o) = X"P®ah(c, o) is monotoni-

cally decreasing. For the convergence we use Lemma 3.2.36 and get

(¢, 0) = Preq ([ T2

n
= inf Pr o (TTE2h=")
n

RT reach>n
= Lo o)

= lim X"PE* (¢, 0) = X“PE"(c, 0).

We made use of the fact that the sequence is decreasing and hence infimum and limit
coincide. O

Now we are ready to state the main theorem ofthis section.

Theorem 3.2.39. The tuple (171,772) = (P2, IPXC) is the solution to the fixed point equation
system given by

m =u ]lc + ﬂ@XUl
172 =y min{#y, X2 }

Proof. The solution to the first fixed point equation is simply the least NNRepSupM as
shown in Theorem 3.2.21. This is exactly P23, The solution to the second equation is
the greatest fixed point of 7, — X, that is less than 17; = P%h. We can consider 7
as the top element T and compute the greatest fixed point under #; by considering the
Cousot-Cousot sequence X"(T). For T = 1 = IPEeaCh this converges to P by Lemma
3.2.38. [
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In order to find sound approximations for IS¢, one has to either underapproximate or
overapproximate both fixed points in Theorem 3.2.39. Knaster-Tarski is insufficient for
this task since it gives approximations in different directions for both types of fixed points.
However we can use 7-scaled submartingales to get an underapproximation 7; < PXach
and then use Knaster-Tarski to get an underapproximation of the second fixed point. This
method is generally not complete because y-scaled submartingales are not complete.

Corollary 3.2.39.1. Let C € B(L x RY) be a target region, v € (0,1) a scaling factor and let
(111, 1m2) be functions such that

1 1 < T+ 1sXn,
2. 12 < XV]Z and

3. 172 S 7]17
then (171,772) < (IPach PXee) holds.

Proof. 11 is just a y-scaled submartingale and by Theorem 3.2.32 underapproximates lPrCeaCh.
172 is a post-fixpoint of the mapping 7 — min{#x1, X7} and by monotonicity of the mini-
mum function, it is also a post-fixpoint of 7 — min{IP®*h X7 }. Hence by Knaster-Tarski,
it underapproximates the greatest fixed point of the later, which is exactly IPf°. O

Recurrence can be thought of as a two objective function. The first objective is to reach
the target region C, the second one is to stay inside a region that is capable of revisiting
C. Because of this, replacing the nexttime operator X in the fixed point characterization
of P by X yields a system whose solution is not PC¢, but rather an overapproximation
of it. The key observation is that P¢" is determined by schedulers which simultaneously
maximize both objectives, while a modified fixed point characterization allows the usage
of different schedulers for each objective. Consider the following trivial example.

Listing 3.4: Example: Upper recurrence incompleteness

1. X = O0;

2. while x = o do

3. if % then

4. X = 1
fi

od
5. assert true;
6. skip;

The target region is marked by the assert statement. Obviously, this statement can only
be reached once so the system is never recurrent under any scheduler. Now consider the

upper reachability probability ?rceaCh, which assigns to every configuration with label I €
{1,2,3,4,5} the value 1, and 0 for the last skip statement. We can simply use a scheduler

which executes x := 1 in the first loop iteration to break out of the loop and reach the

. . v sreach o .
assert. If we now compute a few iterations of X Pg, then it will converge to a function

that assigns value 1 to the labels {1,2,3} and 0 elsewhere. The reason is that we can take
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a scheduler which never leaves the loop and thus stays inside a region R which satisfies
—reach

P-"" (R) = 1. The problem here is that the objective of staying inside R and the goal of
reaching C are mutually exclusive and no single scheduler can achieve both. By considering
both objectives separately, we can find two schedulers that satisfy one objective each.

Interestingly, lower recurrence [P does not suffer from this problem. It is indeed pos-
sible to take Theorem 3.2.39 and simply replace X by X for both fixed points to get a correct
characterization of IP*°. Before we proof this statement, we first need to establish the ex-
istence of e-optimal schedulers for Preach=7,

reach>n
Pe

Lemma 3.2.40. For all n € IN and target regions C € B(L x RY), the function admits

lower and upper e-optimal schedulers

Proof. Unlike before, we cannot directly reference results from Takisaka et al. but we use
their prooftechnique to show that e-optimal schedulers do exist. We use the construction
by Takisaka et al.[11, Lemma 3.2] to construct an infinite horizon stochastic optimal control
model from a given pCFG for which we know the existence of e-optimal schedulers[18].
In this model we assume that a configuration in C is reached only once (by modifying it
to go to a fixed self-looping configuration after entering C). Furthermore, we extend the
configuration space to (L x RY) x {0, ..., N} such that every transition moves from (c, k)
to some (¢/,min(k + 1,n)). This is done to differentiate the first n steps of the system.
Note that since {0, ..., n} is finite, we do not introduce any measurability issues here. Now
we can define a single-step cost function g, : ((L x RY) x {0,...,n}) x (LUR) — [0,1] as

follows.
1 k=mnandceC,

gu((eK),€) = {0 o

The parameter { € (L UR) is the action that was chosen at state (¢, k). It can either be
a nondeterministic transition to a different location /| € L or the real value x € R of a
nondeterministic assignment. In either case, we ignore the action and give a reward of'1
if we are in the target region C and at least n steps have been made so far. Then this cost
function induces an infinite horizon expected reward function

Bi(eo.0) = [ sl G (a)

where 77 = (co, &o)(c1,&1)(c2,&2) ... is a path augmented with actions such that action ¢; is
chosen according to o(cgcy - . . ¢;). Tt is easy to see that J,, = ]PrceaChZ" holds because exactly
the paths in HrceaChE” get a reward of 1, while all others get a reward of 0. We made some
adaptions to J, to fit it in our setting. Originally it is formulated via policies instead of
schedulers, but they are essentially identical and can be translated to each other[11, Lemma
3.2]. The cost function g, is the indicator function of the Borel set C x {n} and as such it
is bounded, nonnegative and lower semianalytic. There exist e-optimal policies and hence

schedulers for such cost functions[18, Proposition 9.19] O

Theorem 3.2.41. The tuple (171,172) = (PN, PX°) is the unique solution to the fixed point
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equation system given by

m =u lc +1Xm
12 =y min{n1, X1 }

Proof. The solution to the first fixed point equation is simply the least LNNRepSupM as
shown in Theorem 3.2.25. This is exactly Ercead‘. For the second part, we first note that

EfceaChZ”Jr 1 _ }_(Ezea‘:hzn holds by the existence of e-optimal schedulers and Lemma 3.2.2.

The sequence defined by ErceaChZ” = X"P**" is monotonically decreasing hence con-

verges. We show that it converges to P{*.

PE<(c) = inf PE¥(c,0)

reach>n
Pe (

= infinf c,0)
o n

= iﬂf ir;f lPEeaChZ” (c,0)

_ il;}fEEead\Zn (C)

— il’,}fanEeach(c) _ XwErCeaCh(C)

We made use of the fact that P = lim; e ]PrceaChZ” = inf, lPrCeaChZ” holds from Lemma
3.2.38 and that the order of taking infima can be exchanged. O

This proofis not adaptable to the case of upper recurrence because the exchange of order
of sup and inf is generally not possible. In fact, by exchanging sup inf to inf sup, the result
gets larger, which explains why a similar fixed point characterization via X fails and leads
to a fixed point that is larger than P~ as demonstrated in Example 3.4.

Now we take a look at the problem of deciding almost sure recurrence, i.e. deciding whether
IPE¢(c) = 1holds. The problem of qualitatively deciding almost sure recurrence in a prob-
abilistic system is surprisingly similar to the problem of deciding positive almost sure
reachability. Indeed, ranking functions are capable of this. If we can find a ranking func-
tion for a target region C that is finite on an invariant I containing C then the system must
be recurrent. Simply put, finiteness of an ARnkSupM on I implies a finite expected reach-
ing time ]Esgeps(c) for every ¢ € I by Theorem 3.2.5, so every configuration is eventually
driven towards C. We then have forall c € I

1. Pr(c =0I) =1and
2. Pr(c = 0C) =1.

These conditions imply that the systems always stays in I (since it is an invariant) and when-
ever it leaves the target region C, it will eventually reenter it. This technique is reminiscent
of Foster’s Theorem for recurrence in countable state Markov chains. Indeed such reason-
ing is found in [27] and a generalization to uncountable Markov chains is given by Meyn et
al. in [28]. We formalize the above mentioned idea know.
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Definition 3.2.12 (Recurrence set Recc ). For a target region C € B(L x RY) and a history-
independent scheduler o, we define the recurrence set Recc, = {c € L x RV | P%¢(c,0) =

1),

We use history-independent schedulers for this definition to make the following char-
acterization more concise. There is no gain in considering history-dependent schedulers.

Theorem 3.2.42. R = Recc ; satisfies the following two properties.
1. forallc € R: Pry(c =OR) =1 and
2. forallc € R: Pro(c = OC) = P2ah(c, o) = 1.

Furthermore, any set satisfying the above properties is a subset of Recc -, making it the largest such
set.

Proof. First we show that R = Recc, indeed satisfies both properties. Property 2 holds
directly because 1 = P*¢(c, ) < P%N(c, ) holds. For property 1 assume that there is a
configuration ¢y € R such that L x R \ R has positive measure (Le. uZ (L x RV \ R) > 0),
then we get the following contradiction:

1= PES(c0,0) = XPE(c0,0) = [ PE(e1,0)p,(dey)

= Jmee + [P0 (de)
< uZ (R) 4+ pg (Lx RV \R) =1,

The set L x RV \ R must have measure zero starting from any configuration ¢ in R. The
last inequality is obtained because P%¢(cq, ) < 1forall¢; € L x RV \ R. The system stays
almost surely in R.

We proceed to show that any set R satisfying 1 and 2 is a subset of Recc , making it the
largest such set. Suppose both properties hold and let c € Rbe a configuration. By property
1 we can conclude Pry(c = O"R) = X"(1g)(c,0) = 1 forall n € IN, where 1g maps input
(c,0) to 1ifc € R and else to 0. Note that we need to define 1 scheduler-dependent to be
compatible with the definition of the X operator. Property 2 implies P . 1 = 1. By
3.2.38 we get the following equality

P%<(c,0) = igf]l’rce“hg”(c, 0) = inf Pry(c = 0="C)
= infPry(c = O"OC) = infPry(c E O"(OC AR))
n n
= inf X" (P22N . 1R ) (¢, o) = inf X" (1R)(c, o) = 1.
n n
In the fourth inequality we use the fact that ¢ = (0" R is an almost sure event, in the second
to last equality we use property 2 and in the last one use property 1. O

Recurrence sets in probabilistic programs have strong similarities to bottom strongly
connected components (BSCCs) in finite Markov chains. A BSCC is a strongly connected
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component that has no outgoing transitions. In finite Markov chains recurrence can be
decided by finding all BSCCs that intersect C and find whether one of them is eventually
reached[29]. The bottomness of BSCCs corresponds to property 1 in that both the BSCC
and the recurrence set are not left once entered (they both are kinds of invariants). Ifa BSCC
intersects with the target region C then finiteness as well as strongly connectedness guar-
antee that the region C is reached. This corresponds to property 2 of the recurrence sets. In
fact, the union of all BSCCs of a finite Markov chain which intersect some region C form a
recurrence set for that region (since a Markov Chain is scheduler-independent, recurrence
with respect to a scheduler ¢ and regular recurrence coincide). As previously mentioned,
these properties can be decided by finding an invariant I and a ranking supermartingale
on that invariant.



4 Template-based Synthesis

This section explains methods to automatically synthesize martingales which are intro-
duced in Section 3.2. The method of choice is so called template-based synthesis, where
a template function is fixed and then its variable parameters are computed such that it
is indeed a martingale for the program in question. We consider two types of templates;
linear templates which can be solved using linear programming (LP), and polynomial tem-
plates which are solved by semi-definite programming (SDP). In both cases, the problem
becomes an optimization problem which allows us to compute a solution that not only sat-
isfies the martingale constraints but also minimizes or maximizes the probability bounds
for the initial configuration. Template-based synthesis is the state of the art method to
construct martingale-like expressions for verification. Linear as well as polynomial tem-
plates are widely used[12, 13, 9, 11, 14, 27, 8]. We apply synthesis of linear martingales to
short programs and show its results in Section 4.3.

4.1 Linear Templates

In the following we assume a pCFG T over a finite variable set V = {x1,xp,...,x,} witha
finite location set L. We also assume that an invariant I and a target region C are given.

Definition 4.1.1 (Linear expressions). A linear expression is given by the grammar

(@) == r|x|r(a)|{a) +(a)

where r € Ris areal value and ¢ € V avariable. Its semantics [a] : RY — R are inductively
defined by [r](x) = r, [x](x) = x(x), [r-a](x) = r- [a](x) and [a + b](x) = [a](x) +
[b] (x). A linear expression map is a mapping 7 that assigns to each location I € L a linear
expression over V. Its semantics are defined by [#] (I, x) = [#(1)](x).

Definition 4.1.2 (Linear constraints, conjunctions and predicates). A linear constraint is an
expression of the form a > 0 or 2 > 0 where 7 is a linear expression. We define [a > 0] =
{x € RV | [a](x) >0} € RY where > € {>,>}. A linear conjunction is an expression of
the form vy Ary A - - - Ay, where each 7; is a linear constraint. A linear predicate py V p V
+++V pj is a disjunction of linear conjunctions. Their semantics are given by [r; A--- A

rm] = Nizi[ri] and [p1 V-V pi] = Uf::l [pil- A linear predicate map P assigns to each
label I € L alinear predicate P(1). We define [P](1) = [P(I)].

Our goal is to automatically synthesize a linear expression map 7 that satisfies the mar-
tingale conditions and is as close as possible to the bounds (over or underapproximation
depends on the concrete martingale we want to synthesize). For this, we need some restric-
tions on the pCFG I that ensure linearity. We have the following conditions and assump-
tions

1. For assignments /| € L4 and update function Up(/) = (x;, u) we have
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a) ifu = f € B(RY,R), then f = [f] for a linear expression f,
b) ifu = d € D(R), then the expectation [E(d) is known,
c) ifu = A € B(R), then A = [2] for some linear predicate 2l over {x;},

2. if ]l € Lp, then each guard G(I,I') = [®] is given by a linear predicate &,

3. the invariant I = [J] is given by a linear predicate map J,

4. the target region C = [€] is given by a linear predicate map ¢,

5. the pCFG is finitely branching. Every location has only finitely many successors.

For pCFGs that are induced by a affine probabilistic program (APP), most of these condi-
tions are automatically satisfied. We will use a slightly adapted syntax for APP to annotate
labels with predicates that specify the invariant and the target region. This syntactical ex-
tension is described in the Experiments section.

Now we fix a linear expression map template for the martingale # of the form 7, =
cllxl + clzxz R cilx,Z + d! for each | € L, where the coefficients cf and d' are unknown
parameters to be optimized for. We denote this set of coefficients by .A. We introduce a
new variable x,4¢ that is used to represent nondeterministic choice and extend the set of
variables to V! = V U {xpqet}- We construct 3 sets of formulas for each label ! with the
following intentions:

m The first set of formulas § describes the invariant conditions (e.g. positivity inside
the invariant).

m The second set §, describes the conditions inside the target region (such as taking
value 1 for NNRepSupM).

m The third set §; describes the martingale conditions outside of C (increase or de-
crease in expectation).

Depending on the martingale under consideration, the formulas have different concrete
structure but their general structure is always the same. All the formulas we use have the
form ¢ = ¢, where ¢ is a linear conjunction over V' with inequalities >, and ¢ is a
formula of the form c1x1 + coxp + - -+ + Xy + CpdetXndet + @ > 0 where each ¢; and d is a
linear expression over the coefficient set A.

Since all expressions are linear, we can equivalently describe each such formula via Ax +
b>0 = c'x+d > 0. Note that the coefficient vector c contains linear expressions over
A. We make use of Farka’s Lemma to transcribe the implications into a linear program
to optimize. For this, we relax all strict inequalities > to > to allow the usage of Farkas’
Lemma. This affects completeness of the method but soundness is preserved. LP solvers
can not handle strict inequalities so this kind of relaxation is necessary either way.

Proposition 4.1.1 (Farkas’ Lemma (affine version)). Let Ax < b have at least one solution, then
Ax <b = c"x < d holds if and only if there exists y > 0 such that y' A = ¢ and y"b < d.
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For a proof we refer to [30, Corollary 7.1h]. The idea behind this lemma is as follows.
If Ax < b is feasible, then the inequalities of this system can be conically combined to
derive new inequalities yT Ax < yTb (with y > 0). Then ¢’x < d holds if and only if’it is
possible to derive a (potentially) stronger inequality of the form ¢’x < d’ where d’' < d,
since ¢Tx < d’ implies c"x < d.

By bringing the inequalities Ax +b > 0 and c¢'x +d > 0 of our original system into
the form (—A)x < b and (—c’)x < d we can apply Farkas’ Lemma and obtain: There
exists y such that y'(—A) = —c and y'b < d, or equivalently, y’A = cand y'b < d.
This application is valid if Ax < b has a solution. If it has not, then the implications
Ax <b = cTx < d are trivially satisfied anyway.

Corollary 4.1.1.1. An implication Ax+b >0 — cIx+d > 0is true if either Ax+b > 0
has no solutions or there exists a nonnegative vector y > 0 such that yT A = c and y'b < d holds.

This reduces satisfiability of linear implications into a feasibility problem over the vari-
able set AU {y1,...,Ym} where m is the number of rows in A and can be solved using
standard linear programming algorithms. Now it remains to concretely construct such
formulas for different martingales. We show the constructions for UNNRepSupM and L-
-SclSubM. UARnkSupM and higher order UARnkSupM can be handled similarly (See [9]
and [14], respectively). From now on we assume the following form of the predicates de-
scribing the invariant, target region and the guards:

. . . ~ N/ sz,' 1 1 Nlj Nlji I
= the invariant is given by J(I) = V., /\j:’l(ai]-x—i— bi; 2 0) = V4 /\j:’l(ﬂéi]- > 0),

l

where a; jj is a Tow vector of coefficients, and «! j is just a shorthand for the linear

expression a X+ b >0,
. . . Nle Nl [
m the target region is given by €(I) = V., Ai=1 (a X+b; ;> 0) = (,B > 0),

® the guards are given by &(I,1") =V, ”//\ it (a f',']l'lx"‘bzl',']l'/ >0) =V, ”//\ e (8 f]l/ =
0).

We consider the special case of UNNRepSupM and assume its form to be 7, = ¢l x; +

clzxz + e+ quxn + d! for each location I € L. The first axiom we need to encode is non-
negativity inside the invariant (7 > 0 inside I:

Sllz{/\(ocfljzo) — (cllx1+clzx2+---+cf1xn+dl20)|1§i§NIj}

Ifany of the invariant disjunctions are satisfied, then the supermartingale has to be positive.

The second axiom we encode is the property that a UNNRepSupM takes value 1 inside
the target region (17(c) = 1,c € C). We relax this axiom and allow it to take values greater
than 1 without affecting soundness nor completeness. Furthermore, this condition is only
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enforced inside the invariant, that is inside the intersection of C and I.

Nl:,ii NEm
)= {/\(“5,]' >0)A N (:Blm,j >0) =
j=1 j=1

(chxr+chwo+ -+, +(d —1)>0)|1<i <N/, 1<m<NF}

If we are inside the target region and invariant, then the supermartingale has to take value
of at least 1.

Lastly, we need to encode the supermartingale axiom itself; i.e. the decrease in expecta-
tion per transition (7 > Xy outside of C). This condition only needs to be satisfied inside
the invariant but outside the target region, that is, inside I N C. Note that (I, x) is outside of
Cifand onlyifforeach1 < m < Nf thereisal < j, < ngm such that 51 . < 0, or equiv-

)
m,jm

but not the soundness of this method. We do a case dlstmctlon based on the location type
[:

alently, — > 0. We relax this inequality to — ﬁl . > 0 which affects the completeness

m If] € Ly, then

Nl:,ji N[E
[ 1 1 1 l/ l/
S:3:{/\(061,]20)/\/\(_ m,]'mzo) - ((Cl—cl)X1+( —Cz)x2++
j=1 m=1

(ch— )y + (d —d") >0) [1<i<N,1<ju < Nf,. 1 € succ(l)}

Note that we iterate over all successors I’ of [ and over all tuples j = (jy, ..., ] Nlc) with
1<jm<Nf.

m If] € Lp, then

N7; Nf
= { A2 00 A A (B, 20) = (= X Prl, )+
j=1 m=1 1!

(ch— Y Pr(L, "))+ (d — Y Pr(1,1)d") > 0) [1<i < NJ,1<jy < me}

L= L=l B
m If] € Lp, then for each successor I’ € succ(!) there is a unique guard G(/,!’) and
Nj NF N /
Sé:{/\(oc > 0) /\/\ ﬁm] /\ = ((f—cDxg+-+
m=1

j=1

(ch—cxy+(d —d")>0) [1<i<N,1<jw<NS,1<h<NG,I' € succ(l)}

m If] € Ly, Up(l) = (xp,u) and I’ is the unique successor of I then
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wifu = f € B(RY,R) and f = [f] = [rix1 +rax2 + - - + rnXxy + 8] is a linear
expression, then

N NE
5 = { A, =0)A N (=B, >0) =
j=1 m=1

((cl1 —clll —rlcg)xl 4+ 4 (cé —rvcé/)xv+...

+(c£l—cf1/—rncg)xnjt(dl—dl/—scﬁ;) > 0) 11<i< Nlj,l < jm < me}

v ifu =d € D(R) and E(d) = s, then

Nii N
8= { Ay =00 A A (=B, 20) = ((h = cp)x+ - + (& = 5)x
j=1 m=1

+ot (ch = ch)xg + (4 —d") > 0) |1§i§Nf,1§jm§me}

2 2
v ifu = [A] = [[\/]Z(\];1 A;\]:l"{(pf{,jxv + qfc,j > 0)] € B(R) is given by a linear predi-
cate over {x;}, then

Yy W N
I I I I I
83 = { /\(“z’,j >0)A A (=Bmj, = 0) A /\(Pk,jxndet +q,;20) =
j=1 m=1 j=1

((ch = e )ag 4+ chxg -+ 4 (¢, — )y + (—5) Xnger + (&' —d') > 0)

|1gingJgjmngmJgng}’*}.

For every choice of x,4et, i.€. every possible way to resolve the nondeterminism,
the expectation has to decrease.

It is worth noting that for the nondeterministic locations this type of construction only
works because we are maximizing the next step expectation, i.e. no matter how the nonde-
terminism is resolved, the expectation has to decrease. This is expressible by a conjunction
of formulas for each possible way to resolve nondeterminism. For LNNRepSupM, the non-
determinism results in disjunctive formulas because there only has to exist a single way to
resolve it such that the supermartingale’s expectation decreases. This is not solvable by
linear programming, but satisfiability of such formulas is still decidable because of the
decidability of first-order theories of the real numbers[31].

As previously described, each of these formulas can be expressed as Ax+b > 0 —
c’x+d > 0. Farkas’ Lemma then reduces this satisfiability problem to an optimization
problem yT A = cand yTb < d subject to y > 0 with parameters in AU {y1,...,yn}. Any
solution to this problem provides a certificate for the satisfiability of the above formulas in
the form of'a supermartingale 7. Concretely, we have the following theorem:
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Theorem 4.1.2 (Synthesis Theorem of UNNRepSupM). Letsol : AU{y1,...,ym} — R be
a solution to the optimization problem induced by the family of formulas g where i € {1,2,3}
and | € L, then the function 17(1,x) = sol(ct)x1 + sol(ch)xp + - - - + sol(cl,)x, + sol(d') is a
UNNRepSupM for C supported by the invariant I.

We have ﬁrCeaCh (1,x) < n(l,x) and in particular for a starting configuration ¢g = (linit, Xinit),

—reach . . . . .
we have P (linit, Xinit) < % (linit, Xinit). We can minimize the linear objective function

i ] (Xinit) obtained from the template 17; = ctx; + cbxo + - - + cLx,, + d' to find a best
17 init p 17 1 2 n
UNNRepSupM at cy.

With a slight adaption to the formula set §3 we can also synthesize UNNRep-J-SupM
easily. We just encode the axiom 77 — X# + 6 > 0 instead of  — X7 in a straightforward
manner. Because this § appears linearly in the conditions, we can make it part of the search
space and find a ¢ that gives the best bounds on bounded reachability probability. In or-

der to do so, we fix a time bound ¢t € IN and minimize the function [ . [ (Xinit) + 6 >

—reach<t
Pc (Linit, Xinit)-

Now we do a similar construction for L-y-SclSubM. Conceptually, we do the same as
for UNNRepSupM,, that is, we fix a template 17; = cix1 + - - + c,x, + d' and encode the
submartingale conditions into formulas of the form ¢ = . The first two sets of
formulas § and §) are identical to the UNNRepSupM case since L-y-SclSubM need to
satisfy the same conditions, namely, they are nonnegative in I and take value 1 inside of the
target region C. The only difference is that we need to encode the submartingale conditions
17 < Xy (= vXy —n > 0) which gives a slightly different set of formulas .

m If] € Ly, then

J ¢
Nl,i N[

5 = { A =0)A A (=Bl > 0) = ((ve} —ch)xi+ (vch —ch)xa+ -+
j=1 m=1

(Y6 = cp)n + (yd" —d') > 0) [ 1< NP, 1 < jm < N, I € S“CC(”}

m If] € Lp, then

Nl?i NF
313.: { /\(“g,j >0) A /\ (—‘3511,]'”1 >0) = ((r)/ Zpr(l,ll)cll _Cll)x1—|—"'+
= m=1 Il

(v Y Pr(L,1)el — )+ (v Y Pr(L,1)d" —d") >0) [1<i<N7,1<jm< me}

Il Il
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m If] € Lp, then for each successor I’ € succ(]) there is a unique guard G(/,1') and

N} NF NS
gé:{/\(zx >O/\/\ B, > /\ —
=1

((ye} = eh)xn+ -+ (el = ch)xn + (rydl —dy) > 0)
[ 1<i< N, 1<juw <N, 1<h<Nj,I'e succ(l)}

m If] € La, Up(l) = (xp,u) and I’ is the unique successor of I then

wifu = f € B(RY,R) and f = [f] = [rix1 +rax2 + - - + rnXxy + 8] is a linear
expression, then

Nl:,]i NfF
3 = { A =008 A (<gl, >0) =
j=1 m=1

((v(ch +rich) —eh)oeg + - -+ (yroch — )xp + - +

7c1/+rncll —cyx, + ’ydl/+scl/ —dy>0)]1<i<N,1<j, <NE
n v n v [ ] I,m

v ifu =d € D(R) and E(d) = s, then

le

NC
Sé:{/\(ac >0) A /\ ﬁm] 0) = (('yclll—cll)x1+...—|—('ys—c£,)xv
j=1

+o (reh —ch)x + (vd —d) > 0) [1<i < NP1 < ngm}
. NQ[
= ifu = [A] = [[vk 1 (

cate over {x;}, then

Prj%o + qk] > 0)] € B(R) is given by a linear predi-

Nljz le

8Vé’»:{/\lx >O /\ ﬁm] /\/\ pk]xndet+qk]>0) =
j=1 j=1

((yel = cDxg + -+ (= c;m + o (el — )t + (b)) Xnget

+(yd" —d')>0) [1<i <N, 1<jw<Nf,1<k< N?‘}
This set of formulas has two key differences to the previous formulas for UNNRepSupM.

Firstly, the differences are swapped around resulting from encoding (yX# —# > 0) instead
of (# —X# > 0). Secondly, the factor <y is added. The condition (yX# —# > 0) is satisfied



78 4.2 POLYNOMIAL TEMPLATES

ifand onlyif (vX#(-,0) — 1 > 0) is satisfied for every possible scheduler. This observation
allows us to encode it as a conjunctive formula again.

Observe that Farkas’ Lemma transforms the satisfiability problem into a feasibility prob-
lem of the form y" A = (yc+¢/)T and yTb < yd + d’ where y > 0. For any fixed parameter
7, this is just a linear feasibility problem. One might want to consider -y itself'as a param-
eter to this problem and optimize for that as well. This, however, does not seem to bring
any benefits. First of all, the problem becomes a quadratically constrained linear program
(QCLP) which is harder to solve. Secondly, since  needs to be strictly less than 1, we have
to introduce a constraint ¢y < 1 resulting in a non-closed search space where no optimum
may exist. Lastly, larger values of vy are always desirable since if 77 is a -SclSubM, then it is
also a ¢/-SclSubM for any 7/ > 1, so the optimizer will necessarily want to bring vy as close
as possible to 1 and as a result will not reach an optimal value.

Theorem 4.1.3 (Synthesis theorem of L-y-SclSubM). Letsol : AU {y1,...,ym} — Rbea
solution to the optimization problem induced by the above family of formulas Sf wherei € {1,2,3}
and | € L, then the function 11(1,x) = sol(c})x1 + sol(ch)xp + - - - + sol(c!,)x,, + sol(d') is a
L-y-SclSubM for C supported by the invariant I.

Since 7y-scaled submartingales give lower bounds on the reachability probability, we nat-
urally want to maximize its value. This is easily done by setting the objective function to
[11,...] (Xinit) (same as for UNNRepSupM) and maximizing it.

4.2 Polynomial Templates

In this section we take a look into polynomial templates-based synthesis methods. The
synthesis procedure is more difficult compared to simple linear templates but polynomial
templates can achieve much better bounds. Consider for example a pendulum-like setting,
where the reachability probability is highest at the endpoints of some interval, but small
at the center. E.g. assume that a variable x takes values in [—1, 1] and the true reachability
probability is given by ]PrCeaCh(x) = x2, then the highest reachability probability of 1 is ob-
tained at x = —1 and x = 1. The best linear overapproximation of this probability has to
take value 1 at the points x = 1 and x = —1 which necessarily means it has to take value
1in between as well. No linear supermartingale can be better than the trivial upper bound
in this case. A polynomial of degree 2, however, is able to give tight bounds.

The setting is as follows. As in the linear case, we assume a pCFG I over a finite set of vari-
ables, an invariant | and a target region C are given. Unlike before, we allow all expressions
and predicates to be polynomial, that is, they are induced by the grammar

(@) == r]x[(a)-(a) | (a) + (a)

The template we fix is of the form #; =} cgmi + d' where m; is a monomial over the vari-
ables V with degree less than or equal to k € IN. In other words, we fix a maximum degree
k € N and let 5! be a linear combination of all those monomials with degree bounded by
k. We denote this set of monomials by Mj and the set of coefficients by .A. The size of
n'is ©(VF1). Furthermore, we assume that for any used distribution d in the pCFG, all
higher moments [E(d™) := [ x™dd are computable. Actually it is sufficient to be able to
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compute all moments up to the (k - k')-th moment where k’ is the highest degree among
all polynomial expressions used in assignments. The reason is that while # has degree at
most k, the degree of X# can be (k - k) after an assignment of a k’-th degree polynomial to
a variable x;.

The construction of the formula sets Sll to 813 follow the same pattern as in the linear case.
The only difference is that all formulas ¢ = 1 constructed this way are polynomial, i.e.,
the formula ¢ is a polynomial conjunctive predicate over the variables V' = V U {xget }
(of degree at most k') and the formula ¢ is a polynomial inequality (of potentially degree
up to k - k') over V/ with coefficients that are affine linear over .A. Concretely we have,

mp=f1 >0Af, >0A---A f, > 0where each f; is a polynomial expression over the
variables V/, and

_ . . I . .
" =3 uem, Cmm > 0 where m is a monomial over V' and ¢y, is a affine linear ex-
pression over the coefficient set A.

This is again a satisfiability problem and may be solved using the decidability of first-
order theories of the real numbers. Decision procedures for this general problem are not
practical, especially considering the size of the formula set. A more practical approach is
to use variations of the so called Positivstellensatz which characterizes polynomials that are
positive on some semialgebraic set.

Definition 4.2.1 (Semialgebraic set). A set W C R" is called semialgebraic if it can be de-
scribed as a finite union of sets

Wk = {x c R" | Vi e I : Pl-(xl,xz,...,xn) > 0/\Vj € Ji: Qj(xl,xz,...,xn) = 0}
where [; and Ji are finite index sets and P; and Q; are real polynomials over {x1,..., X, }.

Note that the formula ¢ exactly represents a semialgebraic set Wy. Satisfiability of the
implication ¢ == ¢ (from above) is then equivalent to showing that the polynomial
defining ¢ is nonnegative on W,. There are multiple different variations of Positivstellen-
satz that may be used to characterize nonnegative (positive) polynomials on such sets, but
we will consider the version by Schmiidgen.

Proposition 4.2.1 (Schmiidgen’s Positivstellensatz[32]). If the semialgebraic set W = {x €
R" | Vf € F: f(x) > 0} defined by a finite set F = { f1,..., fr} of polynomials is compact, then
each polynomial p € R[xq, ..., x,] that is strictly positive on W (i.e. Vx € W : p(x) > 0) can be
written as

p= Z Y

aef{0,1}"
where 0, is is a sum-of-squares (SOS) polynomial over {x1,...,x,}.

A sum-of-squares polynomial ¢ is a polynomial of the form ¢ = Y ;c;h? where each
h; is a polynomial. Note that the degree of ¢ is necessarily even. It is easy to see that
sum-of-square polynomials are everywhere positive and the polynomials f; in Schmiidgen’s
Positivstellensatz are nonnegative on W. Therefore every polynomial p defined this way



80 4.2 POLYNOMIAL TEMPLATES

is necessarily nonnegative on W, and the Positivstellensatz guarantees that every strictly
positive polynomial can actually be characterized this way under some assumptions.

If we consider an implication ¢ == ¢ again, then it is of the form f;(x) > 0 A fo(x) >
OA---Afr(x) >0 = p(x) > 0 where p is a polynomial with coefficients in .A. The
premise exactly defines the semialgebraic set W and if we change the inequality to a strict
one on the righthand side, then we can apply Schmiidgen’s Positivstellensatz assuming W
is compact. If it is not compact then we might still be able to express p as described but we
lose any guarantees. This method is sound but not complete. Assuming now that p is of the
form p = Yyeqo1yr 0afi' f2? -+ fr', we need to synthesize the sum-of-square coefficients
0. The following characterization of SOS polynomials is useful.

Proposition 4.2.2 (Characterization of SOS polynomials). A SOSpolynomialc € R[xq, ..., x,]
of degree at most 2k can be expressed as

c=m!Am

where m is a vector of all monomials M. (monomials of degree at most k) and A € RIMxl*IMil i
a positive-semidefinite matrix.

Combining this characterization of SOS polynomials with Schmiidgen’s Positivstellen-
satz, we can express a positive polynomial p on a semialgebraic set W defined by F =

{fl/- . .,fy} as

p= Y (mTA*m)f"f?.. fo
ae{0,1}7

where A” is a positive-semidefinite matrix. We fix some maximum degree z for the sum-
of-square polynomials and let u = | M_],

4 4
alll oo ﬂllu
A(X — . . .

14 o
Ayq - My

and add the all entries af j into a set A’ of unknown parameters. Note that the degree of the

SOS polynomials may be different than the degree of the martingale we want to synthesize.
We can choose a large enough degree to guarantee that we find a solution if'it exists, or use
lower degree polynomials to speed up the synthesis process. Either way, we have to fix a
maximum degree z € IN. Then for any given implication f1(x) > 0A--- A fi(x) > 0 =
p(x) > 0 with p having coefficients in A, we can set p = Eae{oll}r(mTA“m)ff‘l R
and by comparing coefficients of the monomials on each side, we get a set of linear equali-
ties over the variables A U A’ (one equality for each monomial). The only non-linear condi-
tions we have are the semi-definiteness conditions on A*. This problem is readily solvable
by semi-definite programming]33].

There are other versions of the Positivstellensatz which have been successfully applied in
practice (see [9]) such as Putinar’s Positivstellensatz[34] or Handelman’s Theorem|[35]. These
are less general than Schmiidgen’s version but allow a much more succinct description of
the polynomial p, which in turn accelerates the synthesis procedure.
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4.3 Experiments

For the experiments we synthesize the 3 following types of martingales via linear template
synthesis.

—reach

1. UNNRepSupM to overapproximate P~

2. L-7-SclSubM to underapproximate ErceaCh,

3. UARnkSupM to overapproximate Esctep * and decide a.s. termination.

We have not implemented the polynomial synthesis algorithm but for results on that we
refer to

m Polynomial additive ranking supermartingales by Chaterjee et al.[9]
® Polynomial UNNRepSupM and L-7y-SclSubM by Takisaka et al. [11]
® Polynomial higher order ranking supermartingales by Kura et al. [14]

In order to specify the invariant and the target region conveniently, we enhanced the
syntax of APP by two new constructs to annotate locations.

{x = o} // Invariant annotation
1. x := unif(o,1);

{o <= x and x <= 1} // Invariant annotation

[x <= 0.5] /| Target region annotation
2. skip;

The first location is annotated with the invariant x = 0 and the second location is annotated
with an invariant as well as a target region. The target region is C = {(/,x) € (L x R) |
I =2 A x < 0.5}. In this case, the annotated skip statement is equivalent to the statement
"assert <= 0.5".

The first examples we look into are variations of the 1d random walk (Listing 4.1) with
different starting values and transition probabilities. We start from a value s = N € [0, 50]
and increase that value by 1 with probability P or decrease it by 1 with probability (1 — P)
until the value reaches either one of the bounds 0 or 50. We are interested in the probability
that it reaches 50, i.e. Pr({(s >=50) | so = N, P).
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Parameters (N, P) ]1_32eaCh UNNRepSupM  L-y-SclSubM (y = 0.9999)
(25, 0.5) =05 <05 >0
(35, 0.5) =0.7 <07 >0
(15, 0.5) =03 <03 >0
(25, 0.51) ~ 0.7311 <1 > (0.4896
(10, 0.51) ~ 0.3813 <1 > (0.1836
(25, 0.49) ~ 0.2689 <05 >0
(40, 0.49) ~ 0.6187 <038 >0
(25, 0.2) < 0.0001 <05 >0
(15, 0.8) > 0.9999 <1 > (.2856
(40, 0.35) ~ 0.002 <038 >0

Table 4.1: Probability bounds for 1d-Random Walk
Listing 4.1: 1d Random Walk
s := N;

{s >= o and s <= 50}
while (s >= 1) do
{s >= o and s <= 50}
while s >= 50 do
{s = 50}
assert true;
od;
{s >= 1 and s <= 49}
if prob(P) then
{s >= 1 and s <= 49}
s -

= S + 1;
else
{s >= 1 and s <= 49}
s 1= s — 1;
fi;

od;
assert false;

In the first three cases, the true probability function is indeed a linear function so the
linear synthesis procedure for UNNRepSupM is able to find it as shown in Table 4.3. Also,
the expected number of steps to termination in those cases is infinite. If T denotes the first
hitting time, then the expectation E(T) is infinite for all cases and in particular the best
possible y-scaled submartingale is IE(+") which equals 0 if T = oo. Also note that the best

possible linear function in s that overapproximates lPrCeaCh at Linit is 17 (linit, ) = s/50 since
—reach

it is the least linear function that satisfies #(linit,0) > 0 = Pc" (linit, 0) and 1 (linit, 50) >

—reach

1 = P¢" (linit, 50). This function was found whenever possible. The <-scaled super-
martingale is stricly below the optimal linear bound resulting from the y-scaling. In all
cases, only one of the supermartingales is able to give non-trivial bounds.
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For the next example we consider the cooling system (Listing 4.2) of a refrigerator which
constantly tries to cool down the refrigerator from a starting temperature until it gets close
to a desired target temperature. Working against this process is a natural temperature ex-
change between the refrigerator and the outside. We want to make sure that the refrigerator
is guaranteed to reach its target temperature eventually.

For the concrete scenario, we start with a non-deterministic outside temperature given
by some closed interval [T7, T>] and a starting temperature Tin;; of the refrigerator. In ev-
ery iteration, the refrigerator first exchanges temperature with the outside in the following
manner: with a probability of 0.9 the refrigerator is closed and the exchange is slow; with
a smaller probability of 0.1 the refrigerator is open and the exchange is faster. Afterwards,
the cooling system cools the refrigerator towards the target temperature Tiarg. This pro-
cess continues until the target temperature is reached within an error of some € > 0. The
exchange rates are dependent on the temperature gradients between the refrigerator’s in-
side and the outside or the target, respectively. We note that the expected reaching time is
measured in transitions, not loop iterations.

Listing 4.2: Refrigerator cooling system

/| Igobal = {0 <= f and f <= oT and Ty <= oT and oT <= T}

oT := ndet(Real [Ty, T»]);
{T; <= oT and oT <= T}
£ = Tinit;
{Iglobal}
while (f — Ty >= €) do
{Iglobal and f — Ttarg >= €}
if prob(o.1) then
{Iglobal and f — Ttarg >= €}
f = f + o.2%(0T — f);
else
{Iglobal and f — Targ >= €}
f := £ + o.o5%(0oT — f);
fi;
{Iglobal and f — Ttarg >= €}
f:= f— o.5%(f — Targ);
od;

assert true;

The results in Table 4.3 show that, while the overapproximation of the upper expected
reaching time is orders of magnitude off, the ranking supermartingale method is able to
decide positive almost sure termination whenever possible. As a reference, we also used
-scaled martingales to underapproximate the true reachability probability. For the first
two cases, the UARnkSupM is able to show positive a.s. termination for different starting
temperatures. In the third case, the outside temperature can be 24 units, and the cooling
system is not able to overcome the natural heat exchange in this case and reach close to the
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—=steps

Parameters ([T1, T2}, Tinit, Trarg, €)  Ec UARnkSupM  L-y-SclSubM (7 = 0.9999)
(20,23, 15, 7, 1) ~ 33 < 4803 > 0.6175
(20,23, 23,7,1) ~ 37 <7363 > 0.4137
(120, 24], 15, 7, 1) oo < o >0

([20, 23],15,7, 0.977) ~ 53.52 < 237627 >0
(20, 23], 15, 7, 0.9765) oo < o >0
(20, 23], 15, 6.5, 1) oo < o >0
(20, 23], 15, 67, 1) ~41.16 < 21822 >0

Table 4.2: Expected cooling time

target temperature of 7 units. In the fifth case, the cooling system in not able to go below
a temperature of 7.9765 units, while case (4) shows that it will eventually go below 7.977.
Comparing the parameter sets (4) and (5), we see that the inspected case (4) is very close
to not be positive a.s. terminating, yet a ranking supermartingale could still be synthesized,
despite its huge inaccuracy. For the last two cases we changed the target temperature, which
also accelerates the cooling process. A target temperature of 6.5 is not positive almost sure
reachable, while 6.7 is eventually reached. In all cases, the y-scaled submartingale gave less
information about the process than the ranking supermartingale.

The high discrepancy between the true expected reaching time and the ranking super-
martingale can be explained when considering the sequence of refrigerator temperatures
after each loop iteration. Generally, the temperature falls steeply during the first few it-
erations but quickly starts to change in small decrements (exponential decay). In case (1)
for example, if the temperature of the refrigerator is exactly at the boundary of 8 units,
then an iteration brings it down to 7.9875 which equals a decrement 0f'0.0125 units. Since
the ranking supermartingale has to overapproximate this decrease, it can decrease by at
most 0.0125 units, and by linearity, it must globally decrease by at most 0.0125 per iter-
ation. From a starting temperature of 15 with a decrease of at most 0.0125 per iteration,
it takes at least 560 loop iterations, equaling 2240 transitions, until the temperature goes
below 8, that is, the loop terminates. Furthermore, the ranking supermartingale has to be
nonnegative across the whole invariant, including the never reached case of'a zero temper-
ature inside the refrigerator. And dropping down to 0 instead of 8 under the exact same
conditions does indeed take 4800 transitions inside the loop, and 3 outside, totaling the
computed 4803. Doing the same calculation for a starting temperature of 23 units, we see
that is takes 7363 transitions to reach 0. The synthesized linear ranking supermartingale
is thus optimal under the given conditions. Raising the lower bound of the refrigerator’s
temperature from 0 to some higher value does improve the computed expected reaching
times.



5 Related Work

This chapter discusses work related to the topic of this thesis. This serves to inform the
reader on similar work for further reading and comparison.

The most similar work to this thesis is done by Takisaka et al.[11] and Kura et al.[14]. Indeed,
much of thesis is inspired by their work and our notation follows their’s very closely. Tak-
isaka et al. derive martingale-based methods purely via their fixed point theoretic frame-
work based on Knaster-Tarski’s theorem as well as Cousot-Cousot’s theorem. Their reason-
ing principles do not rely on probabilistic theory at all and yet derive mostly the same re-
sults as was commonly done before using martingale theory. In this thesis we make a direct
comparison between their fixed point theoretic approach and commonly used martingale
theory. To our knowledge, the results of Kura et al. regarding higher order ranking super-
martingales are completely new, in the sense that higher order ranking supermaringales
have not been characterized via martingale-theoretic methods. Here the fixed point theo-
retic approach seems to have an advantage.

Chatterjee et al. use common martingale theory in [9] and [36] to argue about positive al-
most sure termination via additive ranking supermartingales and show how polynomial-
template synthesis can be performed using Positivstellensatz. A similar work was done by
Chakarov et al. in [12]. In another work for theirs [13], they combine the idea of repulsing
supermartingales and ranking martingales together with a new notion of probabilistic in-
variants to deduce upper bounds on reachability probabilities. We briefly discussed this
idea in Subsection 3.2.3 and explained it advantages. In short, a probabilistic invariant is
a predicate which is not guaranteed to be an invariant but may be one only with a certain
probability. The idea is that this kind of predicate may be stronger than pure invariants,
and possibly strong enough to deduce positive almost sure reachability via ranking super-
martingales. A lower bound on this probability can be computed using repulsing super-
martingales.

Chakarov et al. give sound rules to decide the qualitative properties of almost sure recur-
rence and almost sure persistence[27]. Similar to our work on recurrence in Subsection
3.2.0, they give slight variations of ranking supermartingales to witness almost sure recur-
rence but also almost sure persistence. They use polynomial synthesis methods to find
such supermartingale expressions automatically. Unlike our work, they do not consider
recurrence probabilities at all.

Chakarov and Chatterjee focus their work directly on polynomial systems from the very
beginning and do not develop a more general theory on general probabilistic programs.
Furthermore, they generally only deal with a single form of non-determinism

In a different setting, Avanzini et al. consider probabilistic term rewriting|7], an extension
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of usual term rewriting. Unlike standard programs, term rewriting naturally incorporates
non-determinism in form of choice of the rewriting rule to be applied. Avanzini et al. show
that probabilistic ranking functions are applicable in term rewriting to decide almost sure
termination. Their work uses polynomial as well as matrix interpretations to automatically
derive ranking expressions. Unlike the other works, they employ SMT-based synthesis in-
stead of optimization-based synthesis.

In a different direction, Kaminski et al. [37] use a weakest precondition calculus to compute
expected running times of programs and hence decide almost sure termination. They use
a runtime transformer which easily computes the expected runtime of loop-free programs
but needs a least fixed point computation to handle loops. In order to avoid this fixed point
computation they consider using approximations via upper invariants and incremental in-
variants to bound loop runtimes.

In comparison to the mentioned works, this thesis gives an overview over various martingale-
based methods and derives known results in a uniform manner. In particular, we give a uni-
fied view on the fixed point theoretic approach as well as the martingale based approach
and establish the close resemblance between martingales and fixed points.



6 Conclusion

This thesis shows that the martingale-based approach to the verification of probabilistic
programs can be developed from two quite distinctive theoretic foundations. The martin-
gale theoretic approach comes from the probabilistic nature of probabilistic programs and
as such heavily relies on probability theory. On the other hand, the fixed point theoretic
approach puts the focus on the programs whose semantics are classically characterized by
fixed point equations (e.g. semantics of loops). As such, the fixed point theoretic approach
is often adopted in verification of many deterministic systems. This work shows that it can
also handle probabilistic programs effectively in a uniform manner. The key observation
is that the concept of probabilistic martingales, sub- and supermartingales are very closely
related to order-theoretic fixed points, post-fixpoints and pre-fixpoints, respectively.

Martingale-based techniques are not restricted to the classical boolean decision problems
of deciding certain properties (e.g. termination, safety or liveliness) in typical deterministic
verification, but they also naturally extend to quantitative reasoning about probabilities of
programs. They theoretically span a variety of problems, ranging from deciding boolean
almost sure termination, reachability and recurrence to quantitatively lower and upper
bounding the respective probabilities. Martingales are also naturally able to handle non-
determinism; an even further extension of probabilistic programs.

Furthermore, martingales of certain shape can automatically be found by employing well-
known optimization procedures such as linear programming and semi-definite program-
ming. While the martingale-based approach generally gives sound and oftentimes even
complete ways to show certain properties or bounds on probabilistic programs, the practi-
cal application via template-based synthesis seems to lack in many ways. Especially linear
repulsing martingales tend to give very bad or even trivial results about rather simple pro-
grams.

An obvious problem here is that many programs that are not surely terminating, es-
pecially ones containing loops have a termination probability that is exponential in the
variables. The example of a random walk clearly shows that linear supermartingales can
work very well and give tight bounds in the unbiased case because the true termination
probability is indeed a linear function. However, a slight bias already gives a exponential
true probability function which is only badly approximated by linear functions. Indeed,
even polynomial supermartingales are unable to give tight bounds in this case. On the
other hand, even if'a linear ranking supermartingale is oft by orders of magnitude, as long
as they witness finiteness they can witness termination, making them more useful in gen-
eral. The approach by Chatterjee et al. in [13] by using probabilistic invariants might be the
right approach to leverage the robustness of ranking supermartingales against inaccuracies
and to use them in conjunction with repulsing supermartingales to witness probabilistic
bounds.






7 Future Work

The presented theory and practical methods in this work allow further research and exten-
sions in possible future work. In this chapter we summarize some of these possibilities.

Extending to Other Martingale-based Methods. We only considered a few of the known
martingale-based methods in this work and can potentially enlarge this unified framework
to include other martingale-based methods, such as supermartingales for persistence[27]
and nonnegative repulsing e-supermartingales|13] for reachability probabilities. The for-
mer of these two is a supermartingale that strictly drives away from the target region by
some fixed value € in each transition. In this sense, it has similarities to ranking super-
martingales which drive towards the target region with a lower bounded step size. These
repulsing supermartingales may be used to derive upper bounds on reachability probabil-
ities.

Improved Synthesis. Linear template-based synthesis turned out to lack accuracy to give
meaningful probabilistic bounds. An obvious extension as mentioned in Chapter 4 is by us-
ing polynomial templates in conjunction with semi-definite programming to achieve bet-
ter bounds. Another possibility is to use piece-wise linear or polynomial templates which
can break down the problem of globally overapproximating into locally overapproximat-
ing. This could give tighter bounds in many cases. Ideally, we would like find exponential
martingales which are much more capable of tracking probabilities in looped programs,
but we do not know of possible ways of synthesizing exponential functions automatically.

Stronger Selection Theorems. For many proofs we needed the existence of e-optimal sched-
ulers, which was not guaranteed for general universally measurable functions. This lead
to the need of extra existence assumptions. For lower semianalytic functions it is known
that e-optimal selection is possible as proven in [18]. The fundamental theorem used to
prove this result is Jankov-von Neumann’s Selection Theorem for analytic sets. There exist
stronger versions of this theorem, some of which deal with (optimal) selection related to
universally measurable sets (e.g. in [38]). Maybe these can be used to find a more general
theorem that shows the existence of e-optimal schedulers for a bigger class of functions,
ideally the class of universally measurable functions.
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Task

With applications in learning, randomized construction, and control theory, probabilistic
programming currently receives considerable attention and is on its way to becoming an
established part of the computing infrastructure we interact with and rely on every day.
It is thus not surprising that there is similarly high interest in verification techniques for
probabilistic programs. A modern such verificication technique are martingale methods. A
martingale is a stochastic process that is (in a precise sense) fair, and thus suitable for mod-
eling long-running systems in which the components frequently interact. A classic verifi-
cation technique, dating back to the analysis of deterministic programs, are fixed points.
What is interesting about fixed points is that the domain of computation can be chosen
freely (as long as very mild assumptions apply). It is thus natural to ask whether the re-
cent martingal-based methods can be cast in terms of fixed points, and perhaps vice versa.
Addressing this question is the task of the present Masters thesis.

The Masters thesis should compare martingale-based and fixed-point-based verification
techniques for probabilistic programs. The correctness properties should include quali-
tative as well as quantitative aspects and safety as well as liveness concerns. On the algo-
rithmic side, the comparison should be as broad as possible. Once a relationship between
martingales and fixed points has been established, generalizations to submartingales and
prefix points resp. supermartingales and postfix points shall be studied.



