
Antichains for the Verification
of Recursive Programs

Lukáš Hoĺık1 and Roland Meyer2

1Brno University of Technology 2University of Kaiserslautern

Abstract. Safety verification of while programs is often phrased in
terms of inclusions L(A) ⊆ L(B) among regular languages. Antichain-
based algorithms have been developed as an efficient method to check
such inclusions. In this paper, we generalize the idea of antichain-based
verification to verifying safety properties of recursive programs. To be
precise, we give an antichain-based algorithm for checking inclusions of
the form L(G) ⊆ L(B), where G is a context-free grammar and B is a
finite automaton. The idea is to phrase the inclusion as a data flow anal-
ysis problem over a relational domain. In a second step, we generalize
the approach towards bounded context switching.

1 Introduction

We reconsider a standard task in algorithmic verification: model checking safety
properties of recursive programs. To explain our model, assume we are given a
recursive program P operating on a finite set of Boolean variables V . For this
program, we are asked to check a safety property given by a finite automaton
B. The task amounts to checking the inclusion

L(G(P )) ∩
⋂
v∈V

L(B(v)) ⊆ L(B).

Here, G(P ) is a context-free grammar whose language is the set of valid paths in
the recursive program P . A path is valid if procedures are called and return in a
well-nested manner. The context-free grammar only models the flow of control.
It does not ensure the correct use of the Boolean variables. Indeed, there could
be words in L(G(P )) where a write of 1 to variable v is followed by a read of
value 0. To take data into account, we intersect the context-free language with
a regular language L(B(v)) for each variable. The intersection only keeps words
from L(G(P )) that obey the semantics of operations on the data domain. Such
a separation of a program’s semantics into the control and the data aspect is
standard in verification [16].

The only non-regular part in the above inclusion is the control-flow language
L(G). We move the intersection with the regular languages to the right-hand
side of the inclusion and obtain an equivalent formulation:

L(G(P )) ⊆ L(B) ∪
⋃
v∈V

L(B(v)).



2 L. Hoĺık and R. Meyer

Since regular languages are closed under complement and closed under finite
union, the right-hand side of the new inclusion is again a regular language L(A).

The discussion allows us to define the safety verification problem for recur-
sive programs that is the subject of this paper as follows. Given a context-free
grammar G and a finite automaton A, check the inclusion

L(G) ⊆ L(A).

The classical algorithm for checking the inclusion determinizes A with the
powerset construction, forms the complement, and computes the product with
G. The result is the (context-free) emptiness problem L(G×compl(det(A))) = ∅.
The main bottleneck of this algorithm is the determinization of A. It may cause
an exponential blow-up even in space, and makes the approach impractical.
Actually, deciding the inclusion is PSPACE-complete.

For the simpler problem with finite automata on both sides, L(A1) ⊆ L(A2),
an efficient heuristics has been found. It is based on the so-called antichain
principle [7,25] and prevents the state explosion in many practical cases. The
observation is that the states in A1 × compl(det(A2)) can be equipped with an
ordering. For the emptiness check, it is sufficient to explore transitions from
states that are minimal according to this ordering.

Our contribution is a generalization of the antichain principle to the problem
L(G) ⊆ L(A). The proposed algorithm computes a finite partitioning of Σ∗ such
that each partition contains words that are all accepted or all rejected by A. To
test the inclusion, it is enough to test that G does not accept a word whose
partition is rejected by A. The partitions are represented by sets of relations
over states of the automaton A. Every relation encodes one possibility of how
a word generated by a certain non-terminal of the grammar can influence the
state of the automaton. This is the same concept as the one used in the proof
that Büchi automata are closed under complement [5].

We formulate our algorithm via a reduction of L(G) ⊆ L(A) to a data flow
analysis problem DFA(G,A). Implementing the antichain principle then amounts
to modifying chaotic iteration so that it computes on a lattice of antichains [25]
rather than a full powerset lattice. The reduction is theoretically appealing and
allows for an elegant formulation of the antichain principle. Moreover, it reveals
a close connection between automata theory and data flow analysis that opens
up a possibility of using antichain optimizations in data flow analysis.

As a last step, we add parallelism to the picture. For multi-threaded recursive
programs, safety verification can be formulated as

L(G1)� . . .� L(Gm) ⊆ L(A).

The problem is known to be undecidable [21]. For bug hunting, however, under-
approximations have proven useful. The most prominent under-approximation
is bounded context switching [20]. The observation made in practice is that bugs
show up within few interactions among threads. If the threads share the same
processor, this means bugs show up after few context switches — hence the



Antichains for the Verification of Recursive Programs 3

name. Recall that a context switch occurs if one thread leaves the processor in
order for another thread to be scheduled.

We propose a compositional approach to solving the above context-bounded
inclusion. In a first step, we solve m data flow analysis problems DFA(Gi, A),
one for each grammar. In a second step, we combine the analysis results. The
reduction DFA(Gi, A) generalizes DFA(G,A). We move from (sets of) relations
to an analysis on (sets of) words of relations.

To sum up, the contributions of this paper are threefold:

1. The formulation of L(G) ⊆ L(A) as a data flow analysis problem DFA(G,A).

2. The antichain improvement of chaotic iteration for solving DFA(G,A).

3. The generalization to bounded context switching.

Related work Antichain algorithms were first proposed in [7] in the context of
solving games with imperfect information. The antichain principle was subse-
quently used to optimize language inclusion and universality checking of finite
automata [25]. The basic idea of antichain algorithms, subsumption, is older and
was used e.g. already in solving reachability of well-structured systems [12,1].
The antichain algorithms of [25] were further extended and improved in many
ways. In our context, the generalization to the Ramsey-based universality and
language inclusion checking for Büchi automata [13] is central. It introduces
an ordering on what we call relations (in the related literature, the notion is
called e.g. (super)graph, transition profile, or box). The problem of deciding
language inclusion of nested word automata is closely related to the inclusion
of a context-free language in a regular one, and is also similarly motivated. An
extension of the Ramsey-based algorithm for nested word automata has been
published in [14], and an alternative algorithm based on different principles, but
using antichains, appears in [4].

Verification algorithms that use inclusion checking as a central subroutine
have been proposed in [9,10,11]. These works focus on multi-threaded programs
without recursion and develop complete algorithms (for inclusion). We tackle
recursive programs, instead. In the multi-threaded setting, inclusion checking is
undecidable [21] so that we consider an under-approximation of the problem.
We show how to generalize the antichain principle to bounded context switch-
ing [20]. The approximation of bounded context switching has also been applied
to relaxed memory models [2]. In the present work, however, we limit ourselves
to Sequential Consistency.

In verification, the relational domain that we make use of is generalized to
procedure summaries [24,22]. Summaries characterize the input-output relation
of a procedure. They are not limited to tracking the state changes of a finite
automaton. The language-theoretic view to verification problems is shared with
[16,15,9,10,11,18,3]. We are not aware of any use of antichains for data flow
analysis or of a formulation of regular inclusion as a data flow analysis problem.
The domain for bounded context switching seems to be new. Our compositional
analysis is related to the eager approach in [17].



4 L. Hoĺık and R. Meyer

2 Preliminaries

We introduce the three technical concepts used in this paper: regular inclusion,
antichain algorithms, and data flow analysis.

2.1 CFG-REG

Given a finite alphabet Σ, we use Σ∗ for the set of all finite words over Σ and
write ε for the empty word. The concatenation of words u, v ∈ Σ∗ yields the
word u · v ∈ Σ∗. The shuffle of u and v is the set of interleavings of both words,
for example ab� c = {cab, acb, abc} ⊆ Σ∗.

A context-free grammar is a tuple G = (Σ,X, x0, R) where Σ is a finite
alphabet and X is a finite set of non-terminals with initial symbol x0 ∈ X.
Component R ⊆ X × (Σ ]X)∗ is the set of production rules. The language of
G is defined using the derivation relation ⇒G ⊆ (Σ ]X)∗× (Σ ]X)∗. Consider
two words α, β ∈ (Σ]X)∗. Then α⇒G β if there are α1, α2 ∈ (Σ]X)∗, x ∈ X,
and (x, γ) ∈ R so that α = α1 · x · α2 and β = α1 · γ · α2. We write ⇒∗G for the
reflexive and transitive closure of ⇒G. Moreover, if G is clear from the context
we drop the subscript from ⇒G. The language of a non-terminal x ∈ X is the
set of words derivable from it:

L(x) := {α ∈ Σ∗ | x⇒∗ α}.

The language of G is L(G) := L(x0).
A context-free grammar is called right-linear if R ⊆ X × ({ε} ] (Σ ·X)).

Right-linear grammars correspond to finite automata where the non-terminals
are the states, x0 is the initial state, and the x ∈ X with (x, ε) ∈ R are the
accepting states. This correspondence allows us to use the terminology for finite
automata when talking about right-linear grammars. We shall use A,A1, A2

for right-linear grammars and G,G1, G2 for context-free grammars that are not
necessarily right-linear. Throughout the paper, we use G = (Σ,X, x0, R) and

A = (Σ,Y, y0,→). Moreover, we write y1
a−→ y2 for (y1, a, y2) ∈ →. We extend

the notation to words: y1
w−→ y2 means there is a w-labeled path from y1 to y2.

Our contribution is an efficient algorithm for solving the following problem
that we refer to as CFG-REG:

Given: A context-free grammar G and a right-linear grammar A.
Problem: Does L(G) ⊆ L(A) hold?

As a running example, we consider L(Gex ) ⊆ L(Aex ) where the context-free
grammar Gex and the finite automaton Aex are defined as follows:

Gex : x0 → a · x1 x0 → b · x1 Aex : y0 → a · y1 y0 → b · y2
x1 → c · x2 x1 → d · x2 y1 → c · y3 y2 → d · y4
x2 → ε y3 → ε y4 → ε.



Antichains for the Verification of Recursive Programs 5

We have L(Gex ) = {ac, ad, bc, bd} and L(Aex ) = {ac, bd}, so the inclusion fails.
An attentive reader may notice that the context-free grammar Gex is right-
linear. This is only for the sake of simplicity, the algorithm of course works for
any CFG, but Gex allows to illustrate the main concepts well.

2.2 Antichain Algorithms

To explain the idea behind antichain algorithms, consider a simplified variant of
CFG-REG where we check L(A1) ⊆ L(A2) for given finite automata A1 and A2.
The standard approach is to reformulate the inclusion as

L(A1) ∩ L(A2) = ∅.

Checking this emptiness involves determinizing A2 using the powerset construc-
tion, which results in det(A2), complementing det(A2) by inverting the final
states, giving compl(det(A2)), and computing the product with A1,

A1 × compl(det(A2)).

The resulting automaton A1 × compl(det(A2)) is then checked for emptiness.
Unfortunate in this construction is that det(A2) may be exponential and that
we need another product with the states of A1.

Antichain algorithms check emptiness of A1 × compl(det(A2)) on-the-fly. To
explain the concept, we elaborate on the behavior of the product automaton.
Let Ai = (Σ,Yi, y0,i,→) for i = 1, 2. States in the product automaton take the
shape (y1, Z1) where y1 ∈ Y1 is a single state of A1 and Z1 ⊆ Y2 is a set of states
of A2. We call (y1, Z1) a product state and Z1 a macro state. Transitions in
the product state (y1, Z1) are derived from transitions in y1, because the macro
state Z1 in the determinized automaton can react to any input. If we have a
transition y1

a−→ y2, then the product state takes a transition

(y1, Z1)
a−→ (y2, Z2).

Here, Z2 is the set of all states z2 ∈ Y2 that are reachable from some z1 ∈ Z1

with an a-labelled transition, z1
a−→ z2.

The goal is to disprove emptiness of A1 × compl(det(A2)). This amounts to
finding a product state (y, Z) where y is accepting in A1 and Z is rejecting in the
sense that it does not contain a final state of A2. The larger the set Z becomes,
the harder it is to avoid the final states of A2. To disprove emptiness, we should
thus only explore states that are minimal according to the following partial order
≤ on product states:

(y, Z) ≤ (y′, Z ′) if y = y′ and Z ⊆ Z ′.

This is the idea of antichain algorithms: only explore states (y, Z) that are min-
imal according to ≤. The name stems from the fact that minimal elements in
partial orders are incomparable, and sets of incomparable elements are also called
antichains.



6 L. Hoĺık and R. Meyer

It remains to argue that we can safely discard larger states. We already
discussed that state y1 of A1 determines the transitions of the product state
(y1, Z1). Macro state Z1 is guaranteed to have the successor state defined. A
larger set Z ′1 will not enable or disable a transition. Moreover, the transition

relation is monotone in the following sense. If (y1, Z1)
a−→ (y2, Z2) and we have

(y1, Z1) ≤ (y1, Z
′
1), then (y1, Z

′
1)

a−→ (y2, Z
′
2) with (y2, Z2) ≤ (y2, Z

′
2). This means

a larger state (y1, Z
′
1) again leads to a larger state (y2, Z

′
2) from which it is harder

to accept than from (y2, Z2). In short, (y, Z) ≤ (y, Z ′) yields

L(y, Z ′) ⊆ L(y, Z)

for the product automaton A1 × compl(det(A2)). So if we focus on minimal
states, we are guaranteed to explore all behaviors.

2.3 Data Flow Analysis

Our presentation of data flow analysis follows standard textbooks [19,23]. A data
flow analysis problem is given as a system of inequalities ∆ ≥ Op(∆) that is
interpreted over a domain of data flow values. The system of inequalities reflects
the control flow in the program under scrutiny. For each location l = 1, . . . , n in
the program there is a variable ∆l. Intuitively, variable ∆l records the analysis
information obtained at location l. For each command c leading to l there is an
inequality

∆l ≥ opc(∆1, . . . ,∆n).

Operation opc captures the effect that the command has on the already gathered
analysis information. The inequality states that this effect should contribute to
the analysis information at location l.

The domain that the system is interpreted over defines the actual analysis
information being computed. As is common, we assume the domain to be a
complete lattice (D,≤). A complete lattice is a partially ordered set where every
subset of elements D′ ⊆ D has a least upper bound that we denote by tD′. As a
second condition, the operations opc used in the system of inequalities should be
monotone, which means for all d, d′ ∈ D with d ≤ d′ we have opc(d) ≤ opc(d

′).
A solution to the data flow analysis problem is a function sol that assigns

to each variable ∆l a value sol(∆l) ∈ D so that the inequalities are satisfied.
We are interested in the least solution lsol wrt. a component-wise comparison
of elements according to ≤. A unique least solution is guaranteed to exist by
Knaster and Tarski’s theorem.

If D is a finite set, the least solution to the system of inequalities can be
computed with a Kleene iteration on Dn. This iteration, however, requires us to
recompute, in every step, the analysis information for all n program locations —
even if the analysis information has not changed. More efficient is the following
algorithm, known as chaotic iteration. It is the algorithm we improve upon in
this article:



Antichains for the Verification of Recursive Programs 7

sol(∆1) := ⊥; . . . sol(∆n) := ⊥;

while ∃ inequality with sol(∆l) 6≥ opc(sol(∆1), . . . , sol(∆n)) do

sol(∆l) := sol(∆l) t opc(sol(∆1), . . . , sol(∆n));

We start with all variables set to the least element in the lattice, denoted by ⊥.
As long as there is a command that can contribute to the value of a variable, we
form the join to add the value.

Lemma 1 ([6]). Consider ∆ ≥ Op(∆) over a complete lattice (D,≤) where D
is finite. Chaotic iteration terminates and gives the least solution lsol .

3 From CFG-REG to Data Flow Analysis

We give a reduction of CFG-REG to a data flow analysis problem. It maps instance
L(G) ⊆ L(A) to the instance DFA(G,A). Key to the reduction is an appropriate
domain of data flow values. The idea is to determine the state changes that a
word w ∈ L(x) derived from a non-terminal x ∈ X may induce on A. Phrased
differently, the analysis considers words equivalent that induce the same state
changes. In our running example L(Gex ) ⊆ L(Aex ), rule (x2, ε) rewrites non-
terminal x2 to the empty word. As data flow information about x2, we therefore
add the relation ρ(ε) = id . Relation ρ(ε) is indeed the identity as the empty word
does not incur a state change. For a letter a, relation ρ(a) contains precisely the
pairs of states (y, y′) so that y does an a-labeled transition to y′. In the running
example, we have ρ(a) = {(y0, y1)}.

For the definition of DFA(G,A), we formalize the mapping from words to
relations over states as

ρ : Σ∗ → P(Y × Y )

w 7→ {(y1, y2) | y1
w−→ y2}.

Words are equipped with the operation of concatenation. Function ρ behaves
homomorphically if we endow P(Y ×Y ) with relational composition as operation.
Recall that the relational composition of ρ1, ρ2 ∈ P(Y × Y ) is defined by

ρ1; ρ2 := {(y1, y2) | ∃y : (y1, y) ∈ ρ1 and (y, y2) ∈ ρ2}.

With a component-wise definition, the operation carries over to sets of relations.
The following lemma states that ρ is a homomorphism.

Lemma 2. For all w1, w2 ∈ Σ∗, we have ρ(w1 · w2) = ρ(w1); ρ(w2).

With this result, we only have to specify the data flow information for single
letters. Relational composition will give us the analysis information for words.

The domain of data flow values is the complete lattice

(P(P(Y × Y )),⊆).



8 L. Hoĺık and R. Meyer

The powerset P(P(Y × Y )) contains all sets of relations between states in the
given automaton. The domain is a standard powerset lattice with inclusion as
ordering. It is complete. We operate on sets of relations to distinguish words
that do not induce the same state changes. Consider the rules (x0, a · x1) and
(x0, b · x1) in our running example L(Gex ) ⊆ L(Aex ). In the automaton, we
have (y0, a · y1) and (y0, b · y2). A derivation of letter a induces the single state
change ρ(a) = {(y0, y1)} and similarly ρ(b) = {(y0, y2)}. There is, however, no
word that admits a transition from y0 to y1 and from y0 to y2. Therefore, we
cannot form the union of the relations ρ(a) and ρ(b) but have to compute on
sets of relations {ρ(a), ρ(b)}. Indeed, for the running example an analysis based
on relations rather than sets of relations gives incorrect results.

In data flow analysis, the current information is modified by operations op.
In our setting, op forms a relational composition. With this in mind, the system
of inequalities DFA(G,A) for L(G) ⊆ L(A) is defined as follows. We associate
with every non-terminal x ∈ X a variable ∆x. Moreover, we use ∆a for the set
that only contains ρ(a). Similarly, we let ∆ε := {id}. The system of inequalities
contains one inequality for every rule in the grammar as follows. Let (x,w) ∈ R
with w = w1 . . . wn ∈ (Σ ∪X)∗. Then we have

∆x ⊇ ∆w1
; . . . ;∆wn

.

The data flow analysis problem DFA(Gex , Aex ) for our running example is

∆x0 ⊇ {{(y0, y1)}};∆x1 ∆x0 ⊇ {{(y0, y2)}};∆x1

∆x1 ⊇ {{(y1, y3)}};∆x2 ∆x1 ⊇ {{(y2, y4)}};∆x2

∆x2 ⊇ {id}.

The least solution lsol to DFA(G,A) has a well-defined meaning. It assigns
to ∆x precisely the relations ρ(w) induced by the words w derivable from x.

Lemma 3. lsol(∆x) = ρ(L(x)).

Proof. If x = ε or x = a ∈ Σ then the lemma trivially holds by the definition of
∆x. Now consider x ∈ X. Note that x is not qualified further which means we
reason simultaneously for all x ∈ X.

lsol(∆x) ⊆ ρ(L(x)): Equivalently, for all ρ ∈ lsol(∆x), there is w ∈ L(x) with
ρ(w) = ρ. Assume that relation ρ is added to ∆x within the k-th step of the
Kleene iteration. We will proceed by induction on k. If k = 0, then the claim
holds trivially since ∆x is initialised as the empty set. Let the claim hold for
k ≥ 0. To show that it holds for k+ 1, assume that ρ was added to ∆x with the
(k + 1)-st step of the Kleene iteration. It was constructed as ρ = ρ1; . . . ; ρn due
to an equation ∆x ⊇ ∆y1

; . . . ;∆yn
where each ρi is either i. ρ(ε) if yi = ε, or ii.

ρ(a) if yi = a ∈ Σ, or iii. is an element of ρ(∆yi) if yi ∈ X. In the case iii., ρi was
inserted into ρ(∆yi) within at most the k-th step of the Kleene iteration. By the
induction hypothesis, this means that there is some wi ∈ L(yi) with ρ(wi) = ρi.
This together with Lemma 2 gives that ρ = ρ1; . . . ; ρn = ρ(w1 · . . . ·wn). By the



Antichains for the Verification of Recursive Programs 9

definition of the system of equations, there is a rule (x, y1 · . . . · yn) ∈ R and
hence w1 · . . . · wn ∈ L(x) by the definition of L(x).

lsol(∆x) ⊇ ρ(L(x)): Equivalently, for all w ∈ L(x) we have ρ(w) ∈ lsol(∆x).
We proceed by induction on the length ` of a derivation of w. For ` = 1, the
derivation uses only one rule, (x, ε) or (x, a) for some a ∈ Σ. Depending on the
case, we have ρ(w) = id , or ρ(w) = ρ(a). Due to the existence of the used rule,∆x

will obtain ρ(w) at the first step of the Kleene iteration. Assume the claim holds
for the length of derivation ` > 1. Let the first rule used be (x, y1 · · · yn) where
y1, . . . , yn ∈ Σ∪X. Then w must be of the form w1 · . . . ·wn where each wi ∈ Σ∗
is i. the empty word, ii. a terminal, or iii. is obtained from yi by a derivation
of length at most `. In case iii., ρ(wi) ∈ lsol(∆yi) by the induction hypothesis.
Because of this and the definitions of the system of inequalities and the compo-
sition of sets of relations, lsol(∆x) contains the composition ρ(w1); . . . ; ρ(wn).
By Lemma 2, ρ(∆x) contains ρ(w1 · . . . · wn) = ρ(w). ut

A relation ρ ⊆ Y × Y is said to be rejecting if there is no pair (y0, y) ∈ ρ
so that y is accepting. With Lemma 3, there is no accepting run of A on the
words that induced the relation. Hence, the words belong to the complement of
the automaton’s language.

Theorem 1. L(G) ⊆ L(A) holds if and only if lsol(∆x0
) does not contain a

rejecting relation.

4 Chaotic Iteration with Antichains

The previous section associates with each instance L(G) ⊆ L(A) of CFG-REG
a data flow analysis problem DFA(G,A). Chaotic iteration as presented in the
preliminaries computes a solution to such an analysis problem. We now improve
upon chaotic iteration using the antichain principle.

When solving DFA(G,A), chaotic iteration computes on sets of relations.
Antichain algorithms compute on sets of incomparable elements. Together, this
means we should replace the powerset domain (P(P(Y ×Y )),⊆) used in our data
flow analysis by a reduced domain of incomparable relations.

We construct the reduced domain in two steps. First, we note that relations
ρ1, ρ2 ∈ P(Y ×Y ) are partially ordered wrt. inclusion ρ1 ⊆ ρ2. The goal of chaotic
iteration is to find a rejecting relation. To this end, it will be beneficial to focus
on ⊆-minimal elements. We therefore define the reduced domain to consist of all
antichains of relations — sets of relations that are pairwise ⊆-incomparable:

A(P(Y × Y )) := {∆ ⊆ P(Y × Y ) | ∀ρ1, ρ2 ∈ ∆ : ρ1 6⊆ ρ2}.

In a second step, we lift the partial ordering ⊆ on the set of relations to a partial
ordering � on the set of antichains A(P(Y × Y )) as follows:

∆1 � ∆2, if ∀ρ1 ∈ ∆1 ∃ρ2 ∈ ∆2 : ρ1 ⊇ ρ2.

For every relation ρ1 ∈ ∆1 there is a ⊆-smaller relation ρ2 ∈ ∆2. Intuitively, this
means ∆2 is more likely to lead to a rejecting relation. We refer to the resulting



10 L. Hoĺık and R. Meyer

partially ordered set as antichain lattice, similar to [25]. The following lemma
justifies the name.

Lemma 4. (A(P(Y × Y )),�) is a complete lattice.

Since the underlying set is finite, it is sufficient to show that joins exist. Let
∆1, ∆2 ∈ A(P(Y × Y )). The least upper bound is

∆1 t∆2 := min(∆1 ∪∆2).

The main result states that chaotic iteration remains complete when we use
the antichain lattice.

Theorem 2. Chaotic iteration on DFA(G,A) is sound and complete when using
the antichain lattice.

When we restrict chaotic iteration to antichains, we consider a smaller domain
of sets of relations. If we find a rejecting relation in this smalller domain, we find
the rejecting relation in the larger domain. In this sense, our analysis is sound.

It remains to show completeness. If there is no rejecting relation with a
chaotic iteration on antichains, then there is none when we iterate on the full
powerset lattice. The following lemma is key to proving completeness. It states
that ⊆-minimal relations are sufficient for proving rejection and that inclusion
is compatible with composition.

Lemma 5. Consider ρ1 ⊆ ρ2. (1) If ρ2 is rejecting, then ρ1 is rejecting (2) For
all ρ ∈ P(Y × Y ) we have ρ1; ρ ⊆ ρ2; ρ.

To give an idea of why completeness holds, consider an arbitrary set of relations
∆ ⊆ P(Y × Y ) that may contain comparable elements. To obtain an antichain,
we prune the set to the ⊆-minimal relations. If there are rejecting relations in ∆,
by Lemma 5(1) there is a minimal one. Moreover, with Lemma 5(2) continuing
chaotic iteration on the minimal elements does not impair completeness.

5 Bounded Context Switching

We generalize our verification approach to multi-threaded recursive programs.
In this setting, safety verification problems can be formulated as

L(G1)� . . .� L(Gm) ⊆ L(A).

Every context-free grammar Gi = (Σi, Xi, x0,i, Ri) represents (cf. Section 1)
the valid control paths of a single thread in the multi-threaded program of inter-
est. We can assume the threads to use different commands, which translates to
disjointness of the alphabets, Σi ∩ Σj = ∅ for all i 6= j. The shuffle operator �
models the interleaving of computations from different threads. The task is to
check whether every interleaving is valid wrt. the specification A = (Σ,Y, y0,→)
where Σ =

⊎
Σi. When modelling programs, specification A contains all feasible



Antichains for the Verification of Recursive Programs 11

paths satisfying the verified property as well as all infeasible paths, where a read
from a Boolean variable follows a write of the opposite value, like in Section 1.

The inclusion above, and hence safety verification of multi-threaded recursive
programs, is undecidable [21]. A current trend in the verification community is
to consider under-approximations of the problem that explore only a subset of
the space of all computations. Under-approximations are good for bug hunting.
If a bug is found in the restricted set of computations, it will remain present in
the full semantics of the multi-threaded program. If the under-approximation is
bug-free, however, we cannot conclude correctness of the program.

A prominent approach to under-approximation is bounded context switching.
To explain the idea, assume the threads modeled by G1 to Gm share the same
processor. In this setting, a computation w ∈ L(G1)� . . .�L(Gm) of the multi-
threaded program may contain several context switches. (A context switch occurs
if one thread leaves the processor and another thread is scheduled.) Phrased
differently, the computation consists of several phases, w = w1 · . . . ·wn. In each
phase, only one thread has the processor, without being preempted by another
thread. Bounded context switching now only considers computations where each
thread has at most k phases, for a given k ∈ N. Note that the resulting set of
computations is still infinite and even searches an infinite state space. What is
limited is the number of interactions among threads. Indeed, the actions of one
thread become visible to the other threads only at a context switch.

In the language-theoretic formulation, a context switch corresponds to an
alphabet change. A phase is thus a maximal subword from a same alphabet.
More formally, we say a word w ∈ L(G1)� . . .� L(Gm) is k-bounded, k ∈ N, if
there are subwords w = w1 · . . . · wn so that

(1) for each wi there is an alphabet Σϕ(i) with wi ∈ Σ∗ϕ(i),

(2) Σϕ(i) 6= Σϕ(i+1) for all i ∈ [1, n− 1],
(3) there are at most k subwords from each Σ∗ϕ(i).

We use Lk(G1, . . . , Gm) to denote the set of all k-bounded words in the shuffle.
The problem BCS-REG that is the subject of this section is defined as follows:

Given: Context-free grammars G1, . . . , Gm, a right-linear grammar A,
and a number k ∈ N.
Problem: Does Lk(G1, . . . , Gm) ⊆ L(A) hold?

We propose a compositional approach to solving BCS-REG. We first approach
the problem from the point of view of each single thread. Then we combine the
obtained partial solutions into a solution for the overall multi-threaded program.
A computation of the i-th thread is divided into k phases by context switches,
which corresponds to a split of a word from L(Gi) into k subwords. During
each phase, the state of A is changed by the computation of the i-th thread.
Between the phases, the environment, i.e., the other threads, change the state
of A regardless of the i-th thread. We first, for every thread, compute a k-tuple
of relations representing how the state of A can change during each of the k
phases, assuming an arbitrary environment. The k-tuples will be obtained as a



12 L. Hoĺık and R. Meyer

solution to the data flow analysis problem DFA(Gi, A) in Section 3 that is now
interpreted over a different domain.

To represent the behavior of the whole multi-threaded program, we shuffle the
k-tuples of relations computed for the different threads. Such a shuffle represents
an interleaving of the corresponding phases. From the point of view of a single
thread, the shuffle concretizes a state change caused by an arbitrary environment
to a state change caused by a feasible computation of the other threads. Finally,
by composing the state changes caused by subsequent phases in the interleaving,
we obtain a state change that is the overall effect of a computation of the whole
multi-threaded program.

To better explain the idea and illustrate the technical development, consider
the inclusion L2(G1, G2) ⊆ L(A) with

G1 : x0,1 → a1 · x1,1 G2 : x0,2 → a2 · x1,2 A : y0 → a1 · y1 y1 → a2 · y2
x1,1 → b1 x1,2 → b2 y2 → b1 · y3 y3 → b2 · y4

y4 → ε.

Consider the word a1 · a2 · b1 · b2 ∈ L2(G1, G2). It contains the phases a1 and
b1 from L(G1). Phase a1 induces the state change {(y0, y1)} on the automaton
A. Phase b1 leads to {(y2, y3)}. Since we have to keep the state changes for each
phase, the data flow analysis DFA(G1, A) determines (amongst others) the word
of relations {(y0, y1)} · {(y2, y3)} ∈ lsol(∆x0

).
Technically, a word of relations is a word σ = ρ1 · . . . · ρn whose letters are

relations from P(Y × Y ). We use P(Y × Y )≤k for the set of all such words of
length up to k ∈ N. We again construct a powerset lattice over this domain

(P(P(Y × Y )≤k),⊆).

To re-use the system of inequalities from Section 3, we have to generalize the
operation of relational composition to words of relations, σ1;σ2. The idea is to
take a choice. Either we concatenate the words σ1 and σ2 or we compose the
last relation in σ1 with the first relation in σ2. The former case reflects a context
switch, the latter case occurs if there is no context switch (between the subwords
inducing the last relation of σ1 and the first relation of σ2, respectively).

For the definition of this relational composition operator, consider the words
of relations σ1 = ρ1,1 · . . . · ρ1,k1

and σ2 = ρ2,1 · . . . · ρ2,k2
in P(Y × Y )≤k.

The operation of concatenation σ1 · σ2 is defined as σ1 and σ2 are words. The
composition of the last relation in σ1 with the first relation in σ2 is

σ1 ◦ σ2 := ρ1,1 · . . . · ρ1,k1−1 · (ρ1,k1 ; ρ2,1) · ρ2,2 · . . . · ρ2,k2 .

The relational composition σ1;σ2 yields the set of words (of relations) containing
both σ1 · σ2 and σ1 ◦ σ2, provided the length constraint is met:

σ1;σ2 := {σ1 · σ2, σ1 ◦ σ2} ∩ P(Y × Y )≤k.

With a component-wise definition, we lift the relational composition to sets of
words of relations.



Antichains for the Verification of Recursive Programs 13

In the example, { {(y0, y1)} } and { {(y2, y3)} } are two sets each containing
one word consisting of a single relation. Relational composition yields

lsol(∆x0,1
) = { {(y0, y1)} }; { {(y2, y3)} }

= { {(y0, y1)} · {(y2, y3)}, {(y0, y1)} ◦ {(y2, y3)} }
= { {(y0, y1)} · {(y2, y3)}, ∅ }.

The empty set indicates that a1 · b1 is not executable on the automaton A.
We use DFA(Gi, A) for the data flow analysis problem that is derived from

Gi and A using the above powerset lattice and the above relational composition.
The following is the analogue of Lemma 3

Lemma 6. lsol(∆x) contains precisely the words of relations induced by L(x).

Since words σ1, σ2 of relations are ordinary words over a special alphabet, also
the shuffle operation σ1 � σ2 is defined. With reference to the above reduction,

lsol(∆x0,1)� . . .� lsol(∆x0,m)

yields precisely the words of relations that correspond to the k-bounded inter-
leavings among words derivable in the different grammars.

For the desired inclusion Lk(G1, . . . , Gm) ⊆ L(A), we check whether a word
in the shuffle lsol(∆x0,1

)� . . .� lsol(∆x0,m
) corresponds to a rejecting relation.

To this end, we compose the relations in the word. The idea is that each word
of relations in the shuffle corresponds to contiguous words in Lk(G1, . . . , Gm).
Therefore, we no longer have to deal with subwords. We define

eval(ρ1 · . . . · ρn) := ρ1; . . . ; ρn.

Theorem 3. Inclusion Lk(G1, . . . , Gm) ⊆ L(A) holds if and only if there is no
rejecting relation in eval(lsol(∆x0,1

)� . . .� lsol(∆x0,m
)).

To conclude the example, note that lsol(∆x0,2
) = { {(y1, y2)} · {(y3, y4)}, ∅ }.

Among other words, we have

σ := {(y0, y1)} · {(y1, y2)} · {(y2, y3)} · {(y3, y4)} ∈ lsol(∆x0,1
)� lsol(∆x0,2

).

The evaluation yields eval(σ) = {(y0, y4)}. Still, the inclusion fails since we find
the rejecting relation eval(∅ · ∅) = ∅ ∈ eval(lsol(∆x0,1)� lsol(∆x0,2)).

6 Conclusions and Future Work

We developed algorithms for the safety verification of recursive programs. This
verification task is often phrased as an inclusion L(G) ⊆ L(A) of a context-free
language modeling the program of interest in a regular language representing
the safety property. Our first contribution is a reformulation of the inclusion
L(G) ⊆ L(A) as a data flow analysis problem DFA(G,A). The data flow analysis
determines the state changes that the words derived in the grammar induce on



14 L. Hoĺık and R. Meyer

the given automaton. This means the underlying domain of data flow values
consists of sets of relations among states.

The data flow analysis problem DFA(G,A) can be solved by a standard
algorithm called chaotic iteration. Our second contribution is an improvement of
chaotic iteration. We show that the computation can be restricted to antichains
of relations — while preserving completeness. Antichains are sets of relations that
are pairwise incomparable. Phrased differently, our result reduces the powerset
lattice used in DFA(G,A) to a lattice of antichains [25].

As a last contribution, we show how to generalize the appraoch to programs
that are multi-threaded and recursive. While in this setting safety verification
is known to be undecidable in general [21], an under-approximate variant of the
problem remains decidable: Restricted to a bounded number of context switches,
we can still check an inclusion L(G1)� . . .� L(Gm) ⊆ L(A). Our approach is
compositional in that it combines results from independent data flow analyses
DFA(Gi, A). The reduction generalizes DFA(G,A) from (sets of) relations to
(sets of) words of relations.

As an immediate task for future work, we will implement our antichain-based
chaotic iteration and conduct an experimental evaluation. On the theoretical
side, we plan to check whether a variant of the antichain principle can be used in
related data flow analyses. One can also imagine importing algorithms to speed
up the solution of DFA(G,A). An interesting candidate seems to be Newton
iteration as presented in [8].

Acknowledgement. This work was supported by the Czech Science Founda-
tion (projects 14-11384S and 202/13/37876P), the BUT FIT project FIT-
S-14-2486, and the EU/Czech IT4Innovations Centre of Excellence project
CZ.1.05/1.1.00/02.0070.

References

1. P.A. Abdulla, K. Cerans, B. Jonsson, and Yih-Kuen Tsay. General decidability
theorems for infinite-state systems. In LICS, pages 313–321. IEEE, 1996.

2. M. F. Atig, A. Bouajjani, and G. Parlato. Getting Rid of Store-Buffers in TSO
Analysis. In CAV, volume 6806 of LNCS, pages 99–115. Springer, 2011.

3. A. Bouajjani, J. Esparza, and T. Touili. A generic approach to the static analysis
of concurrent programs with procedures. In POPL, pages 62–73. ACM, 2003.

4. Véronique Bruyère, Marc Ducobu, and Olivier Gauwin. Visibly pushdown au-
tomata: Universality and inclusion via antichains. In LATA, volume 7810 of LNCS,
pages 190–201. Springer, 2013.

5. J.Richard Büchi. On a decision method in restricted second order arithmetic. In
Saunders Mac Lane and Dirk Siefkes, editors, The Collected Works of J. Richard
Büchi, pages 425–435. Springer, 1990.

6. P. Cousot and R. Cousot. Automatic synthesis of optimal invariant assertions:
Mathematical foundations. In Artificial Intelligence and Programming Languages,
pages 1–12. ACM, 1977.

7. Martin De Wulf, Laurent Doyen, and Jean-François Raskin. A lattice theory for
solving games of imperfect information. In HSCC, volume 3927 of LNCS, pages
153–168. Springer, 2006.



Antichains for the Verification of Recursive Programs 15

8. J. Esparza, S. Kiefer, and M. Luttenberger. Newtonian program analysis. JACM,
57(6), 2010.

9. A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs. In POPL,
pages 129–142. ACM, 2013.

10. A. Farzan, Z. Kincaid, and A. Podelski. Proofs that count. In POPL, pages
151–164. ACM, 2014.

11. A. Farzan, Z. Kincaid, and A. Podelski. Proof spaces for unbounded parallelism.
In POPL, pages 407–420. ACM, 2015.

12. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1–2):63 – 92, 2001.

13. Seth Fogarty and MosheY. Vardi. Efficient büchi universality checking. In TACAS,
volume 6015 of LNCS, pages 205–220. Springer, 2010.

14. Oliver Friedmann, Felix Klaedtke, and Martin Lange. Ramsey goes visibly push-
down. In ICALP, volume 7966 of LNCS, pages 224–237. Springer, 2013.

15. M. Heizmann, J. Hoenicke, and A. Podelski. Nested interpolants. In POPL, pages
471–482. ACM, 2010.

16. Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Software model
checking for people who love automata. In CAV, volume 8044 of LNCS, pages
36–52. Springer, 2013.

17. A. Lal, T. Touili, N. Kidd, and T. Reps. Interprocedural analysis of concurrent
programs under a context bound. In TACAS, volume 4963 of LNCS, pages 282–
298. Springer, 2008.

18. Zhenyue Long, Georgel Calin, Rupak Majumdar, and Roland Meyer. Language-
theoretic abstraction refinement. In FASE, volume 7212 of LNCS, pages 362–376.
Springer, 2012.

19. F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

20. S. Qadeer and J. Rehof. Context-bounded model checking of concurrent software.
In TACAS, volume 3440 of LNCS, pages 93–107. Springer, 2005.

21. G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecid-
able. ACM Tr. on Prog. Lang. and Sys., 22(2):416–430, 2000.

22. T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis via
graph reachability. In POPL, pages 49–61. ACM, 1995.

23. H. Seidl, R. Wilhelm, and S. Hack. Compiler Design - Analysis and Transforma-
tion. Springer, 2012.

24. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
Technical Report 2, New York University, 1978.

25. M. De Wulf, L. Doyen, T.A. Henzinger, and J.-F. Raskin. Antichains: A new
algorithm for checking universality of finite automata. In CAV, volume 4144 of
LNCS, pages 17–30. Springer, 2006.


