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Aufgabe 1.1 (Kirchhoff Equations)
Let G = (V,E) be a directed graph and c a cycle in G. Show that ψ(c) is a solution of
the Kirchhoff equation Σe=(−,v)x(e)− Σe=(v,−)x(e) = 0 for all vertices v ∈ V .

Aufgabe 1.2 (Reducing Petri net reachability to MGTS intermediate acceptance)
Let N = (S, T,W ) be a Petri net and M0,Mf ∈ N|S| be markings. Give a MGTS that
has an intermediate accepting N-run if and only if Mf is reachable from M0 in N .

Aufgabe 1.3 (VASS reachability)
Consider the following MGTS W = G0.t7.G1:
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(a) Write down the characteristic equation Char(W ). You may replace constant variables
with their value and omit equations that are always true.

(b) Show that W is perfect. In particular, give up- and down-pumping sequences for
G0 and G1 and show that the support justifies the unboundedness.

(c) Give a full support solution sh of the homogeneous variant of Char(W ).

(d) Give a Z-run ρ. For this, find a solution sc of Char(W ) and add your full support
solution sh if necesssary.



(e) The Z-run from (d) has the form ρ = ρ0.t7.ρ1. Use Lambert’s iterations lemma to get
an N-run for ρ1. For this embed the up-pumping sequence u1 and the down-punping
sequence v1 for G1 from (b) in the support solution sh from (c). In particular, find
m ∈ N such that:

m · sh[T (G1)]− ψ(u1)− ψ(v1) ≥ 1

m · sh[G1, in, 3] + eff (u1)(3) ≥ 1

m · sh[G1, out, 3]− eff (v1)(3) ≥ 1

Then, give a Z-run u1.w1.v1 with Parik image m ·sh[T (G1)]. Finally, this run can be
pumped such that uk1.ρ1.wk

1 .v
k
1 is a N-run. Give a sufficient k ∈ N and the resulting

run.

Aufgabe 1.4 (Abdulla’s backwards search for Petri nets)
Consider the following Petri net:
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(a) Write the definition of minpre(M) for Petri nets. Is it computable?

(b) Run the backwards search to prove that the marking M = (0 0 2 0)T is coverable.
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