Concurrency Theory	
Blatt 2	
Prof. Dr. Roland Meyer	
Jan Grünke	Abgabe bis 14 05 2024 um 23:59 Uhr

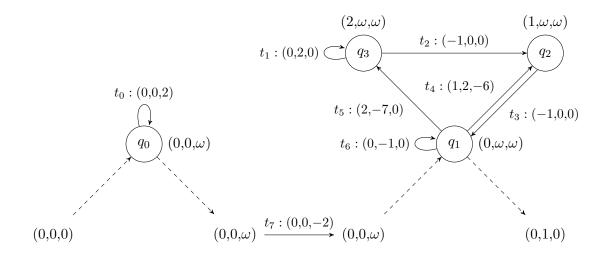
Übungen zur Vorlesung

Aufgabe 2.1 (Kirchhoff Equations)

Let G = (V, E) be a directed graph and c a cycle in G. Show that $\psi(c)$ is a solution of the Kirchhoff equation $\sum_{e=(-,v)} x(e) - \sum_{e=(v,-)} x(e) = 0$ for all vertices $v \in V$.

Aufgabe 2.2 (Reducing Petri net reachability to MGTS intermediate acceptance) Let N = (S, T, W) be a Petri net and $M_0, M_f \in \mathbb{N}^{|S|}$ be markings. Give a MGTS that has an intermediate accepting N-run if and only if M_f is reachable from M_0 in N.

Aufgabe 2.3 (VASS reachability) Consider the following MGTS $W = G_0.t_7.G_1$:



- (a) Write down the characteristic equation Char(W). You may replace constant variables with their value and omit equations that are always true.
- (b) Show that W is perfect. In particular, give up- and down-pumping sequences for G_0 and G_1 and show that the support justifies the unboundedness.
- (c) Give a full support solution s_h of the homogeneous variant of Char(W).
- (d) Give a \mathbb{Z} -run ρ . For this, find a solution s_c of Char(W) and add your full support solution s_h .

(e) The Z-run from (d) has the form $\rho = \rho_0.t_7.\rho_1$. Use Lambert's iterations lemma to get an N-run for ρ_1 . For this embed the up-pumping sequence u_1 and the down-punping sequence v_1 for G_1 from (b) in the support solution s_h from (c). In particular, find $m \in \mathbb{N}$ such that:

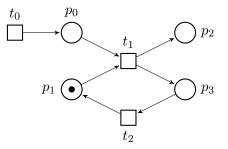
$$m \cdot s_h[T(G_1)] - \psi(u_1) - \psi(v_1) \ge 1$$

$$m \cdot s_h[G_1, in, 3] + eff(u_1)(3) \ge 1$$

$$m \cdot s_h[G_1, out, 3] - eff(v_1)(3) \ge 1$$

Then, give a \mathbb{Z} -run $u_1.w_1.v_1$ with Parik image $m \cdot s_h[T(G_1)]$. Finally, this run can be pumped such that $u_1^k.\rho_1.w_1^k.v_1^k$ is a N-run. Give a sufficient $k \in \mathbb{N}$ and the resulting run.

Aufgabe 2.4 (Abdulla's backwards search for Petri nets) Consider the following Petri net:



- (a) Write the definition of minpre(M) for Petri nets. Is it computable?
- (b) Run the backwards search to prove that the marking $M = (0 \ 0 \ 2 \ 0)^T$ is coverable.

Abgabe bis 14.05.2024 um 23:59 Uhr per Mail an jan.gruenke1@tu-bs.de.