Lemma (Finikney) For every Petri net N the
Coverability groph Cov(N) is finite.
->follows due to the fact that
$$\leq$$
 on M_{ω}^{s}
is a well-quari-order
Lemma (N to Cov(N)) Consider a transition
requence $\sigma \in T^*$ with Molo?M. Then there
is a _fath Mo =>M_{\omega} in Cov(N) with $M \leq M_{\omega}$.

$$\frac{\text{Lemma}(\text{Could}+o N)}{\text{Aut}(s) = M_{w}(s)} = For all M_{w} \in (\text{ov}(N))$$

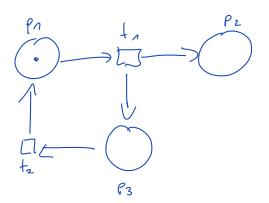
$$\frac{\text{Lemma}(\text{Could}+o N)}{\text{Hore is}} = M_{w}(s) = M_{w}(s)$$

$$M(s) = M_{w}(s) = S \setminus Q_{w}(M_{w})$$

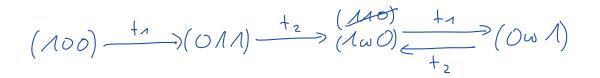
2. Place
$$r \in S$$
 is unbounded if and only if
there is N_{W} in $Cov(N)$ with $M_{W}(s) = \omega$

-) gives decision procedure by finiteness of (ou(N)

Example Patri Net:



Coverability goaph:



Well Quari Orderings

A quari ordering (qo) is a reflexive and bransitive relation $4 = A \times A$. We also call $(A_1 =)$ a qo. We write a < 6 for a = 6 and 6 # a

An <u>artichain</u> is a set B = A of incomparable elements, $a \neq b$ for $all a b \in B$

3. Repeat this for a q(no)+1