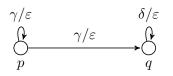
Applied Automata Theory $(WS \ 2014/2015)$	Technische Universität Kaiserslautern
--	---------------------------------------

Exercise Sheet 10

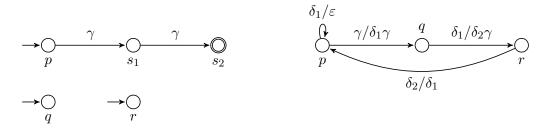
Prof. Dr. Roland Meyer, Reiner Hüchting Due:

Due: Tue, Jan 20

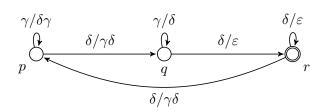

Exercise 10.1 PDS Modeling

Give a pushdown system that models the following program where r() is a function that randomly returns 0 or 1. Describe how you represent the program counter and the value of the variable x. *Hint: In a first step, assign each line in the code a unique label.*

void m()	void s()	<pre>int x=0;</pre>
x=1;	x=0;	<pre>void main()</pre>
if(r()==1) s();	if(r()==1) m();	m();


Exercise 10.2 pre* Computation

Use the algorithm given in the lecture notes to determine $pre^*(C)$ in the pushdown system below, where $C = \{(q, w) \mid w \in \{\gamma, \delta\}^* \text{ and } |w| \text{ is even}\}.$


Exercise 10.3 pre* Computation

Compute A_{pre^*} starting from A (left) and P (right) given below.

Exercise 10.4 Büchi Pushdown Systems

Solve the accepting run problem for the Büchi-pushdown system over $\Gamma = \{\gamma, \delta\}$ below:

- (a) Find all $(s,\gamma) \in Q \times \Gamma$ such that $(s,\gamma) \to^+ (r,u) \to^* (s,\gamma \cdot v)$ for some $u,v \in \Gamma^*$.
- (b) Compute $A_{\mathsf{pre}^*(C)}$ for $C = \{(s, \gamma \cdot \Gamma^*) \mid (s, \gamma) \text{ is a configuration found in (a)}\}.$

Note: the lowercase $\gamma \in \Gamma$ in (a) and (b) is an arbitrary symbol.