Applied Automata Theory (WS 2014/2015)

Technische Universität Kaiserslautern

Due: Tue, Jan 06

Exercise Sheet 8

Prof. Dr. Roland Meyer, Reiner Hüchting

Exercise 8.1 Verifying Operating Systems

Our goal is to verify an operating system that runs k processes and has a scheduler. Consider the following Büchi automata:

 $A_{\text{OS}} := A_{P_1} \parallel \ldots \parallel A_{P_k}$: Describes the behaviour of the operating system, where

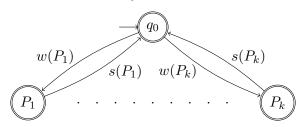
 A_{P_i} represents the behavior of process P_i .

 $A_{
m Sched}$: Describes the scheduling strategy. $A_{
m Prop}$: Describes a property to be checked.

Our verification task amounts to solving the following model checking problem:

$$L(A_{OS}) \cap L(A_{Sched}) \subseteq L(A_{Prop}).$$

To solve this problem in a general way, we introduce a most general scheduling Büchi automaton $A_{\rm MG}$ that allows for arbitrary behaviours of the scheduler:



The scheduler can randomly wake up $(w(P_i))$ and suspend $(s(P_i))$ processes and the processes only work when awake. Unfortunately, this general scheduler is not fair: it does not necessarily wake up each process infinitely often.

- (a) Modify A_{MG} to a fair automaton A_{MGF} that wakes up every process infinitely often. Keep A_{MGF} as general as possible, do not implement a concrete scheduling strategy.
- (b) Present an automaton A_{RR} that describes the *Round Robin* scheduling strategy. What is the relationship between $L(A_{RR})$ and $L(A_{MG})$ respectively $L(A_{MGF})$?
- (c) Why can you conclude $L(A_{OS}) \cap L(A_{RR}) \subseteq L(A_{Prop})$ from $L(A_{OS}) \cap L(A_{MGF}) \subseteq L(A_{Prop})$?

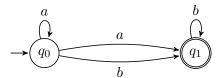
Exercise 8.2 NBA Emptiness and Membership

Let A be an NBA and uv^{ω} be an ω -word. Give algorithms that decide whether:

$$L(A) = \emptyset$$
 $uv^{\omega} \in L(A).$

Exercise 8.3 NBA Complementation

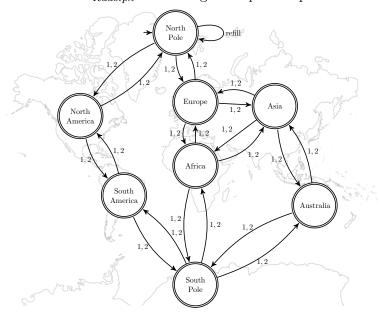
Consider the NBA A over $\Sigma = \{a, b\}$ below:



Use Büchi's complementation method discussed in class to compute L(A) and $\overline{L(A)}$.

Exercise 8.4 Travelling Santa

Santa has decided to swap his traditional sleigh for the brand new *Chrismas Racer* 3000, equipped with the state of the art automata driven navigation system Rudolph Go v0.99beta. The automaton $A_{Rudolph}$ controlling Rudolph is depicted below:



Each time Santa lifts off, *Rudolph* randomly chooses a neighbouring continent. Santa drops one or two presents every time he enters a region and he can refill at the north pole. Currently, *Rudolph* cannot prevent Santa from running out of presents. Please help Santa by upgrading *Rudolph* to version 1.0:

- (a) Determine the minimum present capacity of the sleigh needed not to run empty.
- (b) Give an NBA A_{Sleigh} modelling how the number of presents in Santa's sleigh changes.
- (c) Explain how one can use $A_{Rudolph}$ and A_{Sleigh} to create a controller that guarantees Santa to never run out of presents.
- (d) How can you modify the controller so that all continents are visited infinitely often?