## Exercise Sheet 7

Prof. Dr. Roland Meyer, Reiner Hüchting
Due: Tue, Dec 16

## Exercise 7.1 NBA Languages $=\omega$-regular Languages

(a) Show that if there is an NBA that accepts $L \subseteq \Sigma^{\omega}$ then $L$ is $\omega$-regular.
(b) Construct an NBA that accepts $L=(a b+c)^{*}((a a+b) c)^{\omega}+\left(a^{*} c\right)^{\omega}$

## Exercise 7.2 Circuit Verification

Consider a circuit 1 that continuously receives inputs $x$ and generates outputs $y$ :


The circuit uses registers $r_{1}$ and $r_{2}$, which are initially $r_{1}=0$ and $r_{2}=1$.
(a) Construct a Büchi automaton over the alphabet $\{0,1\}^{2}$ that accepts all sequences of input/output pairs which describe the possible runs of the circuit.
Hint: The states are determined by $r_{1}$ and $r_{2}$ and the transitions only depend on $x$.
(b) Use the automaton to determine whether the circuit satisfies the properties ...
$P_{\text {fair }}$ : whenever $x$ is infinitely often high, then $y$ is infinitely often high.
$P_{\text {safe }}$ : always $x=y=1$ or $x=y=0$.
$P_{\text {persistent }}$ : starting from some point, $y$ will always be high.
(c) Give words (finite if possible) that satisfy $P_{i}$ and $\neg P_{i}$ for each $i \in\{$ fair, safe, persistent $\}$.

[^0]A partially ordered set $(A, \leq)$ is said to be well-founded if for every sequence

$$
a_{1} \geq a_{2} \geq a_{3} \geq \cdots
$$

$a_{i} \in A, i \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $a_{m}=a_{n}$ for any $m \geq n$.
Let $T_{1}, \ldots, T_{n} \subseteq A \times A$ be well-founded partial orders and $R \subseteq A \times A$ be a partial order such that $R \subseteq T_{1} \cup \cdots \cup T_{n}$. Show that $R$ is well-founded, too.

Hint: Use Ramsey's Theorem.

## Exercise 7.4 Disjunctive Well-Foundedness

## (optional)

Consider the following program over integer variables and the corresponding automaton:
while $x>0 \wedge y>0$ do

or
$l_{\mathrm{b}}: \quad(\mathrm{x}, \mathrm{y}):=(\mathrm{y}-2, \mathrm{x}+1)$
endwhile
A state $S$ of this program is a vector giving a value to each variable. The execution of a command $l_{a}$ or $l_{b}$ leads to a labelled transition between states. For example:

$$
S=(x=2, y=1) \xrightarrow{l_{a}}(1,2)=S^{\prime} .
$$

One can show that between every pair of states $S \xrightarrow{w} S^{\prime}$, where $w \in\left\{l_{a}, l_{b}\right\}^{+}$, one of the following relations holds:

$$
\begin{array}{ll}
T_{1} & x>0 \wedge x>x^{\prime} \\
T_{2} & x+y>0 \wedge x+y>x^{\prime}+y^{\prime} \\
T_{3} & y>0 \wedge y>y^{\prime}
\end{array}
$$

Show that this implies termination (from any starting state).


[^0]:    ${ }^{1}$ Inspired by C. Baier \& J.P. Katoen: Principles of Model Checking

