Due: Tue, Dec 16

Exercise Sheet 7

Prof. Dr. Roland Meyer, Reiner Hüchting

Exercise 7.1 NBA Languages = ω -regular Languages

- (a) Show that if there is an NBA that accepts $L \subseteq \Sigma^{\omega}$ then L is ω -regular.
- (b) Construct an NBA that accepts $L = (ab + c)^*((aa + b)c)^{\omega} + (a^*c)^{\omega}$

Exercise 7.2 Circuit Verification

Consider a circuit that continuously receives inputs x and generates outputs y:

The circuit uses registers r_1 and r_2 , which are initially $r_1 = 0$ and $r_2 = 1$.

(a) Construct a Büchi automaton over the alphabet $\{0,1\}^2$ that accepts all sequences of input/output pairs which describe the possible runs of the circuit.

Hint: The states are determined by r_1 and r_2 and the transitions only depend on x.

(b) Use the automaton to determine whether the circuit satisfies the properties ...

 P_{fair} : whenever x is infinitely often high, then y is infinitely often high.

 P_{safe} : always x = y = 1 or x = y = 0.

 $P_{\text{persistent}}$: starting from some point, y will always be high.

(c) Give words (finite if possible) that satisfy P_i and $\neg P_i$ for each $i \in \{\text{fair}, \text{safe}, \text{persistent}\}$.

¹Inspired by C. Baier & J.P. Katoen: Principles of Model Checking

Exercise 7.3 Disjunctive Well-Foundedness

(optional)

A partially ordered set (A, \leq) is said to be well-founded if for every sequence

$$a_1 \geq a_2 \geq a_3 \geq \cdots$$

 $a_i \in A, i \in \mathbb{N}$, there is an $n \in \mathbb{N}$ such that $a_m = a_n$ for any $m \ge n$.

Let $T_1, \ldots, T_n \subseteq A \times A$ be well-founded partial orders and $R \subseteq A \times A$ be a partial order such that $R \subseteq T_1 \cup \cdots \cup T_n$. Show that R is well-founded, too.

Hint: Use Ramsey's Theorem.

Exercise 7.4 Disjunctive Well-Foundedness

(optional)

Consider the following program over integer variables and the corresponding automaton:

$$\begin{array}{lll} \textbf{while} \ x > 0 \land y > 0 \ \textbf{do} \\ & 1_{\textbf{a}}: & (\texttt{x}, \texttt{y}) := (\texttt{x} - 1, \texttt{x}) \\ \textbf{or} & & \textbf{l}_{a}: \textbf{if} \ x > 0 \land y > 0 \\ & 1_{\textbf{b}}: & (\texttt{x}, \texttt{y}) := (\texttt{y} - 2, \texttt{x} + 1) \\ & \textbf{endwhile} & & \textbf{y}' := \texttt{x} \\ \end{array}$$

A state S of this program is a vector giving a value to each variable. The execution of a command l_a or l_b leads to a labelled transition between states. For example:

$$S = (x = 2, y = 1) \xrightarrow{l_a} (1, 2) = S'.$$

One can show that between every pair of states $S \xrightarrow{w} S'$, where $w \in \{l_a, l_b\}^+$, one of the following relations holds:

$$T_1$$
 $x > 0 \land x > x'$
 T_2 $x + y > 0 \land x + y > x' + y'$
 T_3 $y > 0 \land y > y'$

Show that this implies termination (from any starting state).