Applied Automata Theory (WS 2014/2015)

Technische Universität Kaiserslautern

Due: Tue, Nov 25

Exercise Sheet 4

Jun.-Prof. Roland Meyer, Reiner Hüchting

Exercise 4.1 Presburger Formulas & Parikh Images

- (a) Construct a finite automaton for the atomic Presburger formula $x-3y\leq 1$.
- (b) Present a Presburger formula ϕ such that every bound variable occurs in <u>precisely</u> one atomic expression and such that

$$Sol(\phi) = \left\{ \begin{pmatrix} 2n+1\\ n+3 \end{pmatrix} | n \in \mathbb{N} \right\} \cup \left\{ \begin{pmatrix} 3n+1\\ 2n+2 \end{pmatrix} | n \in \mathbb{N} \right\}$$

(c) Give an NFA A so that $\Psi(L(A)) = Sol(\phi)$ for the Presburger formula ϕ from (b).

Exercise 4.2 Quantifier Elimination

Perform quantifier elimination for the following formula as described in the lecture notes:

$$\neg \forall x. \, 3x < 2y \lor y < 2x .$$

Exercise 4.3 Semilinear Sets

- (a) Prove that semi-linear sets are Presburger definable: for any semi-linear set $S \subseteq \mathbb{N}^n$ there exists a Presburger formula φ_S such that $S = Sol(\varphi_S)$.
- (b) A function $f: \mathbb{N}^n \to \mathbb{N}^m$ is linear if f(x+y) = f(x) + f(y) and f(kx) = kf(x) for all $k \in \mathbb{N}$. Prove that semi-linear sets are closed under linear functions, i.e. if $S \subseteq \mathbb{N}^n$ is semi-linear and $f: \mathbb{N}^n \to \mathbb{N}^m$ is a linear function then $f(S) \subseteq \mathbb{N}^m$ is semi-linear.

Exercise 4.4 Semilinear Extensions of Regular Languages

Consider extended regular expressions (r, S) where $r \in \text{REG}_{\Sigma}$ and $S \subseteq \mathbb{N}^{|\Sigma|}$ is semilinear, and define $L(r, S) := \{w \in \Sigma^* \mid w \in L(r) \text{ and } \Psi(w) \in S\}.$

- (a) Prove that emptiness of L(r, S) is decidable for any extended regexp (r, S).
- (b) Find an extended regexp (r, S) such that $a^n b^n c^n = L(r, S)$.
- (c) What is the language r accepted by the "request/acknowledge" automaton below?

Describe the semilinear set S for which the extended regexp L(r, S) represents > 80% system availability, i.e. the transition sequences with $\leq 20\%$ down time.