Applied Automata Theory (WS 2014/2015) Technische Universität Kaiserslautern

Exercise Sheet 3

Jun.-Prof. Roland Meyer, Reiner Hüchting Due: Tue, Nov 12

Exercise 3.1 Extending WMSO

Suppose the logic WMSO[<, suc, \sqsubseteq] is obtained from WMSO[<, suc] by adding the predicate \sqsubseteq , which is interpreted as

 $S_w, I \models X \sqsubseteq Y :\iff$ for each $x \in I(X)$, there is a $y \in I(Y)$ such that $x \leq y$.

Extend the proof of Theorem Büchi II to $WMSO[<, suc, \sqsubseteq]$.

Exercise 3.2 WMSO Model Checking

Given an automaton A and a WMSO[<, suc]-formula φ , the model checking problem asks whether every word accepted by A satisfies φ . If yes, we write $A \models \varphi$.

- (a) Show that the model checking problem is Turing reducible to the emptiness problem for finite automata
- (b) Show that the emptiness problem is Turing reducible to the problem of whether in a finite automaton, one given state can be reached.

Exercise 3.3 Star-Free Languages

Prove or disprove whether the following languages are star-free:

- (a) $(ab + ba)^*$
- (b) $(abab)^*$
- (c) $(a + bab)^*$

Exercise 3.4 Star-Free \Rightarrow FO[<]-definable

(a) Let $w = a_0 \dots a_n \in \Sigma^*$ and let $i, j \in \mathbb{N}$ such that $0 \le i \le j \le n$. Show that for every FO[<]-sentence φ and FO-variables x, y with I(x) = i, I(y) = j, there is a formula $\psi(x, y)$ such that

 $S(w), I \vDash \psi$ if and only if $S(a_i \dots a_j) \vDash \varphi$.

- (b) Deduce from (a) that FO[<]-definable languages are closed under concatenation.
- (c) Conclude by structural induction that every star-free language is FO[<]-definable.