Exercise Sheet 2

Jun.-Prof. Roland Meyer, Reiner Hüchting
Due: Tue, 11 November

Exercise 2.1 WMSO[<, suc]-defined Languages

(a) Present a $\mathrm{WMSO}[<$, suc $]$-formula that defines the language $b^{*} a^{+} b(a+b)^{*}$.
(b) Present a WMSO $\left[<\right.$, suc]-formula that defines the language $\left((a a)^{*} b\right)^{*}$.
(c) Present a WMSO $[<$, suc $]$-formula that defines all finite words over $\Sigma=\left\{a_{0}, \ldots, a_{n-1}\right\}$ such that every letter a_{i} is always immediately followed by $a_{i+1} \bmod n$ for $0 \leq i<n$.
(d) What is the language described by $\exists y \forall x \forall z . x<y \wedge y<z \rightarrow \neg P_{a}(x) \wedge P_{b}(y)$?

Exercise 2.2 Weak Dyadic Second Order Logic

Let WDSO be like WMSO with the modification that all second order variables X are dyadic instead of being monadic, i.e. one has atomic formulas $X(x, y)$. The syntax and semantics of WDSO are the same with those of WMSO up to the predicate replacement:

$$
\begin{array}{ll}
S(w), I \vDash X(x, y) & \text { iff. }(I(x), I(y)) \in I(X) \\
S(w), I \vDash \exists X . \varphi & \text { iff. there is a finite set } M \subseteq D(w)^{2} \text { such that } I[M / X] \vDash \varphi .
\end{array}
$$

Give (with arguments) a WDSO-formula that defines the language $\left\{a^{n} b^{n} \mid n \geq 0\right\}$.

Exercise 2.3 From WMSO to Finite Automata

Using the method presented in the lecture, construct a finite automaton that accepts the language defined by the formula $\varphi=\exists x: P_{a}(x) \wedge \forall y: x<y \rightarrow P_{b}(y)$.

Exercise 2.4 Ehrenfeucht-Fraïssé Games

Let $n \in \mathbb{N}$ be arbitrarily fixed. Which is the maximal number of rounds $k \in \mathbb{N}$ such that the Duplicator has a winning strategy for $G_{k}\left((a b)^{2 n+1},(b a)^{2 n+1}\right)$?

Hint: first see what happens when $n=1$ and $n=2$.

