Applied Automata Theory (WS 2014/2015)

Technische Universität Kaiserslautern

Due: Wed, Nov 5

Exercise Sheet 1

Jun.-Prof. Roland Meyer, Reiner Hüchting

Exercise 1.1 NFA \Rightarrow REG

Use equations and Arden's Lemma to find a regular expression for the following NFA:

Exercise 1.2 Arden's Lemma

Consider the following extension: If $U, V \subseteq \Sigma^*$ and $\varepsilon \in U$ then all solutions $L \subseteq \Sigma^*$ of the equation $L = UL \cup V$ are precisely the elements of $\mathcal{L} = \{U^*V' \mid V \subseteq V' \subseteq \Sigma^*\}$.

Prove the extension by solving (a) and (b) below:

- (a) Show that if L is a solution of $L = UL \cup V$ then $L \in \mathcal{L}$.
- (b) Show that every $L \in \mathcal{L}$ satisfies $L = UL \cup V$.

Exercise 1.3 Language Shuffle as Intersection

- (a) Consider NFAs A_1 and A_2 over alphabet Σ . Construct an NFA $A_1 \cap A_2$ over Σ that satisfies $L(A_1 \cap A_2) = L(A_1) \cap L(A_2)$.
- (b) Consider NFAs A_1 and A_2 over disjoint alphabets $\Sigma_1 \cap \Sigma_2 = \emptyset$. Give NFAs A_1' and A_2' over $\Sigma_1 \cup \Sigma_2$ so that $L(A_1') \cap L(A_2') = L(A_1) \sqcup L(A_2)$.

For (b), we define the *shuffle operation* on languages $L_1 \subseteq \Sigma_1^*$ and $L_2 \subseteq \Sigma_2^*$ by

$$L_1 \coprod L_2 := \bigcup_{u \in L_1, v \in L_2} \{ u_1 v_1 \dots u_n v_n \mid u = u_1 \dots u_n, \ u_i \in \Sigma_1^*, \ v = v_1 \dots v_n, \ v_i \in \Sigma_2^* \}.$$

Note that $L_1 \sqcup L_2$ is over alphabet $\Sigma_1 \cup \Sigma_2$. For example, $\{a.b\} \sqcup \{x\} = \{a.b.x, a.x.b, x.a.b\}$.

Exercise 1.4 (Parallel) Programs as Automata

Boolean Programs are programs where all variables take Boolean values from $\mathbb{B} := \{0, 1\}$. For simplicity, we consider programs that only have reads r(x, v) and writes w(x, v). Here, x is taken from a finite set of variables Var and $v \in \mathbb{B}$. Reads are meant to be blocking, so r(y, 0) cannot be executed if y is 1. Initially, all variables are set to 0. The following is an example program:

```
P1
10: w(x, 1) goto 11
11: r(y, 0) goto 12
11: r(y, 1) goto 11
12: //execution stops here
```

A finite run of program P is a sequence of read and write statements, i.e., a word over the alphabet $\Sigma := \{r, w\} \times \mathsf{Var} \times \mathbb{B}$. We denote the set of all finite runs of P by L_P .

- (a) Construct an NFA A_{P_1} such that $L(A_{P_1}) = L_{P_1}$.
- (b) Parallel programs $P_1 \parallel P_2$ execute multiple programs over the same variables Var. Assume program P_1 above is executed in parallel with

```
P2
la: w(y, 1) goto lb
lb: r(x, 0) goto lc
lb: r(x, 1) goto lb
lc: //execution stops here
```

Change your construction into an NFA $A_{P_1||P_2}$ with $L(A_{P_1||P_2}) = L_{P_1||P_2}$.

What do you observe about l2 in P_1 and lc in P_2 . If you are interested, search the web for Dekker's protocol.

(c) This exercise is optional. We can also directly understand the programs P_1 and P_2 as finite automata C_{P_1} and C_{P_2} that only reflect the control flow. This means the labels of P_1 are the states of C_{P_1} and the instructions are the transitions. In this setting, we additionally have to encode the behaviour of reads from and writes to variables. To this end, construct an automaton A_{Var} so that

$$(L(C_{P_1}) \sqcup L(C_{P_2})) \cap L(A_{Var}) = L_{P_1 \parallel P_2}.$$

Can you draw a connection between reachability and language emptiness?