
Applied Automata Theory (WS 2014/2015) Technische Universität Kaiserslautern

Exercise Sheet 1

Jun.-Prof. Roland Meyer, Reiner Hüchting Due: Wed, Nov 5

Exercise 1.1 NFA ⇒ REG

Use equations and Arden’s Lemma to find a regular expression for the following NFA:

q0 q1

q2q3

a

a b

b

c

c

d

d

Exercise 1.2 Arden’s Lemma

Consider the following extension: If U, V ⊆ Σ∗ and ε ∈ U then all solutions L ⊆ Σ∗ of
the equation L = UL ∪ V are precisely the elements of L = {U∗V ′ | V ⊆ V ′ ⊆ Σ∗}.

Prove the extension by solving (a) and (b) below:

(a) Show that if L is a solution of L = UL ∪ V then L ∈ L.

(b) Show that every L ∈ L satisfies L = UL ∪ V .

Exercise 1.3 Language Shuffle as Intersection

(a) Consider NFAs A1 and A2 over alphabet Σ. Construct an NFA A1 ∩A2 over Σ that
satisfies L(A1 ∩A2) = L(A1) ∩ L(A2).

(b) Consider NFAs A1 and A2 over disjoint alphabets Σ1 ∩ Σ2 = ∅. Give NFAs A′1 and
A′2 over Σ1 ∪ Σ2 so that L(A′1) ∩ L(A′2) = L(A1)� L(A2).

For (b), we define the shuffle operation on languages L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 by

L1 � L2 :=
⋃

u∈L1,v∈L2

{u1v1 . . . unvn |u = u1 . . . un, ui ∈ Σ∗1, v = v1 . . . vn, vi ∈ Σ∗2}.

Note that L1�L2 is over alphabet Σ1∪Σ2. For example, {a.b}�{x} = {a.b.x, a.x.b, x.a.b}.



Exercise 1.4 (Parallel) Programs as Automata

Boolean Programs are programs where all variables take Boolean values from B := {0, 1}.
For simplicity, we consider programs that only have reads r(x, v) and writes w(x, v).
Here, x is taken from a finite set of variables Var and v ∈ B. Reads are meant to be
blocking, so r(y, 0) cannot be executed if y is 1. Initially, all variables are set to 0. The
following is an example program:

P1

l0: w(x, 1) goto l1

l1: r(y, 0) goto l2

l1: r(y, 1) goto l1

l2: //execution stops here

A finite run of program P is a sequence of read and write statements, i.e., a word over
the alphabet Σ := {r, w} × Var × B. We denote the set of all finite runs of P by LP .

(a) Construct an NFA AP1 such that L (AP1) = LP1 .

(b) Parallel programs P1 ‖ P2 execute multiple programs over the same variables Var.
Assume program P1 above is executed in parallel with

P2

la: w(y, 1) goto lb

lb: r(x, 0) goto lc

lb: r(x, 1) goto lb

lc: //execution stops here

Change your construction into an NFA AP1‖P2
with L(AP1‖P2

) = LP1‖P2
.

What do you observe about l2 in P1 and lc in P2. If you are interested, search the
web for Dekker’s protocol.

(c) This exercise is optional. We can also directly understand the programs P1 and
P2 as finite automata CP1 and CP2 that only reflect the control flow. This means
the labels of P1 are the states of CP1 and the instructions are the transitions. In
this setting, we additionally have to encode the behaviour of reads from and writes
to variables. To this end, construct an automaton AVar so that

(L(CP1)� L(CP2)) ∩ L(AVar) = LP1‖P2
.

Can you draw a connection between reachability and language emptiness?


